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Abstract: A streamline diffusion finite element method (SDFEM) is applied to a singularly perturbed
convection-diffusion two-point boundary value problem in conservative form. The stability and ac-
curacy of the SDFEM on arbitrary grids are studied. We derive the pointwise error estimates and

the approximation of derivatives. These bounds

are then made explicit for the particular cases of

Shishkin-type meshes. Numerical experiments support our theoretical results.
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1 Introduction

Differential equations with a small parametemul-
tiplying the highest order derivative terms are said to
be singularly perturbed and normally boundary layers
occur in their solutions. Singularly perturbed differ-
ential equations arise frequently in many applied ar-
eas which include fluid dynamics, quantumn mechan-
ics, chemical reactions, and electrical networks. For
the past two decades an extensive research has bee
made on numerical methods for the singularly per-
turbed differential equation, see [1,2] and reference
theirin .

It has been numerically observed that the
streamline-diffusion finite element method (SDFEM)
[3,4] often give a good and stable approximation of
singularly perturbed boundary value problem if the
grid is properly adapted to capture the singularity of
the solution such as sharp layers. In this paper, we
give a careful analysis of this phenomenon and de-
velop a deeper understanding of the behavior of the
SDFEM. The model problem we will study in this
paper is a linear convection-diffusion problem in con-
servative form:

—eu’ (z) — (b(x)u(z)) = f(x), z € (0,1),
u(0) =70, u(l)=m,

1)
2
wheree is a small positive parameténz) and f(z)

are sufficiently smoothy, and~; are given constants,
and for0 < x < 1 we assume thai(xz) > 5 > 0.
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The solutionu(x) of (1)-(2) typically has a boundary
layer atx = 0 and its derivatives can be bounded by

[u®(2)] < C(1 + e *exp(—Ba/e)) (3)

fork=0,1,2,3, x € [0, 1], see [5].

The SDFEM, introduced first by Hughes and
Brooks in [6], is one of such stabilized methods
Which combines good stability properties with high
accuracy. Many convergence estimates of the SD-
FEM [7,8,9] have been done for quasiuniform meshes
which show that the SDFEM is able to capture the
main feature of the solution without layer-adapted
meshes. However, very fewuniform convergence
results are obtained inside the boundary layer. We
first analyze the SDFEM for the singularly perturbed
problem (1)-(2) on arbitrary meshes. We derive the
pointwise error estimates and the approximation of
derivatives. These bounds are then made explicit for
the Shishkin-type meshes.

An outline of our paper is as follows: In section
2 we will describe the SDFEM and solve the corre-
sponding error equation to analyze the stability and
accuracy of this scheme. In section 3 we derive the
pointwise error estimates and the approximation of
derivatives on Shishkin-type meshes. In section 4
we analyze the stability of the third-order problem.
Finally numerical results that support our theoretical
bounds are presented in section 5.
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2 Stability analysis of the SDFEM where
| . . . o £ bi*l/? 5@
n this section, we will study the stability of the SD- Qi1 = —— — b1 12,
FEM applied to equation (1)-(2) on arbitrary grids. hi 2 hi
Let H' = {v,v' € L?} andH} = {v|v € ai; = f4f g biz1/2 — biv1y2
H' v(0) = v(1) = 0}. The weak solution to (1)-(2) hi ~ hita 2
is a functionu € H' satisfiesu(0) = o, u(1) = 711 0ibi—1/2  Git1biy1)2
d +( + )bi,
an hi hit1
s — e by G bioih
a(u,v) = (f,v), Yve HL, 4) vt it 2 Rigq T2
fo=hy / 5.0
where(-, -) is the L? inner product and
i1+ x;
bi71/2 = b(lT)
a(u,v) = e(u,v)+ (bu,v') , , ,
Whene is small relative to the local meshsize, a
standard way of stabilizing this scheme is to choose
+ Z/ ilf = Lu) b dz, 9; according to the formula; = h;/(2b;—1). |If
the local meshsize is small enough—in particular, if
bi—1/2hi < 2e—then the standard Galerkin method
whereJ; is a stabilization function ifz;_1, z;]. We works well, so it is possible to choose = 0. Thus,
will discuss the choice of; later. to stabilize the scheme, we choose
Here we assume that all integrals can be eval- 0 £ b <9
uated exactly. If this is not the case, then a suit- 5 = { 191720 < =€, (8)
able quadrature rule must be used. The existence and hif(2bi1) i biyjohi > 2e.

unigueness of the weak solution are easy to establish.

For a positive integetV, Let QY = {z;|0 = ten as
g < 3 < --- < xzy = 1} be an arbitrary
grid. We denote byy;(z) the nodal basis func- ANe; — ANej iy =1 —1ip1, 1 <i< N, (9)
tion at pointz; and the finite element spadé” = o = en =0, (10)

(N = SN wNgi(x)}. The finite element dis-
cretization of (4) is to find au € V¥ such that  where
uN(0) = y0,u™V (1) = v and b 5

9 i—1/2 i €
ANe; = (hf + 2/ + Ebibi—1/2)€i - (hf
N N N N 1 ! ' '
a(u )= (f,0"), voNeVNnH;  (5) b, 5;

ey ﬁbi—lbi—l/Q)ei—l (11)

2
Lete(z) = (u' —uM)(z) = Y eip; with ¢; = and
) . _
e(r;),i=1,2,--- , N—1, whereu! denote the piece-
wise linear interpolation on the given mesh. Since o (Mg
a(u —u™,v™) = 0, we obtain the error equation ri = M [/x__l (u” —u)(x)b(x)dz

a(eawi):a(ul_uvtpi)v 221727 7N_1> (6)

= = 0 7 ZT; ,
0= ena ) [ s~ ) s
Ti—1
Let Qijj = a(apj (pi) andhi =x; — xi—1. A routine P
. ’ roof. Clearly,
calculation shows that far=1,2,--- /N — 1 y
ANe; — ANei iy = a;i-1ei1 — aie;
ale,pi) = Qji—1€i—1 + @5 €; + Qi i+1€i+1 +Qii41€i41 = a(e, i) — (fi — fix1)
+fi — fir1, =a(u’ —u, ;) — (fi = fis).
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Notethatfol (u! —u) p;dz =0,

a(ul —u, 901) =

/ " b ! - u) () (x)da

i—1

n /x 8i(f — L(u' — w))b(z)p;(z)da

Ti—1

" /%m Sir1(f = L' = w))b(x)p;(z)dx
=ri —rip1 + (fi = fir1)

and the desired result follows from this.

It is easy to see thati™Me; = r; + C with an
appropriate constaidi such thaty = ey = 0. How-
ever it is difficult to determine” explicitly. Instead
we use the following splitting of;.

Lemma 2.

€; = Wi - (13)

whereV is the solution of the difference equation
AN‘/;:17 i:1727'”7N7 %:07
andW is the solution of the difference equation

ANW; =, i=1,2,---,N, Wy=0.

Proof. It is clear thate; = W; — CV;. Since
ey =0, we getC = Wy /Vx.

The matrix associated witd” is a bidiagonal
M-matrix. Consequently one can use suitable bar-
rier functions and the definitions dfi;} and {W;}
to show that

0<Vi<1l, Wi <|rloVi (14)
fori=0,1,2,--- , N. Thus, we have
Wn
leil < Wil + 157 Vil < 27l (15)
N
fori=1,2,---,N.
Furthermore,
ANe; = ANW; — @ANW =7r;— Wy (16)
VN VN
From(16) and (14) we have
|ANe;| < 2||r|loe for i=1,2,---,N. (17)
Since
ANe; = 5D—€i+bi—1/2%
bie; — bi—1€i1
0ibi1p—————,
+ 1/2 I
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we obtain

elD7e| <C|7||l for i=1,2,--- N, (18)
where we have used (17) and (15).

Now we can bound the pointwise errors in
the computed solution and theweighted errors
eD™ (u; — ulY).

Theorem 1. There exist constants such that

fui = w | +€|D™ (ui —u}) < Cllrlloc (19)
fori=1,2,--- N.
Proof. From (15) we have
i =] = luf — | < Clrllo (20)

fori=1,2,---  N.
Similarly, from (18) we have

alDf(ui—us)\ < E\D*(ui—uf)]—de*ei\
< COfrflso (21)

fori=1,2,--- , N.
Combining (20) with (21), we get the desired re-
sults.

3 Analysis on Shishkin-type meshes

In this section letV be an even integer. We shall con-
sider a mesi) that is equidistant iz /2, 1] but
graded in[0, z /5], where we choose the transition
pointx/, as Shishkin does:

2e

xN/2:T:EIHN' (22)

On [0,zy/2] let our mesh be given by a mesh-
generating functiorp, with ¢(0) = 0 andp(1/2) =
In N, wherey is continuous, monotonically increas-

ing and piecewise continuously differentiable. Then
our mesh is

{ %@(tz) ti = ’L/N,
€Ty —

1—(1-2mN)2ED,
We define a new functiomy by (t) =
exp(—p(t)), t € [0,1/2]. This function is monoton-
ically decreasing with)(0) = 1 andw(1/2) = N—L.
Examples of the mesh-characterizing functibare

0<i<N/2
N/2 <i<N.

P(t)=1-2(1—- N1y
for Bakhvalov-Shishkin mesh and

P(t) =

672(ln N)t
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for standard Shishkin mesh.

For Shishkin-type meshes we have the following
general result [10].

Lemma 3. Let us assume that the mesh-
generating functiorp is piecewise differentiable and
that it satisfies the condition

/ |
= <
B =By g O @
Then
Ny _ i
Dp(2Y) = i:T?‘?‘N/% 1[1+
+e ! exp(—fx/(ke))]dz
< C{e+ N max [ ()]} (24)
z€|0
fork=1,2,---.

The following interpolation error estimate for
Shishkin-type meshes is well known; see for exam-
ple [11].

lemma 4. Assume that the piecewise differen-
tiable mesh generating functignsatisfies (23). Then
the interpolation error for linear interpolation on the
Shishkin-type meshes satisfies

C(N—1 max|w/\)2, z € [0, 2n/2],

[(u—ul)(z)| < { CN72, z € lznpm,1].

The next lemma gives us a useful estimaterfor
on Shishkin-type meshes.

Lemma 5. Assume that the condition (23) holds
true. Then on Shishkin-type meshes we have

irs] < C(N~'max|¢])? for i=1,2,---,N.

Proof. From (12) we have
nl o< [ - 0@k
.
! / " e (2)b(x)dal
it [ B! - ) (@) be)ds]

s O, mex [(u” —u)(@)]
+C§i€hil/xi (14 & exp(—px/e))dx
+C§¢h;1\b,~(;}l_ w)(z:)
~bi-1(u’ —u)(xi-1)|

= Czl-frlngafgwi |(u = u)(z)| + Ceb;
+C8ih;t exp(—fri-1/e),
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where we have used (3).

Thus,using the lemma 4 and (8) we obtain
Iri| < C(N"'max|y)? for i=1,2,---,N,
where we have used (22).

With the interpolation error estimates, we can get
the convergence approximation of the SDFEM .

Theorem 2. Assume that the condition (23)
holds true. Then on Shishkin-type meshes we have
the following error estimates:

Jui — i’ | + €| D™ (u; — "))

< C(N~'max [¢')?, (25)

and

max  e|D ud — o (z)| < CN~' max ¢, (26)

zi—1<w<z;{

elD™u) — Ul(%’qﬂ)\ < C(N~'max|y'])% (27)
Proof. The first result follows immediately from
Theorem 1 and Lemma 5.
Next, using a Taylor expansion farandw’ about
x;, we get

Z;

[u (2)|de

max
zi—1<r<z4

: C/xi (1+e " exp(—fz/e))dx

< N~ max [y,

el D7 u; —u' ()] < C’e/

Ti—1

where we have used (3) and (24). Combining this
inequality with the first result, we obtain the second
result.

Finally, we use Taylor expansions farand «’
aboutz; to obtain

U — Uj—1 /
5|T - Uz‘—1/2|
3¢ T "
<< lu ()|(t — wi—1)dt
2 Ti—1
e [T _3
<5 (t = xi—1)(1 4+ " exp(—pt/e))dt

Ti—1

by (3). To bound the right-hand side we use the in-
equality in [12]

[ stone-mnac< 5[ a

i—1

1/2}2

which holds true for any positive monotonically de-
creasing functiory on [z;_1,x;]. This can be easily
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verified by considering the two integrals as functions
of the upper integration limit. We get

U; — Uj—1 ’

h; — U;_1 o]
< 0[/:_” (1+ &L exp(—Bt/(20)))dt]?

< C(N~'max|y)|)?

el

by (24). Combining this inequality with the first re-
sult, we obtain the third result.

4 Analysis the stability of the third-
order problem

In this section, we treat the following stability of dis-
crete scheme for the third-order singularly perturbed
ordinary differential equations

—ey’ (z) — a(@)y" () + b)y ()

—C(;L‘)y(l‘) = f(x)a €D, (28)

y(0)=p, y (0)=q, y (1) =r,  (29)
where 0 < & <« 1 is a small positive

parametet,(z), b(x), c(x) and f(x) are sufficiently
smooth functions satisfying the following conditions:

a(x) > a >0,

b(x) >0,

0>c(x) > —v, v>0,

a—~(1+3n)>n >0 for some  and 7,

with D = (0,1), Dy = (0,1],D =
cB®)(D)yncM (D).

The aim of this section is to illustrate an applica-
tion of a priori estimates of the solutions of discrete
problems, which are obtained using Green'’s function,
to analyze the accuracy of finite difference schemes
in the discrete maximum norm.

The singularly perturbed boundary value prob-
lem (28)-(29) can be transformed into an equivalent
problem of the form

[0,1] and y €

Py =y, (z) — ya(z) =0,

_ Pyy = —eyy (z) — a(x)y,()
AY=ES0 o)) + o (@) = £(),
y1(0) = p, ¥2(0) = ¢, y2(1) =,
(30)
wherey = (y1,y2).
Lemma 6. (Maximum principle [13]) Con-

sider the boundary value problem (30). Assume that
Plu > O,Pgu >0 in D,ul(O) > O,UQ(O) > 0,
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anduz(1) > 0. Thenu(z) > 0 in [0,1].
u(r) = (u1(w),uz(z)) forall x € D.

Lemma 7. (Stability result [13]) Consider the
boundary value problem (30). ¥f is a smooth func-
tion, then

Here

[y ()| < € max{[y:(0)], [y2(0)], ly2(1)];

max |Pyy|, max |Pyy|}
xzeD x€D

for al =z € D, =

max{|y1 ()], |y ()| }.

The construction of layer-adapted meshes and
the analysis of numerical methods for singularly per-
turbed problems require precise knowledge about the
behavior of the derivatives of the exact solution.The
following lemma provides that information.

Lemma 8. If a(z),b(z),c(z) and f(z) €
CY)(D),then the solutiory () of (28)-(29) has the
representatioy = v+ w on|0, 1], where the smooth
partv satisfies

where ||y (z)]|

Piv(z) =0,Pyv(z) = f(x)

and

Iv®(z)| < C, for all k< j, x € D,

while the layer partv satisfies

Piw(z) =0, Pw(z)
|

[w(0)]| < C,[lw(1)] §

xp(—a/e)
and

]wgk)(aﬁ)\ < Cel 7k exp(—ax/e),

]wék) (x)] < CceFk exp(—azx/e)
forallk < j,z € D.

Proof. Following the method of proof used in [1]
and using Lemma 6 we can derive the desired esti-
mates.

Now we consider the upwind difference scheme

Py = Dyl —y3); = 0, (31)
Pyl = —eD*D y); — a;Dy3’;
+biyss + eyt = fi, i=1,2,--- ,N —1,(32)
Yo =P Yoo = Yon =T (33)
where
V; _ V; — Vj_
D ZJ;LliH D= hiz 1’
Dy = Ut~ d B = hi +2hi+1,h0:h1.
;

Issue 10, Volume 7, October 2008
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Analogousto the continuous problem (30), we
can give results for the discrete problem.

Lemma 9. (Discrete maximum principle [13])
Consider the discrete problem (31)-(33). yify >
0,920 > 0,928 > 0,PNy; > 0 fori =
0,1,---,N—1,andP)y; > 0fori =1,2,--- ,N—
1,theny; >0fori =0,1,--- , N.

Lemma 10. (Stability result ) Ify; is any mesh
function, then

N
il = Cmax{lyrol, max [Plyil},
N
il = Cmax{lyzol, [y2nl, | max [Py yil}

fori=1,---,N.

For any mesh function/V, we usg| - || for the
standard maximum norm, and we define a discigte
norm by

N
(K

N—-1
= > hijw).
=1

We also define the scalar productRA’+! by

N-1
vévw]Nhj, VoV, wh e RV
j=1

Consider the Green's functio&” (z;,¢;) of
problem (31)-(33). As a function of; for fixed ¢;
this function is defined by the relations

P{VGN(xmg]) =0 , Tj € Dévv‘gj € DN7 (34)
PZNGN(xhgj) = 5N(xi7€j)7

z; € DN ¢ € DV, (35)
G1'(0,&) = G3'(0,&))
where
Bt for x; = &;
N . ) — 7 7 Jo
d (xz,gj) N { 0 for Ty 7é gj'

It is easy to see that using Green'’s function, we can

give the following formula for the solution of problem
(34)-(35)

[y

11—

yre = Yy +uto (37)
j=1
N—-1
Yy = Gy (xi,&;)f;h , xi € DV, (38)
j=1
ISSN: 1109-2769 620
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Indeed,taking into account (34)-(35), we obtain

(G3'(2i,€), f5) = (GY' (21, &), —eDF Dy

—a;Dyy; + by + cjn;)

= (PYGN,y)) + (GY (24, €5), ;)
—(GY (2, 5), ij2j)

N(x7«7§j) 92]

_(Gjlv(l'iagj)acjyzj)

=y + (GY (2:,&),¢; DT D™ y)))

—(G]lv(a:i,fj),cjyé\fj) = yé\;-, for z; € DV.

+ (DYDGY (w1, &5), cjyn)

The Green’s functiolG (z;, £;) as the function of a
variable&; for fixed z; is the solution of the adjoint
problem:

PN GN(2,¢) =0, & € DY ,z; € DY, (39)
PG (24,65) = 6N (21,€5),

¢ € DY,z € DY, (40)
= GY(x;,1) =0, x; € DV. (41)
This arises from the following arguments: using

(38),(34) and (35), and the fact thaf'*, P,\"* is ad-
jointto PN, PV respectively,we have

PlN’*GN(Z'i,Ej) =0

and
yoy = Y GY(wi &) fih
Py N h;

PG 0n,65) = 6 (01,6,

where we have used (39)-(40).

Lemma 11. The Green’s functioG” (z;,¢;) is
nonnegative and bounded uniformly&dn
1

a—7

0 < GN(z;,¢) <

Proof. From Lemma 9, we can easily get the non-
negativity of the Green’s function.

Issue 10, Volume 7, October 2008
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We now wish to prove the upper bound.Let the
point¢;, € DV be such that

max Gév(xl,fj) = Gév(l‘i,fjo) , Tj € DNV,
§;€DN

Multiply (40) by /; and sum with respect tp from
1 to jo.Taking into account that (z;,0) = 0, we
obtain

Jo
Y PRGN (w5, 85)hy = —eDEGY (21, &)
=1
+eDg Gy (21,61)
Jo
=1

+¢;GY (i, €5)hy). (42)

Because of the choice ¢f,,
D?Gév(wivgjo) = (Gév(xivgjoJrl)
_Gév(xivfjo))hjo-ﬂ <0, (43)
and asGY (z;, &;) is nonnegative then
Dg Gy (wi,61) = Gy (v, &)y > 0. (44)
On the other hand, from (39) we can get

7j—1

> G (i &) = G (24, &),

k=0

So
GY (i, &5) < GY (w3, &jo).
Combining (42)-(45), we obtain

(45)

Jo
(0 = )G (i, &) <Y 0N (wi,&5)h; < 1. (46)
j=1

Also, from (39) and (42) we have

j—1
G (i &) = > Galwi, &) (47)
k=1

From (46) and (47) we can obtain the desired re-

sults.
Lemma 12The operato,” satisfies

1

PNyNL.
a_vH > Y |l

193 lloo <

ISSN: 1109-2769 621
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proof. The proof follows directly from the repre-
sentation of the solution in (38) and Lemma 11.

Let yV be the solution of the discrete problem
(31)-(33) andy; be the values of the solution of the
original continuous problem at the nodes of mesh
DN. Thenz; = y» —y; is the accuracy of the so-
lution.SubstitutingyY = z; + y; into (31)-(32). We
see that; is the solution of the following problem

PNz = —PNyi=-DVy1; +y2i = ¥1,,,(48)
Pz, = fi—P)yi=fi+eD"D y;

4+ a;iDVya; — biyai — ciy1i = o, (49)

210 = 220 =22N = 0. (50)

Using (30), we have one more representation

V1 = _(D+yl,i - yl,z’)v
Yo = (DT D7y — yg,i) + ai(DT Yz — y/2,i)'

We now estimate the truncation err@r; on the
Bakhvalov-Shishkin mesh.

Lemma 13. The following estimates for the
truncation error hold true:

i1 ()| = Chipre texp(—ax;/e) < CN ™!
fori=0,1,--- ,N —1,

ax;
2¢e

o ()] < C(hig1 + N~ e texp(———)

fori =1,2,--- ,N/2 -1,

(6% i
[Wa(a)| < Clhigs +e72(hi + hipa) exp(= =)
fori=N/24+1,--- N —1,
[a(wi)| < Clhia + hiexp(==) +1)

fori=N/2,N/2 + 1,
Proof. Fori =0,1,---
expansion for: = x; to get

,IN — 1 we use a Taylor

]. "
Y1l = Shisvalyr (&)
< Chiy1e exp(—ax;/e) < CN™' (51)

for &; € (x4, i+1), where we have used

h.

—Lexp(—ax;/e) <ON~! for i =1,2,---,N/2.

13

Recalling the decomposition of Lemma 8, we
have

[12,] \fi = Py yil < |[Pyvi — Py vl

+  |Pyw; — PN w (52)
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fori=1,2,--- ,N — 1.
For the smooth part, we have

"

Tit1
|Pyv; — PiVv;| < 25/ lvg (t)|dt
Ti 1

Tit1 "
—|—ai/ ‘1)2 (t)|dt < Chlqu (53)

fori=1,2,--- ,N — 1.

For the truncation error of the method with re-

spect to the layer past we have

Tit1 "
Pyw; — PNw,| < 25/ o (8)[dt

Ti—1

Tit1 "
+a; / |w,y (t)|dt
Z;

Tit1

< 052/ exp(—at/e)dt (54)
Ti—1

fori = 1,2,--- N — 1. Letz;, = Zgpt) =

—21n[l — 2(1 — N Y] andt; = ¢ (z;) for

i=1,2,---,N/2. Then

P (wi — wi))|

< Ce! / " exp(—20(1))¢ (D)t

ti—1

tit1
< e / exp(i (1))t

ti—1

tit1 aTiq
<Cet ——)dt
< Ce / exp( 5 )d
o1

2e )

< CON-1e1 exp(—%) (55)
fori=1,2,--- /N/2—1,and

’PQWi — PQNWl’

< Ce2(hi 4 hit1) exp(—ax;_1 /) (56)

fori=N/2+1,--- /N —1.
Next we estimateP,w y, — Py’ Wy .

ti—1

< CN e lexp(—

[Py o — Py Wijol = [Py Wyl
= [eDT D™ wy ny2 + anje DT w no
—bn/oWa N2 — CN/2WI N/2]

<

hinse

+an/a(wa Nyoy1 — wo ny2)| + C
1

= W/Q[s(w;(&vp) - w/2(€N/2—1))

+ans2(we, /241 — Wa ny2)] +C
_ QTN/2-1
< O(hphyexp(-—L24) +1). (57)

le(D* wa nj2 — D™ wa ny2)
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Using similar reasoning, we obtain the following es-
timate

’PQWN/2+1 - PzNWN/2+1\

_ QT N/2
< OO+ Byl exp(——~

). (58)

Combining(52)-(58) we can complete the local
estimate ofi)o ;.

We can now derive our main result.

Theorem 3. The error of the difference scheme
on the Bakhvalov-Shishkin mesh satisfies

ly: =N <CN7! for i=0,1,--- N,

where |y;|| = max{|yii|,|y24} for i =
0,1,---,N.

By (38) and Lemma 12, we have the following a
priori estimate for the accuracy; = yéVZ — y2, Of

the solution in terms of the truncation erros ;
[v2,0 = 92l < Clllly, i =1,2,--+ N~ 1. (59)

Using Lemma 13, we obtain

N/2-1
il = D |2l + [t ny2l Ay
=1 N
+[t2, nj2g1An/2 41 + Z |[2,i| R
i=N/2+2
N/2-1
< C( Z hiv1hi + hN/g + hN/2+l
=1

N—-1
+ Z hit1h;)
i=N/2+2
N/2-1

+CN~1e! Z exp(—
i=1

ax;

2¢e

)i

ATN/2-1 QT N/2

)

QTi—1

+C'(exp(— ) + exp(—

N-1
+CE_2 Z (hi+hi+1)hiexp(—
i=N/2+2

<CONL (60)
Combining (59) and (60) we get

)

Y2 — y3y| < CN~! for i=0,1,--- ,N. (61)
From Lemma 10 we have
ly1i — yiil < Cly| < CNT! (62)

fori=0,1,---, N.
By (61) and (62) we get the desired results.
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5 Numerical experiments

In this section we verify experimentally the theoreti-
cal results obtained in the preceding section.
Example 1. Consider the problem

—eu'(z) —u (z) = =2, z€(0,1), (63)
u(0) =0, wu(l)=1. (64)

The exact solution is given by

(o) — SB(2/2) — exp(-1/e)
1 —exp(—1/e)

Example 2. Consider the problem

+ 2z — 1.

—eu (z) — (14 z)u(z)) = f(z), 0 <z < 1,(65)

u(0) = u(1) =0, (66)
wheref(z) is chosen such that

1 —exp(—z/e)
u(w) = 1 —exp(—1/¢) -

is the exact solution.

For our tests we take = 10~® which is a suf-
ficiently small choice to bring out the singularly per-
turbed nature of the problems. In order to evaluate the
integrals in (5), we apply the standard midpoint rule

[ v~ @ - a0

j—1

We measure the accuracy of the pointwise error
estimates and the approximation of derivatives in the
discrete maximum norf- ||, respectively. We also
present the convergence rates of these erroié s
creases with fixed. These rates are computed in the
usual way; for example, the convergence rat®sof
the pointwise errors are computed using the following
formula:

The numerical results (Tables 1-12) are clear il-
lustrations of the convergence estimate of Theorem
2. They indicate that the theoretical results are fairly
sharp.
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Table 1: The pointwise error estimates of the SDFEM
on the standard Shishkin mesh for Example 1

lu — ™o

N error  rate

32 | 5.3118e-31.458

64 | 1.9338e-31.534
128 | 6.6775e-41.597
256 | 2.2076e-41.648
512 | 7.0444e-51.687
1024 | 2.1876e-5 -

Table 2: The pointwise approximation of derivatives
of the SDFEM on the standard Shishkin mesh for Ex-
ample 1

. max 1€\D*ufv — ()]

N error  rate

32 1.7282e-1 0.604

64 1.1367e-1 0.696
128 7.0164e-2 0.759
256 4.1459e-2 0.802
512 2.3775e-2 0.832
1024 1.3355e-2 -

Table 3: The approximation of derivatives of the SD-
FEM on the standard Shishkin mesh for Example 1

izlf’.r}?%_l 5‘D_UZN —u (%’—1/2)’
N error rate
32 1.5995e-2 1.266
64 6.6510e-3 1.421
128 2.4844e-3 1.532
256 8.5934e-4 1.610
512 2.8147e-4 1.667
1024 8.8663e-5 -
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Table 4: The pointwise error estimates of the SDFEM Table 7: The pointwise error estimates of the SDFEM
on the Bakvalov-Shishkin mesh for Example 1

Zhongdi Cen, Lifeng Xi

on the standard Shishkin mesh for Example 2

[ — 0o I — ¥ oo
N error  rate N error  rate
32 | 3.5144e-32.044 32 | 4.8669e-31.441
64 | 8.5215e-42.034 64 | 1.7928e-31.501
128 | 2.0803e-42.024 128 | 6.3324e-41.581
256 | 5.1143e-52.016 256 | 2.1163e-41.636
512 | 1.2645e-52.010 512 | 6.8100e-51.678
1024 | 3.1394e-6 - 1024 | 2.1286e-5 -

Table 5: The pointwise approximation of derivatives Table 8: The pointwise approximation of derivatives

of the SDFEM on the Bakvalov-Shishkin mesh for

Example 1 ample 2
~ max 1€]D*ufv — ()] ~ max 1€\D*ufv — ()]

N o error rate N o error rate

32 5.1387e-2 0.977 32 1.7220e-1 0.602

64 2.6099e-2 0.990 64 1.1348e-1 0.695
128 1.3141e-2 0.995 128 7.0111e-2 0.758
256 6.5952e-3 0.997 256 4.1444e-2 0.802
512 3.3037e-3 0.999 512 2.3772e-2 0.832
1024 1.6535e-3 - 1024 1.3354e-2 -

Table 6: The approximation of derivatives of the SD-
FEM on the Bakvalov-Shishkin mesh for Example 1

ISSN: 1109-2769

624

of the SDFEM on the standard Shishkin mesh for Ex-

Table 9: The approximation of derivatives of the SD-
FEM on the standard Shishkin mesh for Example 2

max e[ Du = (@) max elD7u — (@i )]

N error rate N error rate

32 2.8134e-3 1.984 32 1.5370e-2 1.251
64 7.1101e-4 1.998 64 6.4587e-3 1.410
128 1.7795e-4 2.003 128 2.4307e-3 1.524
256 4.4411e-5 2.002 256 8.4511e-4 1.605
512 1.1085e-5 2.002 512 2.7779%e-4 1.663
1024 2.7678e-6 - 1024 8.7729e-5 -
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