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Abstract: New convergence intervals of parameters αi are derived and applied for solving the modified linear
systems, which enables a better understanding of how parameters should be chosen. The convergence theorem
for H-matrix is given. Meanwhile, we discuss the convergence results for M -matrices linear systems and give
some new preconditioners. Numerical examples are used to illustrate our results.
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1 Introduction
In numerical linear algebra, the theory of M -and H-
matrices is very important for the solution of lin-
ear systems of algebra equations by iterative meth-
ods (see, e.g., [1], [4-9],[12-14]). For example, (a)
in linear complementarity problem (LCP) (see sec-
tion 10.1 of [10] for specific applications), where we
are interested in finding a z ∈ Rn such that z ≥ 0,
Mz + q ≥ 0, zT (Mz + q) = 0, with M ∈ Rn×n

and q ∈ Rn given, a sufficient condition for a solu-
tion to exist, and to be found by a modification of an
iterative method, especially of SOR, is that M is an
H-matrix, with mi,i > 0, i = 1, · · · , n[15]; (b) in
fluid analysis, in the car modeling design [16], [17],
it was observed that large linear systems with an H-
matrix coefficient A are solved iteratively much faster
if A is postmultiplied by a suitable diagonal matrix D,
with di,i > 0, i = 1 · · · , n, so that AD is strictly di-
agonally dominant. We consider the following linear
system

Ax = b, (1)

where A is an n × n square matrix, x and b are two
n− dimensional vectors. For any splitting, A = M −
N with the nonsingular matrix M , the basic iterative
method for solving the linear system (1) is as follows:

xi+1 = M−1Nxi + M−1b i = 0, 1, 2, · · · , (2)

Direct methods, based on the factorization of the
coefficient matrix A into easily invertible matrices,
are widely used and are the solver of choice in many
industrial codes, especially where reliability is the

primary concern. Indeed, direct solvers are very ro-
bust, and they tend to require a predictable amount of
resources in terms of time and storage [19, 20]. With
a state-of-the-art sparse direct solver (see, e.g., [21]) it
is possible to efficiently solve in a reasonable amount
of time linear systems of fairly large size, particularly
when the underlying problem is two dimensional. Di-
rect solvers are also the method of choice in certain
areas not governed by PDEs, such as circuits, power
system networks, and chemical plant modeling.

To be fair, the traditional classification of solution
methods as being either direct or iterative is an over-
simplification and is not a satisfactory description of
the present state of affairs. First, the boundaries be-
tween the two classes of methods have become in-
creasingly blurred, with a number of ideas and tech-
niques from the area of sparse direct solvers being
transferred (in the form of preconditioners) to the it-
erative camp, with the result that iterative methods
are becoming more and more reliable. Second, while
direct solvers are almost invariably based on some
version of Gaussian elimination, the field of itera-
tive methods comprises a bewildering variety of tech-
niques, ranging from truly iterative methods, like the
classical Jacobi, Gauss-Seidel, and SOR iterations, to
Krylov subspace methods, which theoretically con-
verge in a finite number of steps in exact arithmetic,
to multilevel methods. To lump all these techniques
under a single heading is somewhat misleading, espe-
cially when preconditioners are added to the picture.

The focus of this paper is on preconditioning
techniques for improving the performance and reli-
ability of Krylov subspace methods. It is widely rec-
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ognized that preconditioning is the most critical in-
gredient in the development of efficient solvers for
challenging problems in scientific computation, and
that the importance of preconditioning is destined to
increase even further. Indeed, much effort has been
put in the development of effective preconditioners,
and preconditioning has been a more active research
area than either direct solution methods or Krylov
subspace methods for the past few years. Because an
optimal general-purpose preconditioner is unlikely to
exist, this situation is probably not going to change in
the foreseeable future.

In general, a good preconditioner P should meet
the following requirements:
(1)The preconditioned system should be easy to
solve.
(2)The preconditioner should be cheap to construct
and apply.

The first property means that the preconditioned
iteration should converge rapidly, while the second
ensures that each iteration is not too expensive. No-
tice that these two requirements are in competition
with each other. It is necessary to strike a balance
between the two needs. With a good preconditioner,
the computing time for the preconditioned iteration
should be significantly less than that for the unpre-
conditioned one.

We now transform the original system (1) into the
preconditioned form

PAx = Pb, (3)

where P is a nonsingular matrix. The corresponding
basic iterative method is given in general by

xi+1 = M−1
P NP xi + M−1

P Pb i = 0, 1, 2, · · · ,

where PA = MP −NP is a splitting of PA.
The preconditioners for solving the modified lin-

ear systems were considered by Milaszewicz[1] who
based his idea on previous ones(see, e.g.,[2-4]), by
Gunawardena et al.[5], by Kohno et al.[6] who ex-
tended the main idea in [5], by Li and Sun[7] who
extended the class of matrices considered in [6], and
recently by A.Hadjidimos et al.[9] who generalize the
most common preconditioners. Many results were
obtained for further preconditioners (see, e.g.,[13-
14]).

In a simpler form, Milaszewicz [1] considered the
preconditioner

P1 =


1 0 · · · 0 0

−a2,1 1 · · · 0 0
...

...
...

. . .
...

−an−1,1 0 · · · 1 0
−an,1 0 · · · 0 1

 ,

which eliminates the elements of the first column of
A below the diagonal. Gunawardena et al. [5] consid-
ered as a preconditioner the matrix

S1 =


0 −a1,2 0 · · · 0
0 0 −a2,3 · · · 0
...

...
...

. . .
...

0 0 0 · · · −an−1,n

0 0 0 · · · 0

 ,

whose effect on A is to eliminate the elements of the
first upper diagonal.

In 1997, Kohno et al.[6] proposed a general
method for improving the modified Gauss-Seidel
method with the modified matrix P = I + Sα, if A
is a nonsingular diagonally dominant Z− matrix with
some conditions, where

Sα =


0 −α1a1,2 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · −αn−1an−1,n

0 0 · · · 0

 ,

they showed numerically that the modified Gauss-
Seidel method is superior to the other methods if the
parameters αi(i = 1, 2, · · · , n−1) are chosen appro-
priately.

In 2003, A.Hadjidimos et al.[9] considered The
generalized (parametrized) preconditioner used in
this case is of the form

Pα =


1 0 · · · 0 0

−α2a2,1 1 · · · 0 0
...

...
...

. . .
...

−αn−1an−1,1 0 · · · 1 0
−αnan,1 0 · · · 0 1

 ,

they parametrized Milaszewicz’s preconditioner by
using the idea in [6] and base our Jacobi and GaussC-
Seidel iterative schemes on the ones in [1] (see also
[4]), sufficient conditions on the α’s are given that
guarantee convergence and the best, in some sense,
set of the α’s is found.

In this paper, we consider the preconditioned lin-
ear system of the form

Ãx = b̃, (4)

where Ã = (I + Sα)A and b̃ = (I + Sα)b. From the
equality

Ã = (I + Sα)A = (I + Sα)(I − L− U)

WSEAS TRANSACTIONS on MATHEMATICS Qingbing Liu

ISSN: 1109-2769 580 Issue 9, Volume 7, September 2008



= I − L− SαL− U + Sα − SαU,

If we apply the Gauss-Seidel iterative method to the
preconditioned linear system (4), then we get the pre-
conditioned Gauss-Seidel iterative method whose it-
eration matrix is

T̃ = (D̃ − L̃)−1Ũ . (5)

This paper is organized as follows. In Section 2,
we present some definitions and preliminary results.
In Section 3, we consider the convergence of the pre-
conditioned Gauss-Seidel method for H-matrix and
derive new convergence intervals of parameters αi

which are compared with that in Theorem 3.4[12]. In
Section 4, we discuss the convergence results for M -
matrix. In Section 5, we will give some new precondi-
tioner. Meanwhile, we give a few numerical examples
to illustrate our results.

2 Preliminaries
We first recall the following: A matrix A = (ai,j) ∈
Rn×n is called a Z-matrix if ai,j ≤ 0 for i 6= j. A
real vector x = (x1, x2, · · · , xn)T is called nonnega-
tive(positive) and denoted by x ≥ 0(x > 0) if xi ≥
0(xi > 0) for all i. Similarly, a matrix A = (ai,j) is
called nonnegative and denoted by A ≥ 0 if ai,j ≥ 0
for all i, j. Let B = (bi,j) ∈ Rn×n, then we denote
A ≥ B(A > B) if ai,j ≥ bi,j(ai,j > bi,j) for any i, j.

Definition 1 A matrix A is called an M− matrix if
A = sI − B,B ≥ 0 and s > ρ(B), where ρ(B)
denotes the spectral radius of B.

Definition 2 A matrix A is an H− matrix, if its com-
parision matrix 〈A〉 = (āi,j) is an M− matrix, where
āi,j is

āi,i = |ai,i|, āi,j = −|ai,j |, i 6= j.

Definition 3 ([8]). The splitting A = M − N is
called H− splitting if 〈M〉 − |N | is an M− matrix.

Lemma 4 ([10]). Let A be a Z -matrix. Then the
following statements are equivalent:
(a)A is a nonsingular M -matrix.
(b)All principle submatrices of A are nonsingular M -
matrices.
(c)All principle minors are positive.

Lemma 5 ([11]). Let A be an H-matrix, then
|A−1| ≤ 〈A〉−1.

Lemma 6 ([12]). Let

βi = 1 +
|ai,i+1|+ 1

|ai,i+1|(2‖〈A〉−1‖∞ − 1)
,

then βi > 1, i = 1, 2, · · · , n− 1.

Remark 7 In Remark 3.3 [12], we know that the
question of whether taking αi ∈ [0, βi) is advanta-
geous is not taken into account. After all, to com-
pute the values of βi, one has to compute ‖〈A〉−1‖∞,
which implies additional work.

Theorem 8 ([12]). Let A be an H-matrix. Then for
any αi ∈ [0, βi), i = 1, 2, · · · , n− 1(βi defined as in
Lemma 2.6), Ã is an H-matrix and ρ(T̃ ) < 1.

Theorem 9 ([12]). Let A = I − Lh − Uh be an H-
matrix, where Lh is a strictly lower triangular matrix
and Uh is a general matrix. Suppose that A = (I −
Lh)−Uh is an H-compatible splitting of A. If for any
αi ∈ [0, 1], i = 1, 2, · · · , n−1, the iteration matrix of
the IMGS method corresponding to A is T h

α = (I −
Lh − SαLh)−1(Uh − Sα + SαUh), then ρ(T h

α ) < 1.
Moreover, if T̂ h

α is the iteration matrix of the IMGS
method corresponding to 〈A〉, then

ρ(T h
α ) ≤ ρ(T̂ h

α ) < 1.

Remark 10 In Remark 3.5 [12], the author are not
sure whether the result of Theorem 2.8 can be ex-
tended to the case αi ∈ [0, βi), i = 1, 2, · · · , n −
1(βi > 1) theoretically and how βi should be com-
puted. Moreover, he gave a example to show that it is
not general the case.

Example 11 Let

A =

 1 0.2 0
0.2 1 0.2
0.1 0 1

 ,

then A is an H-matrix. If we randomly choose α1 =
0.5, α2 = 1.5 > 1, then

1 > ρ(T h
α ) = 0.04050 > ρ(T̂ h

α ) = 0.032

and the comparison result of Theorem 9 does not
hold.

Remark 12 In the proof of Theorem 2.9 [12], the
author use the inequality |T h

α | ≤ T̂ h
α , and T̂ h

α =
(Êh

α)−1F̂ h
α , where (Êh

α)−1, F̂ h
α are nonnegative. but

if αi > 1, this can not ensure that F̂ h
α is nonnegative,
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hence, |T h
α | ≤ T̂ h

α can not hold. Example 4.2 [12]
shows ρ(T h

α ) > ρ(T̂ h
α ). For example, let

A =

 1 0.5 0.6
0.1 1 0.1
0.2 0.2 1

 ,

it is easy to show that A is an H-matrix, by (7), we
have α1 ∈ [0, 1.6368), α2 ∈ [0, 3.3350), we let α1 =
1.5, α2 = 3,

L =

 0 0 0
−0.1 0 0
−0.1 −0.2 0

 , U =

 0 −0.5 −0.6
0 0 −0.1
0 0 0

 .

by direct computation, we have ρ(T h
α ) = 0.2949 <

0.3120 = ρ(T̂ h
α ). From example 4.2 [12], the above

example and the process of the proof of the Theorem
2.9 [12], we conclude that Theorem 2.9 [12] can not
be extended to the case αi ∈ [0, βi).

In Section 3, we present new convergence in-
tervals of parameters αi, which need not compute
‖〈A〉−1‖∞. The further result is obtained which is
much extensive than Theorem 2.8.

3 Convergence theorem for H-
matrix

In this Section, we will consider the preconditioned
Gauss-Seidel method for H-matrices. For conve-
nience, we still use some notions and definitions in
Section 2. We first give two well-known results:

Lemma 13 ([3]) Let A have nonpositive off-
diagonal entries. Then a real matrix A is M− ma-
trix if and only if there exists some vector u =
(u1, · · · , un)T > 0 such that Au > 0.

Lemma 14 ([8]) Let A = M − N be a splitting. If
it is an H− splitting,then A and M are H− matrices
and ρ(M−1N) ≤ ρ(〈M〉−1|N |) < 1.

Lemma 15 Let A be an H− matrix with unit diag-
onal elements, ai,i+1 6= 0(i = 1, · · · , n − 1). Let
u = (u1, · · · , un)T be a positive vector such that
〈A〉u > 0. Define

α′i =

ui −
i−1∑
j=1

|ai,j |uj −
n∑

j=i+2
|ai,j |uj + |ai,i+1|ui+1

|ai,i+1|
n∑

j=1
|ai+1,j |uj

,

then αi > 1, i = 1, · · · , n− 1.

Proof: Let u = (u1, · · · , un)T be a positive vector
such that 〈A〉u > 0. From the definition of 〈A〉, we
have

ui −
n∑

j=1
j 6=i

|ai,j |uj > 0, i = 1, 2, · · · , n− 1.

From the equality

ui −
i−1∑
j=1

|ai,j |uj −
n∑

j=i+2

|ai,j |uj

+|ai,i+1|ui+1 − |ai,i+1|
n∑

j=1

|ai+1,j |uj

= ui−
n∑

j=1
j 6=i

|ai,j |uj +|ai,i+1|(ui+1−
n∑

j=1
j 6=i+1

|ai+1,j |uj).

Observe that

ui −
n∑

j=1
j 6=i

|ai,j |uj > 0, ui+1 −
n∑

j=1
j 6=i+1

|ai+1,j |uj > 0.

Then we have

ui −
i−1∑
j=1

|ai,j |uj −
n∑

j=i+2

|ai,j |uj + |ai,i+1|ui+1

−|ai,i+1|
n∑

j=1

|ai+1,j |uj > 0.

Which is equivalent to

ui −
i−1∑
j=1

|ai,j |uj −
n∑

j=i+2
|ai,j |uj + |ai,i+1|ui+1 >

|ai,i+1|
n∑

j=1
|ai+1,j |uj > 0, i = 1, 2, · · · , n− 1.

Hence we have

α′i =

ui −
i−1∑
j=1

|ai,j |uj −
n∑

j=i+2
|ai,j |uj + |ai,i+1|ui+1

|ai,i+1|
n∑

j=1
|ai+1,j |uj

> 1 i = 1, 2, · · · , n− 1.

ut

Theorem 16 Let A be an H− matrix with unit di-
agonal elements, Aα = (I + Sα)A = Mα − Nα,
Mα = I − L − SαL and Nα = U − Sα + SαU .
Let u = (u1, · · · , un)T be a positive vector such
that 〈A〉u > 0, assume that ai,i+1 6= 0 for i =
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1, 2, · · · , n − 1, and α′i are defined as Lemma 3.3.
Then 0 ≤ αi < α′i, the splitting Aα = Mα − Nα is
an H− splitting and ρ(M−1

α Nα) < 1.

Proof: Let Mα = I −L−SαL and Nα = U −Sα +
SαU . Then T̃ = M−1

α Nα.
Let [(〈Mα〉 − |Nα|)u]i be the ith element in the

vector (〈Mα〉− |Nα|)u for i = 1, 2, · · · , n− 1. Then
we obtain
[(〈Mα〉 − |Nα|)u]i

= |1−αiai,i+1ai+1,i|ui−
i−1∑
j=1

|ai,j−αiai,i+1ai+1,j |uj

−
n∑

j=i+1

|ai,j − αiai,i+1ai+1,j |uj

≥ ui − αi|ai,i+1ai+1,i|ui −
i−1∑
j=1

|ai,j |uj

−αi

i−1∑
j=1

|ai,i+1ai+1,j |uj −
n∑

j=i+2

|ai,j |uj

−αi

n∑
j=i+2

|ai,i+1ai+1,j |uj − |1− αi||ai,i+1|ui+1,

and
[(〈Mα〉 − |Nα|)u]n = un −

n∑
j=1
j 6=n

|anj |uj > 0.

If 0 ≤ αi ≤ 1 for i = 1, 2, · · · , n− 1, then we have
[(〈Mα〉 − |Nα|)u]i

≥ ui −
n∑

j=1
6=i

|ai,j |uj + αi|ai,i+1|ui+1

−αi|ai,i+1|
n∑

j=1
6=i+1

|ai+1,j |uj

= (ui−
n∑

j=1
6=i

|ai,j |uj)+αi|ai,i+1|(ui+1−
n∑

j=1
6=i+1

|ai+1,j |uj)

> 0.
If 1 < αi < α′i for i = 1, 2, · · · , n− 1, then we have

[(〈Mα〉−|Nα|)u]i ≥ ui−
i−1∑
j=1

|ai,j |uj−
n∑

j=i+2

|ai,j |uj

+|ai,i+1|ui+1 − αi|ai,i+1|
n∑

j=1

|ai+1,j |uj > 0.

Therefore, by Lemma 3.1, 〈Mα〉 − |Nα| is an M−
matrix for 0 ≤ αi < α′i(i = 1, 2, · · · , n−1). Namely,
Aα = Mα − Nα is an H− splitting for 0 ≤ αi <
α′i(i = 1, 2, · · · , n−1). Hence, from Lemma 3.2, we
know ρ(T̃ ) = ρ(M−1

α Nα) < 1 for 0 ≤ αi < α′i(i =
1, 2, · · · , n− 1). ut

Remark 17 In Theorem 2.8 [12], for a given matrix
A, the value of βi is determine. We need compute
‖〈A〉−1‖∞, then we compute the βi by (7). But by
Lemma 3.3, we see that αi is computed which is con-
cerned with the vector u.

Example 18 Let

A =
[

1 1
2

−1 1

]
.

It is clear that A is an H-matrix. By Lemma 6, we
have β1 = 10

7 , so the convergence intervals of αi are
[0, 10

7 ). Since u = (4
5 , 1)T such that 〈A〉−1u > 0,

from Lemma 14, we have α′i = 13
9 , then we have the

convergence intervals of αi are [0, 13
9 ). So the con-

vergence interval of parameters αi in Theorem 3.3 is
much wider than in Theorem 2.7 [12].

Example 19 Let

B =

 1 −0.2 −0.1
0 1 −0.1

−0.1 −0.4 1

 .

It is clear that A is an M -matrix, so it is an H-
matrix. By Lemma 6, we have β1 = 3.7188 and β2 =
5.9846, so the convergence intervals of αi, i = 1, 2
are [0, 3.7188) and [0, 5.9846), respectively. Since
u = (1, 1, 1)T such that 〈B〉−1u > 0, from Lemma
14, we have α′1 = 5 and α′2 = 7.3333, then the
convergence intervals of αi, i = 1, 2 are [0, 5) and
[0, 7.3333), respectively. So the convergence interval
of parameters αi in Theorem 3.3 is much wider than
in Theorem 2.7 [12].

Remark 20 By the proof of Theorem 2.8 [12], Ex-
ample 17 and Example 18, we observe that the vector
r = 〈A〉−1e, e = (1, 1, · · · , 1)T , that is, 〈A〉−1r =
e > 0. So we see that the vector r is the special vector
such that condition of Theorem 3.1. So the results of
Theorem 2.8 [12] is the special case of Theorem 3.1.

4 Convergence results for M -matrix
Without loss of generality, we still use the notes in
Section 2 and Section 3, in order to prove our results,
we first give some Definitions and Lemmas.
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Let E be a real Banach space, E ′ its dual and £(E)
the space of all bounded linear operators mapping E
into itself. We do not distinguish between the norms
of these spaces, writing simply ‖ · ‖ in each case.
When E is the n-dimensional real space <n, £(E) is
the space of n× n matrices.

We assume that E is generated by a normal cone
K, i.e., E = K−K where K has the following prop-
erties: (i) K + K ⊂ K, (ii) αK ⊂ K for α ≥ 0, (iii)
K

⋂
(−K) = 0, (iv) K̄ = K where K̄ denotes the

norm-closure of K, and (v) for x, y ∈ K there exists
σ > 0 such that ‖x + y‖ ≥ σ‖x‖. When E=<n, a
generating cone is K = <n

+, the set of nonnegative
vectors, i.e. of vectors with nonnegative entries.

Let K ′ = {x′ ∈ E ′ : 〈x, x′〉 = x′(x) ≥ 0 for all
x ∈ K}. It can be shown that K ′ is also a closed nor-
mal cone generating E ′; see Ivo Marek and D.B.Szyld
[7].

We say that operator A ∈ £(E) has property ”d”
if its dual A′ possesses a Frobenius eigenvector in the
dual cone, i.e. if there exists x′ ∈ K ′ such that A′x′ =
ρ(A)x′, where ρ(A) denotes the spectral radius of A.

When E=<n and K = <n
+, all operators in £(E),

i.e. all matrices, have property ”d”.

Definition 21 Let A = (aij) ∈ Rn×n, A = M − N
is called a splitting of A if M is a nonsingular matrix.
The splitting is called:
(a)convergent if ρ(M−1N) < 1.
(b)regular if M−1 ≥ 0 and N ≥ 0.
(c)weak regular if M−1 ≥ 0 and M−1N ≥ 0.
(d)nonnegative if M−1N ≥ 0.
(e)M -splitting if M is a nonsingular M -matrix and
N ≥ 0.

Definition 22 We call A = M −N the Gauss-Seidel
splitting of A, if M = D − E and N = F , where
D is the diagonal part and −E and −F are strictly
lower and upper triangular parts of A, respectively.
In addition, the splitting is called
(a)Gauss-Seidel convergent if ρ(M−1N) < 1.
(b)Gauss-Seidel regular if M−1 = (D − E)−1 ≥ 0
and N = F ≥ 0.
(c)Gauss-Seidel weak regular if M−1 ≥ 0 and
M−1N ≥ 0.

Lemma 23 ([7]) Let A be irreducible, A = M − N
be an M -splitting. Then there is a positive vector x
such that M−1Nx = ρ(M−1N)x.

Lemma 24 ([10]) Let A ≥ 0 be a nonnegative ma-
trix. Then the following hold:
(a)If Ax ≥ βx for a vector x ≥ 0 and x 6= 0, then
ρ(A) ≥ β.
(b)If Ax ≤ γx for a vector x > 0, then ρ(A) ≤ γ;

Moreover, if A is irreducible and if βx ≤ Ax ≤ γx,
equality excluded, for a vector x ≥ 0 and x 6= 0, then
β < ρ(A) < γ and x > 0.

Lemma 25 ([10]) Let A be a Z-matrix. Then the fol-
lowing statements are equivalent:
(a)A is a nonsingular M -matrix.
(b)There is a positive vector x such that Ax > 0.
(c)All principal submatrices of A are nonsingular M -
matrices.
(d)All principal minors are positive.

Lemma 26 ([18]) Let A be a nonsingular M -matrix
and let Aα = (I + Sα)A = Mα −Nα be the Gauss-
Seidel splitting of Aα, where α = (α1, · · · , αn−1, 1),
0 ≤ αi ≤ 1. If ρ(Tα) > 0, then for any nonnegative
Perron vector x of Tα we have Ax ≥ 0.

Lemma 27 ([28]) Let A1 = M1 − N1 and A2 =
M2 − N2 be weak regular splittings with T1 =
M−1

1 N1, T2 = M−1
2 N2 having property ”d”. Let

x ≥ 0, z ≥ 0 be such that T1x = ρ(T1)x, T2z =
ρ(T2)z. If

M−1
1 ≥ M−1

2 ,

and either (A1 − A2)x ≥ 0, A1x ≥ 0, or (A1 −
A2)z ≥ 0, A1z ≥ 0 with z > 0, then

ρ(T1) ≤ ρ(T2).

Moreover, if M−1
1 > M−1

2 and if N1 6= N2, then

ρ(T1) < ρ(T2).

Theorem 28 Let A be an irreducible nonsingu-
lar M -matrix, Aα = (I + Sα)A = Mα − Nα,
Mα = I − L − SαL and Nα = U − Sα + SαU .
Then T̃ = (I − L − SαL)−1(U − Sα + SαU), for
αi ∈ [0, 1], we have

ρ(T̃ ) ≤ ρ(T ) < 1.

Proof: Let A = I − L − U be an irreducible non-
singular M -matrix. It is easy to show that Aα is also
an M -matrix for αi ∈ [0, 1]. Observe that I − L is
an M -matrix and U is nonnegative. So (I − L) − U
is an M -splitting of A. By Lemma 23, there exists a
positive vector x such that

Tx = (I − L)−1Ux = λx, (6)

where λ denotes the spectral radius of T .
We can write (6) equivalently as

Ux = λ(I − L)x, (7)
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or

λx− λLx− Ux = 0. (8)

We next consider
T̃ x− λx
= (I − L− SαL)−1(U − Sα + SαU)x− λx

= (I−L−SαL)−1[(U−Sα+SαU)−λ(I−L−SαL)]x.

By (8), we have
T̃ x− λx
= (I − L− SαL)−1(−Sα + SαU + λSαL
= (I − L− SαL)−1[−Sα + λSα(I − L) + λSαL]x
= (λ− 1)(I − L− SαL)−1Sαx.
It is clear that I − L − SαL is an M -matrix, so (I −
L − SαL)−1 is nonnegative. Since 0 < λ < 1 and
Sα ≥ 0, thus, we have that T̃ x − λx ≤ 0. From
Lemma 24, we have

ρ(T̃ ) ≤ ρ(T ) < 1.

ut

Example 29 Consider a n×n matrix of A of the form

A =



1 c1 c2 c3 c1 · · ·

c3 1 c1 c2
. . . c1

c2 c3
. . . . . . . . . c3

c1
. . . . . . 1 c1 c2

c3
. . . c2 c3 1 c1

... c3 c1 c2 c3 1


,

where c1 = −2/n, c2 = 0, c3 = −1/n + 2. It is
clear that the matrix A satisfies the assumptions of
Theorem 28. Numerical results for this matrix A are
given in Table 1 and Table 2.

We consider Example 29, it is clear to show that
A is an irreducible nonsingular M -matrix. The initial
approximation of x0 is taken as a zero vector, and that
b is chosen so that x = (1, 2, · · · , n)T is the solution
of the linear system (1). Here ‖xk+1−xk‖/‖xk+1‖ ≤
10−6 is used as the stopping criterion.

All experiments were executed on a PC using
MATLAB programming package.

In order to show that the preconditioned Gsuss-
Seidel method is superior to the basic Gauss-Seidel
method. In Table 2, we report the CPU time (T) and
the number of iterations (IT) for the basic and the pre-
conditioned Gauss-Seidel method. Here GS repre-
sents the restarted Gauss-Seidel method, the precon-
ditioned restarted Gauss-Seidel method is noted by
PGS.

Table 1
Spectral radius of the iteration matrices ρ(T ), ρ(T̃ )

for Example 29
n ρ(T ) ρ(T̃ )
60 0.9471 0.9436
90 0.9642 0.9626
120 0.9729 0.9720
150 0.9782 0.9776
180 0.9818 0.9814
210 0.9844 0.9841

Table 2
CPU time and the number of the basic and the

preconditioned Gauss-Seidel method for Example 29
n IT (GS) CPU(GS) IT (PGS) CPU(PGS)
60 232 0.2500 219 0.0620
90 340 0.1720 327 0.1410
120 446 0.3280 433 0.3280
150 551 3.6870 538 3.2030
180 655 8.5630 642 8.3280
210 758 16.8590 746 16.7030

5 Other preconditioners
In 2002, Kotakemori et al.[22] proposed to use the
preconditioner

P = I + Sm,

where

(Sm)i,j =
{

−ai,ki
, j = ki,

0, j 6= ki,

and ki = min{j|maxj>i |ai,j |, i < n}.
Li Wen [18] gave a counterexample to show that

the result of Theorem 1.1 is not true. For example

A =


1 −0.1 −0.1 −0.1 −0.2

−0.1 1 −0.1 −0.1 −0.2
−0.1 −0.1 1 −0.1 −0.2
−0.1 −0.1 −0.1 1 −0.2
−0.1 −0.1 −0.1 −0.1 1

 , (9)

by computation, A satisfies the conditions of Theo-
rem 1.1, but ρ(M−1

m Nm) = 0.1555 > 0.1497 =
ρ(M−1

s Ns). Hence, the convergence rate of the pre-
conditioned iterative method with the preconditioner
I +Sm is not in general faster than that of the precon-
ditioner I + S.
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In 2005, Li Jicheng [24] considered a new pre-
conditioner

Sα,β =



0 −α1a1,2 · · ·

−β2a2,1 0
. . .

...
...

. . .

0 0
. . .

0 0 · · ·


The author discussed the preconditioned Gauss-
Seidel iterative method for Z-matrices and gave
the comparison theorem between the preconditioned
Gauss-Seidel iterative method and the classical iter-
ative method. Recently, Wang Xuezhong et al. [25]
applied this preconditioner to the H-matrices linear
system and obtained the sufficient condition for the
convergence of the preconditioned Gauss-Seidel iter-
ative method.

To improve the convergence of preconditioned
Gauss-Seidel iterative method, Liu Qingbing and
Chen Guoliang [26] give the two new precondition-
ers

Ŝ =


0 −a1,2 · · · −a1,k1 · · · 0
0 0 · · · · · · · · · 0
...

...
...

...
...

...
0 0 · · · · · · · · · −an−1,n

0 0 · · · · · · · · · 0

 ,

where ki = min j ∈ {j|maxj>i+1 |ai,j |, i < n}.
and

Ŝ1 =


0 −a1,2 · · · · · · −a1,n

0 0 · · · −a2,k2 0
...

...
...

...
...

0 0 · · · · · · −an−1,n

−an,1 −an,2 · · · · · · 0

 .

The authors discussed the convergence of the two
preconditioned Gauss-Seidel iterative methods and
gave some comparison results between the new
preconditioned Gauss-Seidel iterative methods and
the preconditioned Gauss-Seidel iterative method in
[6].

In fact, by the properties of M -matrices, we know
that if A is an M -matrix, then there exists a positive
vector x such that Ax > 0. If we define a nonnega-
tive matrix H as a preconditioner, where each row of
H is nonzero, then we have that HAx > 0. Thus,
if we guarantee that H is a Z-matrix, by Lemma 13,
we know that HA is also an M -matrix. We can ap-
plied the Gauss-Seidel iterative method to HA, fur-
thermore, by matrix splitting theorem, we can con-
clude that the convergence rate of the preconditioned

Gauss-Seidel iterative method for HA is faster than
that of the classical iterative method. By these knowl-
edge, we next give other preconditioners.

Other preconditioners derived from S1 and P1

were considered.
Upper triangular preconditioner. We consider

the upper triangular part of the coefficient matrix A to
be the preconditioner. Namely

H1 =


1 −a1,2 −a1,3 · · · · · · −a1,n

0 1 −a2,3 · · · · · · −a2,n
...

...
...

...
...

...
0 0 · · · · · · · · · −an−1,n

0 0 · · · · · · · · · 1

 .

Lower triangular preconditioner. We consider
the lower triangular part of the coefficient matrix A to
be the preconditioner. Namely

H2 =


1 0 · · · 0 0

−a2,1 1 · · · 0 0
...

...
...

...
...

−an−1,1 −an−1,2 · · · 1 0
−an,1 −an,2 · · · −an,n−1 1

 .

Combination preconditioner. We tried using
a combination of the upper triangular preconditioner
and the lower triangular precondtioner together, lead-
ing to a new preconditioner:

H3 = αH1 + βH2 − I,

where α = (α1, · · · , αn−1, 1)T and β =
(1, β2, · · · , βn)T , αi ∈ [0, 1], i = 1, · · · , n − 1,
βj ∈ [0, 1], j = 2, · · · , n.

In order to validate the above preconditioner, we
consider Example 29, we let c1 = −2/n, c2 =
−1/n + 1, c3 = −1/n + 2, The initial approximation
of x0 is taken as a zero vector, and that b is chosen
so that x = (1, 2, · · · , n)T is the solution of the lin-
ear system (1). Here ‖xk+1 − xk‖/‖xk+1‖ ≤ 10−6

is used as the stopping criterion. In Table 3 and Ta-
ble 4, we report the CPU time (T) and the number
of iterations (IT) for the basic and the preconditioned
Gauss-Seidel method, respectively. Here GS repre-
sents the restarted Gauss-Seidel method, the precon-
ditioned restarted Gauss-Seidel method is noted by
H1GS and H2GS.

Table 3
CPU time and the number of the basic and the

preconditioned Gauss-Seidel method for Example 29

WSEAS TRANSACTIONS on MATHEMATICS Qingbing Liu

ISSN: 1109-2769 586 Issue 9, Volume 7, September 2008



n IT (GS) CPU(GS) IT (H1GS) CPU(H1GS)
60 1318 0.4210 664 0.1870
90 1263 0.6870 638 0.3130
120 1237 1.0470 627 0.5000
150 1221 7.8900 620 3.9690
180 1211 17.0470 615 8.5470
210 1204 29.5930 612 15.1720

Table 4
CPU time and the number of the basic and the

preconditioned Gauss-Seidel method for Example 29
n IT (GS) CPU(GS) IT (H2GS) CPU(H2GS)
60 1318 0.4210 912 0.3750
90 1263 0.6870 878 0.6410
120 1237 1.0470 862 1.0780
150 1221 7.8900 852 5.8910
180 1211 17.0470 846 12.7660
210 1204 29.5930 841 20.7970

6 Conclusions
The development of efficient and reliable precondi-
tioned iterative methods is the key for the successful
application of scientific computation to the solution
of many large-scale problems. Therefore it is not sur-
prising that this research area continues to see a vigor-
ous level of activity. In this paper, we have attempted
to highlight some of the developments that have taken
place in recent years. Among the most important such
developments, we emphasize the following:
(1)Improved robustness, frequently achieved by
transferring techniques from sparse direct solvers
(such as reorderings and scalings) to preconditioners.
(2)Improved performance through the use of block-
ing.
(3)The emergence of a new class of general-purpose,
parallel preconditioners based on sparse approximate
inverses.
(4)The increasingly frequent use of iterative solvers
in industrial applications.

There are many further important problems and
ideas that we have not been able to address in this
article, even within the relatively narrow context of
purely algebraic methods. For example, nothing has
been said about preconditioning techniques for the
special linear systems arising in the solution of eigen-
value problems [28, 29, 30]. Also, we have not
been able to include a discussion of certain graph
theoretically motivated techniques that show promise
and have been given increased attention, known as
Vaidya-type and support graph preconditioners [31,
32, 33]. Furthermore, we have hardly touched on the

very important topic of software for preconditioned
iterative methods.

In concluding this paper we stress the fact that
in spite of recent progress, there are still important
areas where much work remains to be done. While
efficient preconditioners have been developed for cer-
tain classes of problems, such as self-adjoint, second-
order scalar elliptic PDEs with positive definite oper-
ator, much work remains to be done for more com-
plicated problems. For example, there is a need for
reliable and efficient preconditioners for symmetric
indefinite problems [34].

Ideally, an optimal preconditioner for problem
(1) would result in an O(n) solution algorithm, would
be perfectly scalable when implemented on a parallel
computer, and would behave robustly over large prob-
lem classes. However, incremental progress leading
to increasingly more powerful and reliable precondi-
tioners for specific types of problems is within reach
and can be expected to continue for the foreseeable
future.
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