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1 Introduction

Inspired by the considerations of Zadeh [19], Hájek
in [8] formalized the fuzzy truth value ”very true”.
He enriched the language of the basic fuzzy logic BL
by adding a new unary connective vt and introduced
the propositional logic BLvt. The completeness of
BLvt was proved in [8] by using the so-called BLvt-
algebra, an algebraic counterpart of BLvt. Recently,
Vychodil [17] proposed an axiomatization of unary
connectives like ”slightly true” and ”more or less true”
and introduced BLvt,st-logic which extends BLvt-
logic by adding a new unary connective ”slightly
true” denoted by ”st”. Noting that bounded com-
mutative R`-monoids are algebraic structures which
generalize, e.g. both BL-algebras and Heyting al-
gebras (an algebraic counterpart of the intuitionistic
propositional logic), Rachunek and Šalounová taken
bounded commutativeR`-monoids with a vt-operator
as an algebraic semantics of a more general logic than
Hájek’s fuzzy logic and studied algebraic properties
of R`vt-monoids in [14].

Commutative residuated lattice [12] (i.e., inte-
gral commutative residuated l-monoid in [10]) is an
important class of logical algebras, and the typical
example of commutative residuated lattice is the in-
terval [0, 1] endowed with the structure induced by
a left-continuous t-norm [7, 10]. The well-known
commutative residuated lattices have Boolean alge-
bras, Heyting algebras, MV -algebras, Gödel alge-
bras, product algebras, BL-algebras, R0-algebras
[18], Bounded commutativeR`-monoids [13, 14, 15],
MTL-algebras [5], and so on. Many authors used
commutative residuated lattices as the structures of

truth degrees (e.g., see [1, 2, 12]). The filter theory
plays an important role in studying these logical alge-
bras and many authors discussed the notion of filters
of these logical algebras (see [4, 6, 7, 10, 11, 13, 16]).
From a logical point of view, a filter corresponds to a
set of provable formulas. Sometimes, a filter is also
called a deductive systems (see [16]).

In this paper, based on [8, 14, 17], we study the
concept of v-filters of residuated lattices with weak
vt-operators. In section 2, we axiomatize very true
operators. In section 3, we briefly recall some defini-
tions and results about residuated lattice and discuss
filters and v-filters of residuated lattices with weak
vt-operator. In section 4, we give the formulas for
calculating the v-filters generated by subsets. In sec-
tion 5, we show that lattice of v-filters of a commuta-
tive residuated lattice with vt-operator is a complete
Brouwerian lattice.

The lattice properties required in this paper can be
found in Birkhoff [3]. For the sake of simplicity, we
denote by N+ the set of nonnegative integers.

2 Axiomatizing very true
In this section, we deal with propositional calculus.
We enrich the language by the new unary connective
vt and define the axioms of the logic BLvt be those
of BL (with the new notion of a formula) plus the
following ones:

(VE1) vtϕ→ ϕ,
(VE2) vt(ϕ→ ψ) → (vtϕ→ vtψ),
(VE3) vt(ϕ ∨ ψ) → (vtϕ ∨ vtψ).
The deduction rules are modus ponens and truth
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confirmation (a kind of necessitation): from ϕ infer
vtϕ.

Axiom (VE1) seems to be fully acceptable. Ax-
iom (VE2) says that if both ϕ and ϕ → ψ are very
true then so is ψ, which also appears reasonable. Con-
cerning (VE3) (saying that if a disjunction ϕ ∨ ψ is
very true then so is one of the disjuncts) the reader is
asked to see the following definition and lemma show-
ing that (VE3) is sound for each “natural” interpreta-
tion. Note that the disjunction ∨ is always interpreted
as the lattice join, i.e. if your algebra of truth values is
linearly ordered it is just maximum.

Let ∗ be a continuous t-norm and⇒ its residuum.
A hedge vt is ∗-regular if

vt(x⇒ y) ≤ vt(x) ⇒ vt(y)
for all x, y ∈ [0; 1], (⇒ being the residuum of ∗.); i.e.
if ∗ makes (VE2) a tautology (for each ϕ).

Call vt ∗-truth-stressing if it is ∗-regular, vt(1) =
1 and vt is subdiagonal.

Let ∗ be a continuous t-norm.

Lemma 1 (1) BLvt is ∗-sound for a hedge vt if and
only if vt is ∗-truth stressing.

(2) A ∗-truth stressing hedge is non-decreasing.

Proof: If vt is ∗-truth stressing then (VE1) and (VE2)
are ∗-tautologies and the necessitation for vt is sound.
Moreover, vt is non-decreasing: if u ≤ v then (u ⇒
v) = 1; thus vt(u ⇒ v) = 1 and hence vt(u) ⇒
vt(v) = 1; thus vt(u) ≤ vt(v). Thus also (VE3)
is a ∗-tautology. If u ≤ v then max(u, v) = v and
max(vt(u), vt(v)) = vt(v), thus

vt(max(u, v)) = vt(v) = max(vt(u), vt(v)).
Similarly for v ≤ u. Thus in all cases

vt(max(u, v)) = max(vt(u), vt(v)) and the formula
vt(ϕ ∨ ψ) ≡ (vtϕ ∨ vtψ) is a ∗-tautology.

Conversely, if BLvt is ∗-sound for vt then
evidently vt is ∗-truth-stressing. ut

We may impose other conditions, e.g. continuity,
injectivity (being one-to-one), etc. Let us go through
some examples.

(1) In each t-norm logic one may define vtϕ to
be ϕ&ϕ (written also ϕ2) or, more generally, ϕn for
n ≥ 1. Then vt(u) = u ∗ u = u∗2 or more generally
vt(u) = u∗n. This “very true” is continuous.

(2) Take vt(u) = u · u (product of reals, real
square). For

∏
it is covered by (1); for Ł the axioms

are tautologies ((1 − u + v)2 ≤ 1 − u2 + v2 for 0 ≤
v ≤ u ≤ 1); and so are for G ((x ⇒ y)2 = x2 ⇒ y2

for Gödel implication).
(3) Note that if we take Łukasiewicz square

max(0, 2u − 1) then the axioms fail to be tautologies
for

∏
but are tautologies for G.

(4) Let vt(u) = k · u for u < 1, vt(1) = 1(0 ≤
k ≤ 1. This is a truth stresser for Ł,G,

∏
. Note that

choosing k = 0 we get Baaz’s connective ∆ ( ∆ϕ
says “ϕ is absolutely true”).

Lemma 2 (1) If ` ϕ→ ψ then ` vtϕ→ vtψ.
(2) The following formulas are provable in BLvt:

(a) ¬vt(0),
(b) (vtϕ&vtψ) → vt(ϕ&ψ),
(c) vt(ϕ ∨ ψ) ≡ (vtϕ ∨ vtψ).

Proof: (1) Follows by applying the necessitation and
the axiom (VE2).

Let us prove (2).
` vt(0) → 0 by (VE1), from
` ϕ→ (ψ → (ϕ&ψ))

follows
` vtϕ→ (vtψ → vt(ϕ&ψ)).
Clearly ` vtϕ→ vt(ϕ ∨ ψ) and
` vtψ → vt(ϕ ∨ ψ),

thus ` vtϕ ∨ vtψ → vt(ϕ ∨ ψ).
The converse implication is our axiom (VE3). ut

Remark. It is easy to prove vt(ϕ ∧ ψ) → (vtϕ ∧
vtψ); the converse implication is also provable as we
shall show later.

We introduce an auxiliary notation: τϕ stands for
vt(ϕ&ϕ), τnϕ stands for τ(τ · · · τ(ϕ) · · ·) (n copies
of τ ).

One easily shows the following:

Lemma 3 (1) BLvt ` τn+1ϕ→ τnϕ.
(2) BLvt ` τϕ→ vtϕ, τϕ→ (ϕ&ψ).
(3) BLvt ` τ(ϕ ∨ ψ) → (τϕ ∨ τψ).

Theorem 4 Let T be a theory over BLvt, let ϕ,ψ be
formulas.

T ∪ {ϕ} ` ψ if and only if T ` τnϕ → ψ for
some n.

Proof: As usual, let us check the deduction rules.
If T ` τnϕ→ α and T ` τnϕ→ (α→ β) then
T ` (τnϕ&τnϕ) → β,

thus
T ` τn+1ϕ→ β.
Similarly, if T ` τnϕ→ β then
T ` vtτnϕ→ vtβ,

thus
T ` τn+1ϕ→ vtβ. ut

To prove completeness let us define a BLvt-
algebra to be an algebra L = (L,∩,∪, ?,⇒, 0, 1, v)
which is a BL-algebra expanded by an unary opera-
tion v satisfying, for all x, y,

v(1) = 1,
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v(x) ≤ x,
v(x⇒ y) ≤ (v(x) ⇒ v(y)),
v(x ∪ y) ≤ v(x) ∪ v(y).
Clearly each t-algebra (given by a continuous t-

norm on [0, 1] together with a truth-stresser is aBLvt-
algebra, BLvt-algebras form a variety and BLvt is
sound for BLvt-algebras. The completeness proof is
standard and relies on the following lemma:

Lemma 5 If T is a theory and α a formula such that
T ` α doesn’t hold, then there is a complete extension
T

′
of T such that T

′ ` α doesn’t hold.

Proof: One successively handles all pairs ϕ,ψ of for-
mulas and shows: of T

′ ⊇ T and T
′ ` α doesn’t hold,

then T
′ ∪ {(ϕ → ψ)} ` α doesn’t hold or T

′ ` α

doesn’t hold, then T
′ ∪ {(ψ → ϕ)} ` α doesn’t hold.

Indeed, if both theories prove α then for some n,
T

′ ` (τn(ϕ→ ψ) ∨ τn(ψ → ϕ)) → α, hence
T

′ ` τn((ϕ→ ψ) ∨ (ψ → ϕ)) → α
and thus

T
′ ` α since obviously

BLvt ` τn((ϕ→ ψ) ∨ (ψ → ϕ)). ut

Note that the algebra of classes T -equivalent for-
mulas is well defined since [ϕ]T = [ψ]T implies
[vtϕ]T = [vtψ]T and is a BLvt-algebra.

It is linearly ordered if and only if T is complete.
Thus we have the usual.

Theorem 6 (Completeness Theorem) Let T be a
theory over BLvt, ϕ a formula. The following are
equivalent:

(1) T proves ϕ over BLvt.
(2) For each (linearly ordered) BLvt-algebra L

and each L-model e of T , eL = 1 (ϕ is L-true in e).

Corollary 7 (1)BLvt proves vt(ϕ∧ψ ≡ (vtϕ∧vtψ)
Since the formula is L-true in each L-evaluation

for each linearly ordered L.
(2) BLvt is a conservative extension of BL.
Indeed, if BL ` ϕ doesn’t hold where ϕ does

not contain vt then there is a linearly ordered BL-
algebra L such that ϕ is not an L-tautology. Expand
L to a BLvt-algebra, e.g. by defining vt(u) = 0 for
u < 1, vt(1) = 1. Thus BLvt ` ϕ doesn’t hold.

Caution: We get strong completeness of stronger
logics Łvt,Gvt,

∏
vt with respect to models overMV -

algebras, G-algebras,
∏

-algebras as corollaries. Can
we get standard completeness, i.e. if Γ stands for Ł,
G,

∏
and [0, 1]Γ is the standard t-algebra given by

the respective continuous t-norm, is it true that ϕ is
provable in the logic Γvt if and only if for each Γ-truth

stresser v and each [0, 1]-evaluation e, ϕ is ([0, 1]Γ, v)-
true in e?

Imitating the corresponding proofs of standard
completeness of Γ, the problem is: if L is a linearly
ordered Γvt-algebra andX is a finite subset of L (con-
taining 0L, 1L), can we find a finite Y ⊆ [0, 1] (con-
taining 0, 1), a Γ-truth stresser vt and a 1-1 mapping
f : X → Y which is a partial isomorphism, i.e. for
x, y, z ∈ X , f preserves x?y = z, x→ y = z, x ≤ y,
plus vt(x) = y?

The answer is easy for G: take the partial isomor-
phism f : X → Y preserving ∗,⇒ and ≤, this gives
you finitely many pairs (yi, zi) of elements of Y deter-
mining finitely many conditions vt(yi) = zi (among
them vt(0) = 0, vt(1) = 1). Clearly, zi ≤ yi and
you can just take for vt the piecewise linear function
connecting neighboured points (yi, zi). It is subdiag-
onal, non-decreasing, vt(1) = 1 and that is all since it
follows that vt is G-regular: for > y, either vt(x) >
vt(y) and vt(x ⇒ y) = vt(y) = vt(x) ⇒ vt(y) or
vt(x) = vt(y) and then vt(x) ⇒ vt(y) = 1.

For Ł,
∏

the situation is more complicated and
the question of standard completeness seems to re-
main an open problem.

Of course if we restrict ourselves to a fixed defin-
able truth stresser, e.g. postulating vtϕ ≡ (ϕ&χ) then
standard completeness of this extension of Γvt follows
from standard completeness of Γ.

Let BL∀vt stand for the extension of the basic
fuzzy predicate logic BL∀ by the hedge (connective)
vt and the corresponding axioms (VE1)-(VE3) for it;
semantics over an arbitraryBLvt-algebra is defined in
the obvious way.

Theorem 8 (Deduction Theorem) Let T be a theory
over BL∀vt and let ϕ,ψ be formulas. T ∪ {ϕ} ` ψ if
and only if for some n,

T ` τnϕ→ ψ,
where τ is as above, τϕ is vt(ϕ&ϕ)).

Theorem 9 (Completeness Theorem) Let T be a
theory over BL∀vt, ϕ a formula. The following are
equivalent:

(1) T ` ϕ.
(2) For each linearly ordered BLvt-algebra L

and each L-model M of T , ||ϕ||LM = 1, i.e.
||ϕ||ML, e = 1 for each evaluation e of object vari-
ables.

Let us stress that an L-model of T is a safe L-
interpretation of T in which all axioms of T are true.
The proof is by inspecting, note that the present ver-
sion of the deduction theorem is to be used.

The analogous completeness theorem for Ł∀vt,
G∀vt,

∏
∀vt follows immediately.
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Similarly toG∀, we have a standard completeness
theorem for G∀vt.

Theorem 10 Over G∀vt, T ` ϕ if and only if ϕ is
true in each ([0, 1])G,vt)-model of T , for each G-truth
stresser vt.

Proof: If T ` ϕ doesn’t hold, we get a countable
(L, v)-model M of T with ||ϕ||(L,v)

M < 1. We
may assume that L is a subalgebra of [0, 1]G and
the identical embedding preserves all sups and infs
existing in L. Now v is a non-decreasing subdiagonal
function on L and v(1) = 1. We have to extend v
to a non-decreasing subdiagonal function on [0, 1],
but this is an easy exercise; for example put, for
x ∈ [0, 1], w(x) = sup{v(y) | y ∈ L&y ≤ x}. This
gives w(x) = v(x) for ∈ L and clearly is subdiagonal
and total on [0, 1]. ut

Remark: Note that, in general, vt need not
commute with quantifiers, i.e. if vt is Baaz’s 4,
rP (a) < 1 for each a ∈ M but suparP (a) = 1 then
||(∃x)vtP (x)||M = 0, but ||vt(∃)P (x)||M = 1.

Similarly for ∀ and a truth stresser with is not con-
tinuous from above.

Theorem 11 If vt is a continuous truth stresser,
then for each continuous t-norm ∗, the formulas
(∀x)vtϕ ≡ vt(∀x)ϕ and (∃x)vtϕ ≡ vt(∃x)ϕ are
([0, 1]∗,vt-tautologies.

Proof: Clearly BLvt ` vt(∀x)ϕ→ vtϕ, hence
BLvt ` (∀x)(vt∀xϕ→ vtϕ)

and hence
BLvt ` vt(∀x)ϕ→ (∀x)vtϕ.
We show the tautologicity of the con-

verse implications assuming that vt is inter-
preted by a continuous truth stresser vt. But
then for each (nonempty) A ⊆ [0, 1] we get
vt(infA) = infvt(A) and vt(supA) = sup(vt(A)),
here vt(A) = {vt(a) | a ∈ A}. ut

Finally, let us consider Pavelka Rational (pred-
icate) Logic RPL∀vt. Extend RPL∀ by the con-
nective vt interpreted by a fixed continuous truth
stresser vt such that vt(r) is rational for each rational
r ∈ [0, 1], extend the axiom by (VE1)-(VE3) plus the
book-keeping axioms vtr ≡ vt(r) for each rational r.

As usual, given a theory T , define the truth-degree
||ϕ||T of a formula ϕ to be inf{||ϕ||([0,1]∗,vt

M | M a
([0, 1]∗, vt)-model of T} and define the provability
degree |ϕ|T to be sup{r ∈ [0, 1], r rational |T ` r →
ϕ}.

Theorem 12 (Pavelka Completeness) Under the
present notation (T a theory over RPLvt, ϕ a for-
mula),

|ϕ|T = ||ϕ||T .

The proof consists again in checking the proof for
RPL∀, the only thing to be added is, assuming T

′
a

complete extension of T , to show that the provability
degree commutes with vt, i.e. vt(|ϕ|T ′ ) = |vtϕ|T ′ .

Remark: The paper [9] deals with a system of ax-
ioms introduced by Yashin in the context of intuition-
istic logic and admitting an interpretation as an axiom-
atization of “more or less true” over Gödel logic (but
not e.g. over Łukasiewicz logic). The comparison of
that system with the present one could be (modestly)
interesting.

3 Filters and v-filters of residuated
lattices with weak vt-operator

In this section, we briefly recall some definitions and
results about filters of a residuated lattice and discuss
v-filters of residuated lattices with weak vt-operator.

Definition 13 [7, 12, 16] A commutative residuated
lattice L = (L,≤,∧,∨, ·,→, 0, 1) is a lattice L con-
taining the least element 0 and the largest element
1, and endowed with two binary operations · (called
product) and → (called residuum) such that

(1) · is associative, commutative and isotone and,
for all elements x ∈ L, x · 1 = x,

(2) for all x, y, z ∈ L, the Galois correspondence

x · y ≤ z if and only if x ≤ y → z

holds.

Commutative residuated lattices are known also
under other names, e.g Höhle [10] calls them integral,
residuated, commutative l-monoids.

We adopt the usual convention of representing the
monoid operation by juxtaposition, writing ab for a·b,
and set x0 = 1, xn = xn−1x for any n ≥ 1.

Definition 14 [15] A bounded commutative R`-
monoids is a commutative residuated lattce L =
(L,≤,∧,∨, ·,→, 0, 1) satisfying the divisibility con-
dition:

(3) x(x→ y) = x ∧ y for any x, y ∈ L.

In fact, the notion of a bounded commutative R`-
monoids is a duplicate name for a commutative resid-
uated lattice satisfying divisibility condition or for a
divisible commutative residuated lattice.
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Definition 15 [5] A MTL-algebra is a commutative
residuated lattce L = (L,≤,∧,∨, ·,→, 0, 1) satisfy-
ing the identity of pre-linearity:

(4) (x→ y) ∨ (y → x) = 1 for any x, y ∈ L.

MTL-algebras is an algebraic counterpart of
the so-called Monoidal t-norm logic [5] (MTL, for
short).

Let us define on any commutative residuated
lattice L the unary operation − (negation) by
x− = x→ 0.

A commutative residuated lattce L is
(a) a BL-algebra if and only if L satisfies

divisibility condition and the identity of pre-linearity;
(b) an MV -algebra if and only if L fulfils the

double negation law x−− = x;
(c) a Heyting algebra if and only if the operations

· and ∧ coincide on L.

Now it is obvious that anR`-monoid is anMTL-
algebra if and only if it is a BL-algebra. The facts can
be verified as for the BL case, since the pre-linearity
condition is not involved, and hence the proofs are
omitted.

Lemma 16 In any bounded commutative R`-monoid
M we have for any x, y, z ∈M ,

(1) x ≤ y ⇔ x→ y = 1.
(2) x ≤ y ⇒ x · z ≤ y · z.
(3) x ≤ y ⇒ z → x ≤ z → y, y → z ≤ x→ z.
(4) x→ x = 1, 1 → x = x, x→ 1 = 1.
(5) y ≤ x→ y.
(6) x ≤ x−−, x− = x−−−.
(7) x ≤ y ⇒ y− ≤ x−.
(8) (x ∨ y)− = x− ∧ y−.
(9) (x ∧ y)− = x−− ∧ y−−.
(10) (x · y)− = y → x− = y−− → x− = x →

y− = x−− → y−.
(11) (x→ y)−− = x−− → y−−.

In the sequel, unless otherwise stated, L always
represents any given commutative residuated lattice
with maximal element 1 and minimal element 0.

Definition 17 [16] A filter of L is a subset F ⊆ L
with the properties

(F1) 1 ∈ F ;
(F2) if a ∈ F and a ≤ b, b ∈ L, then b ∈ F ;
(F3) if a, b ∈ F , then ab ∈ F .

Denote by F the set of all filters of L. Clearly,
{1} and L are, respectively, the smallest filter and the
greatest filter of L. It is easy to see that a nonempty
subset F of L is a filter of L if and only if it satisfies
(F2) and (F3). Moreover, the following result gives an
equivalent version of the concept of filters.

Theorem 18 [16] A nonempty subset F of L is a filter
of L if and only if it satisfies the following conditions:

(F1) 1 ∈ F ;
(F4) x ∈ F, x→ y imply y ∈ F .

Let F ∈ F . If x, x → y ∈ F , then it follows
from Theorem 5 that y ∈ F . Thus, from a logical
point of view, a filter corresponds to a set of provable
formulas. Sometimes, a filter is also called a deductive
system (see [16]) or ds in short.

Definition 19 [8, 14, 17] A mapping v : L → L is
called a weak vt-operator (wvt-operator in brief) on
L if for any x, y ∈ L:

(1) v(1) = 1,
(2) v(x) ≤ x, i.e., v is subdiagonal,
(3) v(x→ y) ≤ v(x) → v(y).

Moreover, if a wvt-operator v satisfies for any x, y ∈
L

(4) v(x ∨ y) ≤ v(x) ∨ v(y),
then v is called a vt-operator on L, if a wvt-operator
v satisfies for any x ∈ L

(5) v(v(x)) = v(x),
then v is called a hedge (see [9]) on L.

Any commutative residuated lattice admits vt-
operators, e.g. the identity and the globalization v,
where v(x) = 0 for x 6= 1 and v(1) = 1. Globaliza-
tion can be seen as an interpretation of a connective
”absolutely/fully true”.

BLvt-algebras [8] and R`vt-monoids (R`wvt-
monoids) [14] are, respectively, BL-algebras with vt-
operator and R`-monoids with vt-operator (weak vt-
operator).

Let v be a wvt-operator on L. For any natu-
ral number n, we define x(n) recursively as follows:
x(0) = x and x(n) = v(x(n−1)), where x ∈ L.

Theorem 20 Let v be a weak vt-operator on L and
x, y, x ∈ L, n ∈ N+. Then

(1) v(0)(n) = 0,
(2) x ≤ y ⇒ x(n) ≤ y(n),
(3) v(x−) ≤ (v(x))−.
(4) xy ≤ z ⇒ x(n)y(n) ≤ z(n),
(5) x(n)y(n) ≤ (xy)(n).
(6) v(x) · v(x→ y) ≤ v(x ∧ y) ≤ v(x) ∧ v(y).

Moreover, if v is a vt-operator on L, then
(7) (x ∨ y)(n) = x(n) ∨ y(n).

Proof: (1) By the definition, v(0) ≤ 0, hence v(0) =
0. Thus,v(0)(n) = 0.

(2) Let x, y ∈ L and x ≤ y. Then
x→ y = 1,

hence by conditions (3) and (1) of Definition 19, we
get v(x) → v(y) = 1, and thus v(x) ≤ v(y).
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Therefore, x(n) ≤ y(n).
(3) Let x ∈ L. Then by condition (3) of Defini-

tion 19 and by (1),
v(x−) = v(x→ 0) ≤ v(x) → v(0)

= v(x) → 0 = (v(x))−.
(4) Let x · y ≤ z. Then
x ≤ y → z,

so by (2) and (3),
v(x) ≤ v(y → z) ≤ v(y) → v(z),

and from this,
v(x) · v(y) ≤ v(z).
Moreover, x(n)y(n) ≤ z(n).
(5) It follows from (4) for z = x · y.
(6) By (5) and (2),
v(x) · v(x→ y) ≤ v(x · (x→ y))

= v(x ∧ y) ≤ v(x) ∧ v(y).
(7) By (2), we have
v(x) ∨ v(y) ≤ v(x ∨ y),

hence by condition (4) of Definition 19,
v(x ∨ y) = v(x) ∨ v(y).

Thus, we have that (x ∨ y)(n) = x(n) ∨ y(n). ut

Definition 21 Let v be a weak vt-operator on L and
F a filter of L. If v(x) ∈ F for every x ∈ F , then F
is called a v-filter of L.

Denote by Fv the set of all v-filters of L.
For any F ∈ Fv, it is easy to see that CF =

{(x, y) | (x → y), (y → x) ∈ F} is a congruence
relation on L. Moreover, if (a, b) ∈ CF , then it fol-
lows from Definition 8 that v(x) → v(y) ∈ F and
v(y) → v(x) ∈ F and hence (v(x), v(y)) ∈ CF . We
call CF the v-congruence relation induced by v-filter
on L.

Let LF = {a | a ∈ L}, where a = {b ∈
L | (a, b) ∈ CF }. Define a quasi-order ”≤F ” as fol-
lows:

a ≤F b ⇔ a→ b ∈ F.
Clearly, a = b ⇔ a ≤F b and b ≤F a ⇔ (a, b) ∈
CF ; and ≤⊆≤F .

It is easy to verify that LF = (LF ,≤F

,∧F ,∨F , ·F ,→F , 0, 1) is also a commutative residu-
ated lattice, where

a ∧F b = a ∧ b, a ∨F b = a ∨ b,
a ·F b = ab, a→F b = a→ b, ∀a, b ∈ L.

Here we call LF the quotient residuated lattice of L
with respect to the v-filter F and denote it by L/F .

Theorem 22 Let v be a vt-operator (a weak vt-
operator) on L and F a v-filter of L. Denote by vF :
L/F → L/F the mapping such that vF (x) = v(x),
for each x ∈ L. Then vF is a vt-operator (a weak
vt-operator) on L/F .

Proof: Firstly we will show that vF is a correctly
defined mapping of L/F into L/F .

Let x, y ∈ L and x = y. Then (x, y) ∈ CF , i.e.
(x→ y) ∧ (y → x) ∈ F ,

and thus also x→ y, y → x ∈ F . Since F is a v-filter,
we get

v(x→ y), v(y → x) ∈ F ,
and hence by condition (3) of the definition of a vt-
operator we obtain

v(x) → v(y), v(y) → v(x) ∈ F .
By Lemma 16(5),

v(y) → v(x) ≤ (v(x) → v(y)) → (v(y) → v(x)),
hence
(v(x) → v(y)) → (v(y) → v(x)) ∈ F ,
and this means (v(x), v(y)) ∈ CF , i.e. vF (x) =
vF (y).

Now it is easy to verify that the mapping vF is a
vt-operator on L/F .

(1) vF (1) = v(1) = 1.
(2) vF (x) = v(x) ≤ x.
(3) vF (x→F y) = vF (x→ y) = v(x→ y)

≤ (v(x) → v(y)) = v(x) →F v(y)
= vF (x) →F vF (y).

(4) vF (x ∨F y) = vF (x ∨ y) = v(x ∨ y)
≤ (v(x) ∨ v(y) = (v(x) ∨F v(y)
= vF (x) ∨F vF (y). ut

Theorem 23 If (L, v) is an R`-monoid, then there is
a one-to-one correspondence between its v-filters and
v-congruences.

Proof: (a) Let C be a v-congruence on (L, v) and let
FC = 1 = {x ∈ L | (x, 1) ∈ C}.

Then FC is a filter of the R`-monoid L. Let us
suppose that x ∈ FC . Then (x, 1) ∈ C, hence
(v(x), 1) = (v(x), v(1) ∈ C, and therefore v(x) ∈
FC . That means FC is a v-filter on (L, v).

(b) Let F be a v-filter of (L, v) and let CF be the
corresponding congruence on L, i.e. (x, y) ∈ CF if
and only if (x → y) ∧ (y → x) ∈ F . Hence, if
(x, y) ∈ CF then also v((x → y) ∧ (y → x)) ∈
F . Let (x, y) ∈ CF . Then by property (3) of a vt-
operator and Theorem 20(6),

(v(x) → v(y)) ∧ ((v(y) → v(x))
≥ v(x→ y) ∧ v(y → x)
≥ v((x→ y) ∧ (y → x)) ∈ F ,
hence (v(x) → v(y))∧((v(y) → v(x)) ∈ F , and this
means (v(x), v(y)) ∈ CF .

Therefore CF is a v-congruence on (L, v). ut

Now we will deal withR`wvt-monoids (L, v) sat-
isfying the identity

(P) v(x→ y) ∨ v(y → x) = 1.
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Theorem 24 If L is an R`-monoid, then there is a
wvt-operator v on l satisfying (P) if and only if L is a
BL-algebra.

Proof: (a) Let L be an R`-monoid which is not a
BL-algebra. Then there exist x, y ∈ L such that

(x→ y) ∨ (y → x) 6= 1.
Hence for any wvt-operator v on L,

v(x→ y)∨v(y → x) ≤ (x→ y)∨(y → x) < 1,
therefore (P) fails.

(b) Let L be a BL-algebra. Then for each vt-
operator v on L and x, y ∈ L,

v(x→ y) ∨ v(y → x)
= v((x→ y) ∨ (y → x)) = v(1) = 1,
thus L satisfies (P). ut

An R`vt-monoid (L, v) is called an R`vt-chain
if the R`-monoid L is linearly ordered. By [13],
the class of BL-algebras coincides with the class of
(bounded commutative) R`-monoids which are repre-
sentable as subdirect products of R`-chains. Hence,
among others, every R`vt-chain is in fact a BLvt-
chain. We will prove that everyBLvt-algebra is a sub-
direct product not only of BL-chains (i.e., as a BL-
algebra in the corresponding signature), but, more-
over, it is also such a product of BLvt-chains (in the
extended signature).

Recall that a filter F of an R`-monoid L is called
prime if F = G ∩ H implies F = G or F = H for
any filters G and H of L.

A prime filter is called minimal if it is a minimal
element in the sets of prime filters of L ordered by set
inclusion. By Zorn’s lemma, every prime filter of L
contains a minimal prime filter. For any a ∈ L put

a⊥ = {x ∈ L | x ∨ a = 1}.
If F is a prime filter of L, then
x ∨ y = 1 implies x ∈ F or y ∈ F

for each x, y ∈ L and then the quotient R`-monoid
L/F is linearly ordered.

If F is a minimal prime filter of L, then
F = ∪{a⊥ | a ∈ L− F}.

Theorem 25 Every BLvt-algebra is a subdirect
product of BLvt-chains.

Proof: It is obvious that it suffices to prove that ev-
ery BLvt-algebra is isomorphic to subdirect product
of BLvt-chains. Since any BL-algebra L is repre-
sentable as a subdirect product of BL-chains, the in-
tersection of all minimal prime filters of Lis equal to
{1}. Hence, it remains to show that every minimal
prime filter of L is a v-filter.

Let F be a minimal prime filter of L. Then
F = ∪{a⊥ | a ∈ L− F}.

Let x ∈ F . Then there exists a 6∈ F such that x∨ a =
1, hence

1 = v(1) = v(x ∨ a) = v(x) ∨ v(a).
Since a 6∈ F , we get v(a) 6∈ F , therefore v(x) ∈ F
since F is a prime filter. ut

Every vt-operator on an R`-monoid L is, by
the definition and Theorem 20(2), a subdiagonal and
monotone self mapping of L. Now, we use vt-
operators to introduce derived self-mappings of L that
are, among others, superdiagonal and monotone, and
in the case of MV -algebras they have the properties
of unary connectives “very false”.

If L is a R`-monoid and f : L → L, then we
denote by f− the mapping of L into L such that for
any x ∈ L,

f−(x) = (f(x−))−.
Let us consider the standardMV -algebra [0, 1] =

Γ(R, 1). It is known that the mapping v : [0, 1] →
[0, 1] such that v(x) = x2 is a vt-operator on [0, 1].
Then

v− : [0, 1] → [0, 1]
is the mapping such that v−(x) = 2x − x2 for each
x ∈ [0, 1].

We say that an R`-monoid L is normal if L satis-
fies the identity

(x · y)−− = x−− · y−−.
Remark: Every BL-algebra and every Heyting

algebra is normal, hence the variety of normal R`-
monoids is considerably wide.

Theorem 26 Let (L, v) be an R`vt-monoid. Then we
have for any x, y, z ∈ L,

(1) v−(0) = 0, v−(1) = 1,
(2) x ≤ v−(x),
(3) x ≤ y implies v−(x) ≤ v−(y),
(4) vv−(x ∧ y) ≤ v−(x) ∧ v−(y),
(5) v−(x ∨ y) ≥ v−(x) ∨ v−(y),
(6) v−(x→ y−−) ≤ v(x) → v−(y),
(7) x · y ≤ z implies v−(x) · v(y) ≤ v−(z),
(8) v−(x) · v(y) ≤ v−(x · y),
(9) v−(x) · v(x→ y) ≤ v−(x ∧ y),
(10) If L is normal, then
v−(x→ y) ≤ v(x−−) → v−(y)

≤ v(x) → v−(y),
(11) If L is an MV -algebra, then
v−(x→ y) ≤ v(x) → v−(y).

Proof: (1) v−(0) = (v(0−))− = 1− = 0,
v−(1) = (v(1−))− = (v(0))− = 0− = 1.
(2) v−(x) = ((v(x−))− ≥ x−− ≥ x.
(3) x ≤ y ⇒ x− ≥ y− ⇒ v(x−) ≥ v(y−)

⇒ (v(x−))− ≤ (v(y−))− ⇒ v−(x) ≤ v−(y).
(4) and (5). They follow from (3).
(6) We have
v−(x→ y−−) = v−((x · y−)−)

= (v((x · y−)−−))−,
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v(x) → v−(y) = v(x) → (v(y−))−
= ((v(x) · v(y−))− ≥ (v(x · y−))−
≥ (v((x · y−)−)−,
hence

v−(x→ y−−) ≤ v(x) → v−(y).
(7) By 3 and 6, we get
x · y ≤ z ⇒ x ≤ y → z

⇒ v−(x) ≤ v−(y → z) ≤ v−(y → z−−)
⇒ v−(x) ≤ v(y) → v−(z)
⇒ v−(x) · v(y) ≤ v−(z).

(8) It follows from 7.
(9) v−(x) · v(x→ y) ≤ v−(x · (x→ y))

= v−(x ∧ y).
(10) x→ y ≤ y− → x−, thus from the normality

of L we get
v−(x→ y) = (v((x→ y)−))−

≤ (v((y− → x−)−))− = (v((y− · x)−−))−
= (v(y− · x−−))−.
Furthermore,

(v(y−) · v(x−))− = v(x−−) → (v(y−))−
= v(x−) → v−(y),
and
(v(y− · x−))− ≤ (v(y−) · v(x−))−,
we obtain
v−(x→ y) ≤ v(x−−) → v−(y).

(11) It follows from 6 as well as from 10. ut

If L is an MV -algebra, then L satisfies the dou-
ble negation law x−− = x, hence there exist on L
both a t-norm ∗ and its associated residuum → and a
t-conorm ⊕ and its associated residuum, say 	.

Consequently, on any MV -algebra L one can de-
fine not only vt-operators but also dual operators, vf -
operators (vf= very false). We will show that every
vt-operator on L determines a vf -operator on L.

As usual, put
x⊕ y = (x− · y−)− and x	 y = x · y−,

for any x, y ∈ L.

Theorem 27 If L is an MV -algebra and v is a vt-
operator on L, then v− is a vf -operator on L, i.e. for
each x, y ∈ L it holds:

(1) v−(0) = 0,
(2) v−(x) ≥ x,
(3) v−(x)	 v−(y) ≤ v−(x	 y),
(4) v−(x ∧ y) = v−(x) ∧ v−(y).

Proof: It remains to verify properties (3) and (4).
(3) Using 8 from Theorem 26, we get
v−(x)	 v−(y) = (v(x−)− 	 (v(y−))−

= (v(x−))− · (v(y−))−− = (v(x−))− · v(y−)
= v−(x) · v(y−) ≤ v−(x · y−) = v−(x	 y).

(4) Since any MV -algebra satisfies de Morgan
laws for the lattice operations, we have

v−(x ∧ y) = (v((x ∧ y)−))−
= (v(x− ∨ y−))− = (v(x−) ∨ v(y−))−
= (v(x−))− ∧ (v(y−))− = v−(x) ∧ v−(y). ut

Remark: Very recently, Vychodil [17] has intro-
duced the notion of aBLvt,st-algebra in order to study
the so called truth depressing hedges on BL-algebras.

An algebra (L,∨,∧, ·,→, v, s, 0, 1) is called a
BLvt,st-algebra if L = (L,∨,∧, ·,→, 0, 1) is a BL-
algebra, v is a wvt-operator on L and s : L → L is a
mapping such that

(1) s(0) = 0,
(2) x ≤ s(x),
(3) v(x→ y) ≤ s(x) → s(y).
We will show that if L is a BL-algebra and v is a

wvt-operator on L, then
(L,∨,∧, ·,→, v, v−, 0, 1)

is a BLvt,st-algebra.
Let x, y ∈ L. Then,
v−(x) → v−(y) = (v−(x−))− → (v(y−))−

≥ v(y−) → v(x−) ≥ v(y− → x−) ≥ v(x→ y).

4 Generated v-filters
In this section, we give the formula for calculating the
v-filters generated by subsets of L.

Theorem 28 If Fj ∈ Fv(j ∈ J), where J is any in-
dex set, then

⋂
j∈J Fj ∈ Fv.

Proof: Straightforward. ut

Given A ⊆ L, it follows from Theorem 10 that⋂
{F ∈ Fv | A ⊆ F} is the smallest v-filter of L con-

taining A. Here we call this v-filter the v-filter of L
generated by A, and denote it by < A >Fv .

We denote < {a1, a2, . . . , an} >Fv by
< a1, a2, . . . , an >Fv for short.

It is easy to verify that for any subsets A,B of L,
(1) < 1 >Fv= {1} and < ∅ >Fv= {1},
(2) A ⊆ B ⇒ < A >Fv⊆< B >Fv ,
(3) if A ∈ Fv, then < A >Fv= A.
Below, we give the formula for calculating <

A >Fv .

Theorem 29 If A is a nonempty subset of L, then

< A >Fv= {x ∈ L | x ≥ a
(m1)
1 · · · a(ms)

s ,

a1, . . . , as ∈ A, m1, . . . ,ms ∈ N+}.

Proof: Denote

B = {x ∈ L | x ≥ a
(m1)
1 · · · a(ms)

s ,

a1, . . . , as ∈ A, m1, . . . ,ms ∈ N+}.
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We first prove that B is a v-filter of L. Clearly, 1 ∈
B. Let x ∈ B and x ≤ y, y ∈ L. Then there are
a1, ..., as ∈ A and m1, . . . ,ms ∈ N+ such that x ≥
a

(m1)
1 · · · a(ms)

s and hence y ≥ a
(m1)
1 · · · a(ms)

s , i.e.,
y ∈ B. Now let y ∈ B. Then there are b1, ..., bt ∈ A
and n1, . . . , nt ∈ N+ such that y ≥ b

(n1)
1 · · · b(nt)

t and
so

xy ≥ (a(m1)
1 · · · a(ms)

s )(b(n1)
1 · · · b(nt)

t )

= a
(m1)
1 · · · a(ms)

s b
(n1)
1 · · · b(nt)

t ,

i.e., xy ∈ B. Moreover, it follows from Theorem 7
that

v(x) ≥ v(a(m1)
1 · · · a(ms)

s ) ≥ v(a(m1)
1 ) · · · v(a(ms)

s )

= a
(m1+1)
1 · · · a(ms+1)

s ,

i.e., v(x) ∈ B. Thus, B is a v-filter of L.
Finally we prove that B is the least v-filter

containing A. Clearly, A ⊆ B. Now assume that
A ⊆ F ∈ Fv and let x ∈ B. Then there exist
a1, ..., as ∈ A and m1, . . . ,ms ∈ N+ such that
x ≥ a

(m1)
1 · · · a(ms)

s . Applying Definitions 4 and 8,
we obtain a

(m1)
1 · · · a(ms)

s ∈ F and x ∈ F . This
shows B ⊆ F . Therefore B is the least v-filter
containing A, i.e., B =< A >Fv . ut

For any a1, ..., an ∈ L, an → (· · · → (a1 →
x) · · ·) = 1 if and only if an ≤ an−1 → (· · · →
(a1 → x) · · ·) if and only if x ≥ a1 · · · an−1an. Thus,
we have an equivalent form of Theorem 11.

Theorem 30 Let A be a nonempty subset of L. Then

< A >Fv

= {x ∈ L | a(m1)
1 → (· · · (a(ms)

s → x) · · ·) = 1,
a1, . . . , as ∈ A, m1, . . . ,ms ∈ N+}.

As a corollary of Theorem 11, we have the fol-
lowing theorem.

Theorem 31 If F ∈ Fv and a ∈ L. then

< F ∪ {a} >Fv= {x ∈ L | x ≥ a(m1) · · · a(ms)f,

f ∈ F,m1, . . . ,ms ∈ N+}.

In particular,

< a >Fv= {x ∈ L | x ≥ a(m1) · · · a(ms),

m1, . . . ,ms ∈ N+}.

We denote < F ∪ {a} >Fv by F (a) for conve-
nience. Clearly, F (a ∨ b) ⊆ F (a) ∩ F (b).

5 Lattice of v-filters
Noting that {1} and L are, respectively, the smallest
element and the greatest element ofFv, we see thatFv

is a complete lattice. For any F1, F2 ∈ Fv, F1 ∩ F2

is the greatest lower bound of F1 and F2. We denote
by F1 ∨Fv F2 the least upper bound of F1 and F2.
Obviously, F1 ∨Fv F2 =< F1 ∪ F2 >Fv .

Theorem 32 If F1, F2 ∈ Fv, then

F1 ∨Fv F2 = {x ∈ L | x ≥ ab, a ∈ F1, b ∈ F2}.

Proof: Suppose that F1, F2 ∈ Fv. Let

F = {x ∈ L | x ≥ ab, a ∈ F1, b ∈ F2}.

Clearly, F ⊆ F1 ∨Fv F2. If x ∈ F1 ∨Fv F2 =<
F1 ∪ F2 >Fv , then it follows from Theorem 3.2
that there are a1, ..., as ∈ F1, b1, ..., bt ∈ F2 and
m1, . . . ,ms, n1, . . . , nt ∈ N+ such that

x ≥ (a(m1)
1 · · · a(ms)

s )(b(n1)
1 · · · b(nt)

t ),

where s, t are nonnegative integers. Let a =
a

(m1)
1 · · · a(ms)

s ∈ F1 and b = b
(n1)
1 · · · b(nt)

t ∈ F2.
Then, x ≥ ab, i.e, x ∈ F . Thus, F1 ∨Fv F2 ⊆ F .

Therefore, F =< F1 ∪ F2 >Fv = F1 ∨Fv F2.ut

Let A,B be two subset of L. By Theorem 14 and
its proof, we can see that

< A ∪B >Fv=< A >Fv ∨Fv < B >Fv .

In particular, for any a, a1, ..., an ∈ L, we have that

F (a) = F∨Fv < a >Fv ∀F ∈ Fv,

< a1, ..., an >Fv

=< a1 >Fv ∨Fv · · · ∨Fv < an >Fv .

Theorem 33 Let v be a vt-operator on L. If A ∈ Fv

and B is an upper subset of L, i.e., b ∈ B, c ∈ L, b ≤
c ⇒ c ∈ B, then A∩ < B >Fv=< A ∩B >Fv .

Proof: Clearly, < A ∩B >Fv⊆ A∩ < B >Fv .
If x ∈ A∩ < B >Fv , then x ∈ A and x ∈<

B >Fv . Thus, it follows from Theorem 11 that there
are b1, ..., bt ∈ B and n1, . . . , nt ∈ N+ such that
x ≥ b

(n1)
1 · · · b(nt)

t . Noting thatA andB are two upper
subsets of L, we see that x∨ b1, ..., x∨ bt ∈ A∩B. It
follows from Theorem 7 that

x ≥ (x ∨ b(n1)
1 ) · · · (x ∨ b(nt)

t )

≥ (x(n1) ∨ b(n1)
1 ) · · · (x(nt) ∨ b(nt)

t )

= (x ∨ b1)(n1) · · · (x ∨ bt)(nt)

and hence x ∈< A ∩B >Fv . Thus,
A∩ < B >Fv⊆< A ∩B >Fv .
Therefore, A∩ < B >Fv=< A ∩B >Fv . ut
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Theorem 34 Let v be a vt-operator on L. Then <
Fv; ⊆, ∩, ∨F , {1}, L > is a complete Brouwerian
lattice.

Proof: For any A,Bj ∈ Fv(j ∈ J), where J is any
nonempty index set, noting that ∪j∈JBj is a upper
subset of L, we see that

A ∩ (∨Fv j∈JBj) = A∩ < ∪j∈JBj >Fv

= < A ∩ (∪j∈JBj) >Fv=< ∪j∈J(A ∩Bj) >Fv

= ∨Fv j∈J < A ∩Bj >Fv= ∨Fv j∈J(A ∩Bj).

Therefore, it follows from Chapter V, Theorem 24 in
[3] that < Fv; {1}, L, ⊆, ∩, ∨Fv > is a complete
Brouwerian lattice. ut

6 Conclusion and future work
In this paper, based on Hájek [8, 9], Vychodil [17],
Rachůnek and Šalounová [14], we study the con-
cept of v-filters of residuated lattices with weak vt-
operators, axiomatize very true operators and discuss
filters and v-filters of residuated lattices with weak vt-
operator. We also give the formulas for calculating the
v-filters generated by subsets, and show that the lattice
of v-filters of a residuated lattice with a vt-operation
is a complete Brouwerian lattice.

In a forthcoming paper, we will study prime v-
filters of a residuated lattices with weak vt-operators.
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[10] U. Höhle, Commutative, residuated l-monoids,
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