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Abstract: This paper obtains some important properties of planar normal tiling and proves purely combina-
torially Grünbaum’s Theorem. Moreover, we give the six-neighbor-theorem and definite “relative density” to
describe the increase of tiles with some special properties. Finally, Γpm−tilings are classified by their adjacent-
types.
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1 Introduction

Tilings appears in many fields such as art design (ar-
chitecture), crystal structure in thin sheet of materials
(metallurgy and geology), combination of molecule
(chemistry), cell arrangements in skin and mem-
branes of animals and plants (biology), image en-
hancement and coding (communication theory) and
so on. Thus it looks so necessary to study mathe-
matically tiling which relates to combinatorics([17]),
number theory([1]), topology([10]) and wavelet([15])
and so on. A planar tiling is a kind of covering of the
plane without any overlap and gap. To say mathemat-
ically, if a compact sets family A := {Ti, i ∈ Z+}
satisfies that

⋃
Ti = R2 and int(Ti) ∩ int(Tj) =

φ, ∀i 6= j, then A is called a planar tiling and each
member of T is called planar tile. The complexity of
tiling mainly come from two hands: strange structures
of tiles and their various ways to fit each other. For
instance, polygons can tile a plane through a group
(honeycomb), or in random (rimous riverbed). More-
over, some tiling can be formed by translating one tile
which may be a square or a fractal even. Reinhardt
points out that stringent restrictions must be imposed
on tilings if any meaningfully general results are to
be obtained, which also indicates that the classifica-
tion of tiling is necessary. There is a class of tiling
called “well-behaved” tiling, with better local topo-
logical structure and global combinatorial properties,
which plays a crucial role in researches of various
tilings.

Normal tiling is an important kind of “well-
behaved” tiling with some restrictions on the structure

of the tiles and the way to fit together. A planar tiling
T is called normal, if the following three conditions
hold:

C.1 every tile of T is a topological disk (disk-
like);

C.2 The intersection of every two tiles of T is a
connected set, that is, it does not consist of two (or
more) distinct and disjoint parts;

C.3 the tiles of T are uniformly bounded.
C.1 implies that each tile is bounded by a simple

closed curve. In the tiling which satisfies C.1 and C.2,
the Schönflies theorem ([13]) tells us that the bound-
ary of each tile is simple closed curve and the inter-
section of two tiles is either empty, or a single point,
or an arc. And C.3 means that there exist two fixed
positive numbers R and r for the tiling in question,
called the circle-parameters of the normal tiling, so
that every tile can contain some circular disk of ra-
dius r and be contained in some circular disk of ra-
dius R, which implies that all tiles have some balance
properties.

In normal tiling, the vertex (n-covered-points) of
tile (tiling) are those points which are covered by
n(≥3) tiles. The point covered only by two tiles
are called 2-covered-points. Two tiles T1 and T2 are
neighbors, if T1 ∩ T2 6= φ. And they are adjacent
(edge-neighbor), if int(T ∪ T ′) ∩ ∂T = φ, that is
to say, their intersection is an arc called the edge of
tile (tiling). If T1 ∩ T2 is one point, they are vertex-
neighbor. The interest of people in normal tiling
mostly focus on the topological structure of tiles and
combinatorial properties of tiling. However, neighbor
and adjacent rightly reflect the details of these two
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hands of normal tiling. Actually, the neighbors of tile
determine its boundary and the neighbor-relation de-
cides the arranging mode. Therefore, two tilings with
the same neighbor-relation are regarded as the same
one in some sense, notwithstanding they are possi-
bly with various structures. Laves ([8], [9]) shows
that if all tileS of monohedral tiling (generated by
one tile) have neighbors with the uniform number
n, then n ≤ 21. Fejes Tóth ([16]) points out that
for normal tiling (not always Monohedral), n may be
infinite. Moreover, Fejes Tóth ([17]) has a conjec-
ture that in every monohedral tiling with convex tiles,
“21” is the maximum of neighbor-number of tile, so
do even for non-convex tiles. Bezdek ([3]) asserts
that in normal tiling with convex tiles, if every tile
has the same numbers of vertices and neighbors, the
neighbor-number just should be 6, 7, 8, 9, 10, 12, 14,
16 or 21.

The definition of normal tiling looks so simply,
but it is usually difficult to be applied directly. For
example, is the aperiodic tiling, showed in Fig.1, nor-
mal? It is bewildering that to make a decision just by
the definition of normal tiling. Nevertheless, we can
decidedly say “no” by Grünbaum’s theorem (called
six-adjacent-theorem)([6]) which is an essential and
universal result about normal tiling. But his topologi-
cal proof looks so obscure and lengthy.

In this paper, we give a purely combinatorial and
legible proof for the six-adjacent-theorem in virtue of
adjacent-graph. Moreover, the six-neighbor-theorem,
describing the global properties of normal tiling from
other angles, is given. The two theorems indicate
that the number “6” is a special constant for nor-
mal tiling. We also raise rationally the conception
of “relative density” to describe the increase of tiles
with some special properties and estimate the lower
boundary of relative density of six-adjacent-tile in
normal tiling. Finally, as an example to apply the six-
neighbor-theorem, the adjacent-type and the combi-
natorial classification of Γpm−tiling is obtained.

2 Some properties of Normal Tiling

A tiling is called locally finite if any circular disk, cen-
tered any point, meets only a finite number of tiles.
Locally finite tiling can avoid some singular geomet-
ric structures. The following two lemmas offer a good
many conveniences to our work.

Lemma 1 ([6]) For any tile T of locally finite tiling
T ,

(i) T has only a finite number of neighbors, and
the intersection of any two tiles consists of a finite
number of connected components.

Figure 1: Is normal the tiling with convex heptagons?

(ii) Any boundary point of T must belong to at
least one other tile of T .

(iii) The boundary of T consists of a finite num-
ber of edges of T , and each vertex is a connected
component of the intersection of some three tiles of
T .

Lemma 2 Every normal tiling T is locally finite.

Proof. We consider any one disk D(x, P ) of ra-
dius x, centered point P on plane. Then it is clear
that any tile which meets D(x, P ) must lie entirely
inside the disk D(x + 2R, P ) whose area equal to
π(x + 2R)2, where R is a circle-parameter of T .
However, every tile contains a disk with radius r so
that its area is πr2 at least. Thus not more than
M(x) = bπ(x + 2R)2/πr2c + 1 tiles can meet
D(x, P ). Since D is arbitrary and M(x) is finitely
fixed for x, T is locally finite. ut

Figure 2: A normal tiling traced by black curves and
its adjacent-graph formed by tint points and lines.

After being drawn on plane, the tiling become
its topological graph. The adjacent-graph GA of
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tiling is an abstract graph whose vertices are all tiles
of the tiling and edge are all adjacent-relation in the
tiling. Similarly, the neighbor-graph GN of a tiling
is with vertex-set all tiles of the tiling and edge-
set all neighbor-relation in the tiling. Obviously,
the adjacent-graph and neighbor-graph can exhibit
mainly the tiling way, but avoid the complexity pro-
duced by the topology and shape of single tile.

Lemma 3 The adjacent-graph of normal tiling is al-
ways planar.

Figure 3: The planar adjacent-graph of normal tiling.

Proof. Let any one tile T in normal tiling T
meet its two adjacents T1 and T2 to two edges AB
and AC, which is shown in Fig.3. We can take ar-
bitrarily two inner-points E and F of AB and AC.
Let the homeomorphism h map T to the circular disk
D. Then by Lemma 1, the vertices A, B and C, the
2-covered-points E and F , the edges AB and AC are
mapped to the points on the circle hA, hB , hC , hE ,
hF and the arcs h̃AhB and h̃AhC , where hE and hF

still are the inner-points of h̃AhB and h̃AhC respec-
tively. Moreover, the inverse-image O of the center
hO of D is an inner-point of T . Two line-segments
hOhE and hOhF in D meet only at the point hO, and
then their inverse-images ÕE(= h−1(hOhE)) and
ÕF (= h−1(hOhF )) are two arcs in T meeting only
at the point O. Similarly, we can obtain an arc P̃E

in T1, where P is an inner-point of T1. ÕP forms
an arc from an inner-point of T , through a common
boundary-point E of T and T1, to an inner-point of
T1. All such arcs as ÕP for every adjacent of T meet
at O. Doing the same thing for all tile of T , we can
obtain a graph embedded on plane which is dual to the
topological graph of T . As be seen easily, the graph
is rightly an planar embedding of the adjacent-graph
of T . ut

Lemma 4 In normal tiling, two tiles are neighbors
if and only if the vertices corresponding to them in
adjacent-graph lie on one common face.

Figure 4: The adjacent-graph decides the neighbor-
graph.

Proof. We need only to consider the simple case
that four vertices 1, 2, 3 and 4 in the adjacent-graph
corresponding to tiles T1, T2, T3, and T4 of normal
tiling T lie on the common face shown in Fig.3,
where T2 and T4 are adjacents of T1.

Suppose that T3 is not a neighbor of T . Then ei-
ther T2 and T4 are adjacents (Fig.4 (b)), or there are
a string of finite adjoining tiles between T1 and T3

(Fig.4 (c)). In Fig.4 (b), vertices 1 and 3 should be
blocked off by the circuit generated the vertices cor-
responding to all adjacents of T1, which contradicts
to 1 and 3 lying on a common face. In Fig.4 (c), if
regarded all tiles surrounded by T1, T2, T3 and T4 as
a whole tile, 1 and 3 should also be blocked off by
some one circuit (Fig.4 (a)). Hence, T1 and T3 should
be neighbor. It is easy to obtain inductively the simi-
lar result for the case of more vertices on one common
face.

To prove the necessary part of the lemma is only
an inverse thought. ut
Remark 5 Lemma 3 and 4 imply that the adjacent-
graph can decide neighbor-graph, and thus it is really
essential, which enlightens us to discuss the global
properties of normal tiling by purely combinatorial
method.

3 Six-adjacent-theorem and Six-
neighbor-theorem

We introduce the conception of patch of Grünbaum.
Patch consists of a finite number of tiles with a prop-
erty that their union is a topological disk. There is a
standard procedure for constructing patches. We take
a connected set S (for example a square) in tiling T .
The set M of all tiles of T that meet S is considered
firstly. The union of the tiles of M , the white area
in Fig.5, will clearly to be connected but it may fail
to be simply connected. Adjoining to M just enough
tiles, the black area N in Fig.5, to fill up the “holes”
(see to Fig.5), we obtain the patch P(S) (=M ∪N )
generated by S.
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Figure 5: To generate a patch by a square.

The following lemma points out that the low
boundaryof the number of adjacents of tile in normal
tiling.

Lemma 6 Every tile of normal tiling should be with
at least three adjacents, that is to say, the degree of
every vertex of adjacent-graph is at least 3.

Figure 6: Every tile should be with at least three ad-
jacents.

Proof. Let T1, T2, and T3 be three tiles of nor-
mal tiling T . Suppose that T1 has uniquely one ad-
jacent T2, then ∂T1 = T1 ∩ T2 being homeomor-
phic to a circle C, which is a contradiction to C.2 in
the definition of normal tiling. And suppose that T1

has only two adjacents T2 and T3 (see to Fig.6), then
∂T1 = (T1∩T2)∪(T1∩T3). Let the map τ : ∂T1 → C
be a homeomorphism. Since both T1∩T2 and T1∩T3

are connected and τ((T1 ∩ T2) ∪ (T1 ∩ T3)) = C,
T2 ∩ T3 should contain the vertices A and B . And
because of the connectedness of T2∩T3, we have that
T2 ∩ T3 = ∂T2 − (T1 ∩ T2), i.e., T2 is surrounded
by T1 and T3. Hence, it will hold that T3 surrounds
T1 ∪ T2 shown in Fig.6. But by Jordan Curve Theo-
rem ([13]), T3 will divide the plane into two disjoint
connected parts, which conflicts to T3 being disk-like.
ut

By the local finiteness of normal tiling, adjacent-
graph of a patch should be a connected finite graph
which satisfies the following Euler’s Theorem.

Lemma 7 (Euler’s Theorem)([4]) Let v(L), e(L)
and f(L) be respectively the numbers of vertices,
edges, and faces of adjacent-graph of the patch gen-
erated by a curve L. Then they will satisfy the follow-
ing equation

v(L)− e(L) + f(L) = 1.

Grünbaum shows topologically the following
called six-adjacent-theorem. Here, we give a more
compendious purely combinational proof.

Theorem 8 Every normal tiling contains a infinite
numbers of tiles each of which has at most six ad-
jacents.

Proof. Suppose that some one normal tiling T
contains only finitely many tiles each of which has at
most six adjacents. We can take arbitrarily a circuit
L which includes all vertice with degrees at most 6
in the adjacent-graph GA of T shown in Fig.7. By
Jordan Curve Theorem ([13]), L should divide GA

into three parts: L, outside L (unbounded connected
component), and inside L (bounded connected com-
ponent). We use respectively v1(L), v2(L), v3(L),
e1(L), e2(L), and f(L) to denote the numbers of the
vertices on L, the vertices with degrees at least seven
inside L, the vertices with degree at most six inside
L, the edges on L, the edges inside L and the faces
inside L. Then by Lemma 7, it holds that

[v1(L)+v2(L)+v3(L)]−[e1(L)+e2(L)]+f(L) = 1.
(1)

It is clear that
v1(L) = e1(L). (2)

Figure 7: A circuit in adjacent-graph.

Hence, we can deduce that

v2(L) + v3(L)− e2(L) + f(L) = 1. (3)
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Since each edge links two vertices rightly and each
face contains at least three edges, we have the follow-
ing two inequalities by Lemma 6 that

2e2(L)− e1(L) ≥ 7v2(L) + 3v3(L)
⇒ e2(L) ≥ 7v2(L)+3v3(L)+v1(L)

2 ;
(4)

3f(L) ≤ e1(L) + 2e2(L)
⇒ f(L) ≤ e1(L)+2e2(L)

3 .
(5)

Therefore, by Eq.(1)-(4), we have

1 = v2(L) + v3(L)− e2(L) + f(L)
≤ v2(L) + v3(L)− e2(L) + e1(L)+2e2(L)

3
= v2(L) + v3(L)− 1

3e2(L) + 1
3v1(L)

≤ v2(L) + v3(L)
−1

3 · 7v2(L)+3v3(L)+v1(L)
2 + 1

3v1(L)
= −v2(L)

6 + v3(L)
2 + v1(L)

6
(6)

That is to say that

v1(L) ≥ v2(L)− 3v3(L) + 6 (7)

In the following development, we will obtain a con-
tradiction to Eq.(7).

Figure 8: The boundary tiles of square patch.

We also take a square S with edge a to include all
tiles each of which has at most six adjacents on plane
and use P(S) to denote the patch generated by S.
Clearly, the adjancent graph of P(S) will produce a
circuit L. We still use the denotations in what men-
tioned above. Since there exist two constants R and
r such that each of tile is contained in a disk with ra-
dius R and contains a disk with radius r, the square
S1 with edge length a + 4R can contain the entire
patch P(S) and all tiles to meet the boundary of S

are outside of the square S2 with edge length a− 4R,
which is shown in Fig.8. Hence, we have that

v1(L) · πr2 ≤ (a + 4R)2 − (a− 4R)2

⇒ v1(L) ≤ 16Ra
πr2 ,

(8)

and

[v1(L) + v2(L) + v3(L)] · πR2

≥ area(S) = a2

⇒ v2(L) ≥ a2

πR2 − 16Ra
πr2 − v3(L).

(9)
Since v3(L) is a fixed finite constant, v2(L) will ex-
ceed seriously v1(L) as a becomes enough large,
which contradicts to Eq.(7). Therefore, the theorem
holds. ut

Figure 9: The vertices uniformization in circle.

As shown in Fig.9, when the valence of some one
vertex A in a tile T of T is more three, those edges
which meet at A but not be in T are slipped along
edges except one keeping being fixed. In this way, a
new tiling T ∗, called the vertices uniformization of
T , is constructed. A notable characteristic of such
vertices uniformization tiling is that the valence of
each vertex equals to 3. Honeycomb just is such an
excellent example.

Lemma 9 The uniformization process of normal
tiling can not increase the number of neighbors of any
tile.

Proof. Every vertex are only with finite valence
due to local finiteness of normal tiling. The neigh-
bors of tile T are decided completely by the edges to
intersect T , that to say, the neighbors of T are rightly
those tiles whose some edges meet T . Let the valence
of vertex A of tile T be n(≥ 3) (Fig.10 (a)). If n− 3
edges are moved along only two edges of T in uni-
formization processing of A (Fig.10 (b)), new neigh-
bors of T will not appear and just all vertex-neighbors
at A become adjacents of T . Otherwise, the edges
meeting T decrease (Fig.10 (c)), and then the number
of neighbors of T get less. Hence, the lemma holds.
ut
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Figure 10: The uniformization process can not in-
crease the number of neighbors.

Let L be any one circuit in the adjacent-graph of
normal tiling T ∗. Denote the numbers of the vertices
on L , the vertices with at most 5-degree inside L ,
the vertices with at least 6-degree inside L , the edges
on L , the edges inside L and the faces (tiles) inside
L by V1(L ), V2(L ), V3(L ), E1(L ), E2(L ), and
F (L ).

Then we have the following lemma to list some
obvious properties of T ∗.

Lemma 10 For normal tiling T ∗ and an arbitrary
circuit L in its, the following facts hold
(i) V1(L ) = E1(L );
(ii) All neighbors of each tile inside L must be its
adjacents.
(iii) The adjacent-graph of T ∗ is a triangulation of
the plane.

Theorem 11 Every normal tiling T contains in-
finitely many tiles each of which has at least six neigh-
bors.

Proof. According to Lemma 9, we only need to
prove the vertex uniformization tiling T ∗ satisfying
the theorem. Suppose that there is T ∗ only contain-
ing finitely many tiles each of which has at least six
neighbors. Any one circuit L , containing all vertices
with at least 6-degree, can be taken arbitrarily in G∗

A,
the adjacent graph of T ∗. Euler’s Formula holds in-
side L and Lemma 10 (ii) implies that G∗

A = G∗
N .

Then we have

[V1(L ) + V2(L ) + V3(L )]
−[E1(L ) + E2(L )] + F (L ) = 1.

(10)

By Lemma 10 (i), we deduce that

V2(L ) + V3(L )− E2(L ) + F (L ) = 1. (11)

Let the number of neighbors of the tile with the most
neighbors in T ∗ be M(≥ 6). Then, by Lemma 11
(ii) and (iii), we have the formulas

3F (L ) = 2E2(L ) + E1(L )
⇒ F (L ) = E1(L )+2E2(L )

3 .
(12)

and

5[V1(L ) + V2(L )] + MV3(L )]
≥ 2[E1(L ) + E2(L )]

⇒ E2(L ) ≤ 3V1(L )+5V2(L )+MV3(L )]
2 .

(13)
Hence, by Eq.(11)-(13), we have

1 = V2(L ) + V3(L )− E2(L ) + F (L )
= V2(L ) + V3(L )− E2(L ) + E1(L )+2E2(L )

3

= V2(L ) + V3(L )− E2(L )
3 + V1(L )

3
≥ V2(L ) + V3(L )

−1
3 · 3V1(L )+5V2(L )+MV3(L )

2 + V1(L )
3

= V2(L )
6 − V1(L )

6 − (M
6 − 1)V3(L )

(14)
That is to say that

V1(L ) ≥ V2(L )− (M − 6)V3(L )− 6 (15)

To be similar to the latter part of the proof of The-
orem 8, we also obtain two equalities

V1(L ) ≤ 16Ra

πr2
(16)

and

V2(L ) ≥ a2

πR2
− 16Ra

πr2
− V3(L ) (17)

Since both V3(L ) and M are fixed finite numbers for
one given T ∗, Eq.(15) implies that V1(L ) can dom-
inate linearly V2(L ). But Eq.(16) and Eq.(17) tell
us that V1(L ) increases linearly at most and V1(L )
does in square at least with the largening of a. This is
a contradiction. ut
Remark 12 Six-adjacent-theorem and six-neighbor-
theorem reflect the global properties of normal tiling
in two different hands. In particular, there are always
an infinite numbers of tiles with at most six neigh-
bors and ones with at least six neighbors in the uni-
formized tiling.

4 The Relative Density in Normal
Tiling

Ostensibly, for general normal tiling, Six-adjacent-
Theorem points out the number of tiles with six ad-
jacents at most. And in fact, suppose that we watch
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T through a “window”, Six-adjacent-Theorem also
reflects those tiles increase infinitely as the “window”
expands. To characterize the increasing, we define
“the relative density” in this section.

We continue to denote the patch generated by the
square S by P(S), and the boundary of adjacent-
graph of P(S) by BS . The relative density of p−tile
(the tile with some property “p”) is defined by

RDp(T ) := lim
|S|→+∞

vp(BS)
v(BS)

,

where vp(BS) is the number of vertices of adjacent-
graph corresponding to p−tiles inside BS , and v(BS)
is the number of all vertices inside BS , and |S| is the
edge-length of S.

If the denotations in the proof of Theorem 8 still
are used, then

lim
|S|→+∞

v3(BS)
v1(BS) + v2(BS) + v3(BS)

is the relative density of 6-adjacent-tile (the tile de-
scribed in Theorem 8).

The following lemma is a foundational result to
character the balance of normal tiling.

Lemma 13 (Normality Lemma)([14]) If T is a nor-
mal tiling, then for every x > 0,

lim
a→∞

v(a + x, P )
v(a, P )

= 1

where v(a, P ) is the number of vertices in adjacent-
graph of the patch generated by the square with edge-
length a and center P .

Lemma 14 For a given square S, RDp(T ) will be
irrelative to the position and size of the initial square.

Proof. Let the relative density of p−tile for a
given square S with edge-length a and center P be

lim
a→∞

vp(S)
v(S)

.

It is obvious that the relative densities corresponding
to all squares with center-point P has a same value by
the definition of relative density. Thus we can take ar-
bitrarily another square S1 with center P1 and enough
edge-length such that

vp(BS) ≤ vp(BS1), v(BS) ≤ v(BS1).

We also take a square S′ with center P and enough
edge-length such that

vp(BS1) ≤ vp(BS′), v(BS1) ≤ v(BS′).

Hence,

vp(BS)
v(BS)

· v(BS)
v(BS′)

≤ vp(BS1)
v(BS1)

≤ vp(BS′)
v(BS′)

· v(BS′)
v(BS)

.

If a → ∞, then |S|, |S1| and |S ′| go to the infinity
synchronously. By the Normality Lemma,

lim
a→∞

v(BS)
v(BS′)

= lim
a→∞

v(BS′)
v(BS)

= 1.

We have already known that

lim
a→∞

vp(BS)
v(BS)

= lim
a→∞

vp(BS′)
v(BS′)

.

Finally,

lim
a→∞

vp(BS)
v(BS)

= lim
a→∞

vp(BS1)
v(BS1)

= lim
a→∞

vp(BS′)
v(BS′)

.

ut
The following theorem implies that the increas-

ing infinitely of 6-adjacent-tile is rather rapidly.

Theorem 15 In every normal tiling, 6-adjacent-tile
have always a positive relative density. And it has a
lower boundary r2

4R2 , where R is the minimum and r
is the maximum satisfying C.3.

Proof. We take arbitrarily a square S with length
a(= |S|). For v1(BS), v2(BS) and v3(BS), Eq.(7),
(8) and (9) keep holding. From Eq.(7) and (8), we
can obtain

3v3(BS) ≥ v2(BS) + 6− 16Ra

πr2
(18)

According to Eq.(9) and (19), we have

3v3(BS) ≥ a2

πR2
− 32Ra

πr2
+ 6− v3(BS) (19)

Moreover,

v3(BS) ≥ a2

4πR2
− 8Ra

πr2
+

3
2

(20)

It holds which is similar to Eq.(8) and (9) that

(v1(BS)+ v2(BS)+ v3(BS))πr2 ≤ (a+4R)2 (21)

Hence, we have
v3(BS)

v1(BS)+v2(BS)+v3(BS)

≥ ( a2

4πR2 − 8Ra
πr2 + 3

2) · πr2

(a+4R)2

(22)

Letting a go to the infinity, we can immediately de-
duce

lim
a→+∞

v3(BS)
v1(BS) + v2(BS) + v3(BS)

≥ r2

4R2
.

ut
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Remark 16 We believe that tiles with at least six
neighbors also has a relative density with positive
lower boundary. But it is a pity that we have not found
it.

Example 17 Fig.11 is a kind of familiar design of ce-
ramic floor tiling which is normal, where both the rel-
ative densities of squares (with 4 adjacents) and oc-
tagons (with 8 adjacents) equal to 1

2 .

Figure 11: Positive relative density.

5 Adjacent-graph of Γpm−tiling

A planar crystallographic group is a discrete cocom-
pact subgroup Γ ⊂ Isom(R2), where Isom(R2) is
the group of isometries on R2. The planar tiling
Γ(T ) := ∪{γ(T ) : γ ∈ Γ} is called crystallographic
tiling, if T ⊂ R2 is compact and Γ is a crystal-
lographic group. Γ(T ) should be made of congru-
ent tiles and locally finite. Fedorov ([7]) points out
that the planar crystallographic group only have 17
kinds whose detailed derivation can be found in [12].
Mackay ([11]) mentions an ingenious method of dis-
playing 17 crystallographic groups by various jigsaw
pieces fitting together. In this section, we will apply
the six-adjacent-theorem to consider Γpm−tiling gen-
erated by crystallographic group Γpm and to obtain its
a kind of combinatorial classification. We recall the
following result of Gelbrich ([5]).

Lemma 18 Suppose T is disk-like, Γ is a planar
crystallographic group. Then the intersection of two
arbitrary tiles of the crystallographic tiling Γ(T ) is
either empty, or one point, or a topological line seg-
ment.

This lemma implies that every planar crystallo-
graphic tiling with disk-like tiles must be normal.
Since each tile of crystallographic tiling is with same
adjacent structure, the follow theorem is a natural
conclusion of the six-adjacent-theorem and Lemma 6
using the terminology of graph theory.

Theorem 19 The adjacent-graph of planar disk-like
crystallographic tiling is at most 6-connected and at
least 3-connected.

Lattice tiling Γp1−tiling, where Γp1 is generated
only two translation with different directions, is the
simplest kind of 17 crystallographic tilings. Bandt
and Gelbrich analyze the classification of Γp1−tiling
and obtain the following result which implies that its
adjacent-graph only is 4-connected or 6-connected.

Lemma 20 ([2]) Let Ω be a topological disk which
tiles (R2) by lattice translates of lattice L. Then in
the tiling Ω + L one of the following must be true:

(i) Ω has no vertex-neighbor and six adjacents
Ω ± α, Ω ± β and Ω ± (α + β) for some α, β ∈ L,
and Zα + Zβ = L;

(ii) Ω has four adjacents Ω ± α, Ω ± β and four
vertex-neighbors Ω ± α ± β for some α, β ∈ L, and
Zα + Zβ = L.

Γpm can be generated by three planar isome-
tries: two translations with different directions and a
mirror-reflection whose axis is parallel to some one
translation-direction.

Theorem 21 It is impossible that the adjacent-graph
of disk-like Γpm−tiling is 6-connected.

Figure 12: It is impossible that the tile with 6 adja-
cents appear in Γpm−Tiling.

Proof. By the symmetry of Γpm−tiling, we just
consider arbitrarily one tile T . Suppose T being with
6 adjacents. If the 6 adjacents are all translation-
equivalences of T , then the tiling Γpm(T ) is a lattice
tiling.

Therefore, there is one adjacent T ′ of T is not a
translation-image, but a mirror-image with the axis r,
which is shown in Fig.12. If S(= T ∪T ′) is regarded
as a new tile, it is an important fact that S can tile the
plane under some one lattice. Hence, by Lemma 20,
there is two irrelevant vectors α and β so that one of
the following two cases holds:
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(i) S has no vertex-neighbor and six adjacents
S ± α, S ± β and S ± (α + β);

(ii) S has four adjacents S ± α, S ± β.
We can suppose that α is parallel to r by the def-

inition of Γpm. Case (i) is discussed firstly. For a
legible depiction, we denote anticlockwise the edges
of T (the intersections of T and its six adjacents) by
a, b, c, d, e, f , and draw them with line-segments. As
shown in Fig.12, the line-segment AB(= T ∩ T ′) is
denoted especially by a. We consider six translation-
images of a: AB ± α, AB ± β and AB ± (α + β).
Since α(A) = B and B ∈ b, then T ∩ (T + α) = b.
Similarly, we have that T ∩ (T − α) = f . Because
of β being not parallel to r, S + β should locate
wholly on one side (left side) of r and one of T + β
or T ′ + β should be an adjacent of T . But c, d and
e are all impossibly one of β−translation-images of
b, c, d or e. Thus T ′ + β is one adjacent of T , and
T ∩ (T ′ + β) = c, d or e. Similarly, as an adja-
cent, T ′ + α + β meets T on one of c, d or e. Due to
the characteristics of translation and mirror-reflection,
there should not be other adjacents of S on left side
of r except S + β and S + α + β, which implies that
there should not be more adjacents except T ′, T + α,
T −α, T ′+β and T ′+α+β. This is a contradiction
to our initial supposition. Hence, T has five adjacents
at most. ut

We give Fig.13 to illustrate the following result
in sense of isomorphism.

Theorem 22 The adjacent-graph of disk-like
Γpm−tiling can be 3-connected, 4-connected or
5-connected.

Figure 13: Three possible kinds of pattern in
Γpm−tiling: (a) 3-adjacents, (b) 4-adjacents,(c) 5-
adjacents.

From Theorem 19, 21 and 22, the combinatorial
classification of Γpm−tiling mentioned in the refer-

ence [6] can be obtained directly, which will not be
said more.

Conclusion

Six-adjacent-theorem and Six-neighbor-theorem im-
ply that the number “6” play an important role on
the combinatorial structure and some intrinsic prop-
erty of normal tiling, which is perhaps related to the
planar kissing-number being 6 rightly. However, we
still wonder why it is so. It is worthy exploring the re-
lation between them. Then, a natural question is what
happens in high-dimension tilings. A conjecture is
that the similar number is “12” for 3-dimension tiling.
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