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Abstract: In this article, we develop the ratio processes {Yi (t)} I =12,---,n induced from the mean-

t>0’

field Bouchaud-Mezard model. The limit m) of the long-time average of the ratio process {Y;(t)} _ is studied

t>0

and compared with all others. We shows that a strictly increasing sequence {ak}::1 of the investment

volatilities implies a strictly decreasing sequence {m(}:zl of the limits, given appropriate J, based on both

theoretical and numerical analyses. It reveds a negative correlation between the investment volatilities and the
ratio processes. As an empirical application, this negative correlation can be employed to characterize the
mean-field Bouchaud-Mezard model. Our main result also indicates that an agent whose spontaneous growth or
decrease in wealth due to investment in stock markets is always small will eventually become rich in the mean-
field Bouchaud-Mezard mode!.

Key-Words: Mean-field Bouchaud-Mezard model, Wedth distribution, Ratio process, Volatility, Ergodic,
Long-time average

1 Introduction reference to an earlier work [5], this study
In the nineteenth century, Pareto studied the considers the following stochastic differential
distribution of personal wedth to characterize equation;

the economic status of a country. He found that
the distribution of the personal wealth follows a
power-law distribution [8]. Hereafter, Gibrat .

clarified that the Pareto law is applicable only X(0)>0, 1=12--n, _

in the range of high wedlth [4]. He concluded ~ Where  Bi(t), B,(t), -~ are mutually independent
that the personal wedth distribution in the standard Brownian motions, and the investment
middle wealth range follows a log-normal volétility o; describes the spontaneous growth or
distribution.  Recently, Drvagulescu and decrease of wedth due to investment in stock
Y akovenko showed that the wealth distribution
at very low wealth is essentially exponential [3].

dX. (t) = o, X, (t)dB (t) +%§n:{ X, () = X (t)}dt,

k=1

. J
markets as well as the positive constant — , the
n

Although, no consensus has been reached on amount of wealth that all agents exchange with all
the distributions in the middle and low-wealth others.

ranges, the distribution in the high-wealth range

is today generally believed to follow a power- Since investment volatility o, depends on
law tail [10].

To model the high wealth range, Bouchaud and the ith agent, the model considered herein
Mezard introduced a linear mean-field model [1],
borrowed from the physics of directed polymers, to
describe the dynamics of the individual wealth among agents. The earlier cited work neglected
X;(t) in a given society of n agents [9]. With

incorporates fluctuations of personal wedth
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this consideration [5], and assumed the

investment volatilities to be identically equal.

Now, let
Yi(t):&’ i=12---.n.
Z&m

The weadlth ratio Y,(t) is considerable because

Y,(t) isthe value of personal wealth normalized

to overall wealth and has a value of between
zero and one. A study of the arrangement in

sizes between {X(t), X,(t),---, X, (t), X, (1)}
clearly shows that Y/(t) >Y,(t) if and only if
X; (t) > X, (t) . With the aid of being bounded and
order-preserving, we take Y, (t) as the object of this

study. And we call {Y/(t)}_, “the ratio process

induced from the mean-field Bouchaud-Mezard
model” in this article.
According to the proof of Theorem 2.2

dsawhere [5],  (%(0),Y,(t), Y, () is

ergodic for n> 2. That is, there exists the unique
invariant probability measure 7(-) on S such that

forany f el(r),

[Lrg%f; f(Y.(8),-+,Y,1(8))ds

= (o Yo ),

D)

where
n-1

S = {(yl’ y2’“" yn—l) € (O’l)n_l . Z yk <1}
k=1

n-1 n-1
Because Y,(t)=1-) Y, (t) and y, =1-> .
k=1 k=1

plainly, (1) admits

o1
lim=

t—> o t

:-[S f (y11"' v Yno1s yn)dﬂ-’

IO R MORACILE
0 @

for any bounded continuous function f that is
defined on Sx(0,1) . The subtle distinction
between Egs. (1) and (2) should be noted.
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Since a risk-seeking agent may prefer a
high-grade volatility, while a risk-averse agent
prefers a low rating, whether Y, (t) of a risk-

seeking agent exceeds that of a risk-averse
agent for a long time is of interest. With this

motivation,
n>2and0<o,<0,<:-<0,,<0,

are assumed. The purpose of this article is to
study the arangement of {m,m,,---,m} in
sizes, where

m, :JS ydz, fori=1,2,---,n-1,

n-1

m, =1-> m,.
k=1

Our main result is that

m>m,>..>m_ >m,
provided

.. 994n’s* ;
15min{c} o7 :1<i<j<n} @

Notably, the interpretation of the main result in
economicsis as described in Section 5.

This article is outlined as follows. Section
2 presents the main result obtained by
theoretical analysis. Section 3 performs a
numerical study to verify our main result.
Section 4 discusses a conjecture that condition
(3) on J may be unnecessary. Section 5 draws
a conclusion.

2 Theoretical analysis
For smplicity of showing main result, we introduce
the following notations for each fixed i, 1<i < n;

U = _[S yrdr,
Vi = IS yi3d7T7
W, = JS yi4d7T’
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In addition, throughout this section, we denote y by
(yl! Yoo yn) = (Yl(o)’ o !Yn—l(o)!Yn (0))

2.1 Lemma of showing main result
In order to show our main result, we need the
following two crucia lemmas.

LemmaZ2.1.1

2 2
Assume n>2 and Jg{aﬁ,%,%:lsiSn}.

For each fixed i, 1<i <n, we have the following
evaluations (i)-(iv);

(i)
1 1 1,
m:EJrjf‘_jG‘ui' (4)
(i)
TR {gmig-—iaz\/} (5)
i 2J—O'i2 n J i J i Vi
(iii)
J 1 2 3 5
W=J_Gi2{ﬁui+3h—3oivvi}. ©)
(iv)

ISSN: 1109-2769

Feng-Rung Hu

+§n(§jak J, vy
= 3J— I y'yk(za' y'j !
3J6(—7k J;viyie
) 33j_0k [ y2y
Proof:

For any fixed i, 1<i<n, it is clear that Y,(t)

satisfies the following stochastic differential
equation;

av,(t)

— Y, (0)dB (t)—wt)[iokvk(t)dsk (t)j

8
+= dt JY(t)dt+Y(t)ZaY(t)2dt

k=1
—ain(t) dt.
Now, for any fixed positive integer m, we take
f (Y Yoo ¥a) =Y. Applying Ito formula and
(8) to evaluate f(Y,(t),Y,(t), .Y, (t))=Y ()"

first, and then taking the expectation on the both
sides, finally, differentiating the both sides with

respect tot gives

Ji(O"=— ™ LY (O™ —mIE Y ()"

E, {Yi(t)miokaa)Z}

k=1

N m(m-+1)
_ m2 Gi2 EyY| (t) m+1.

Integrating both sides of the formula above with
respectto t gives
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E,Y ()"
mJ t m— t m
_ Tjo E,Y,(s)" " ds-mJ jo E,Y,(s)"ds

m(m-1)c? n
+fj0 E,Y,(s)"ds

N WJ’; E, {Yi (s)mzn: aszk(s)z} ds

t m+ m
—~ mzaizjo E,Y.(s)""ds+ y".

We divide the both sides of the formula above by t,
and then let t approach to infinity. By using (2), it
yields (4) (5) (6) for m=1, 2,3, respectively.
Toshow (7), let (Y, Yy, Y, )=Y,Yi . where
k=i.We apply Ito formula and (8) to evaluate
f (Y1), Y,(), .Y, (1) =Y, ()Y, () first, and

then take the expectation on the both sides, finally,
differentiatethe both sideswith respect tot gives

— E N OY D) ==EY, )" +— E y Y (Y, (1)

_(3‘J _O-kz) Ey ()Y, (1)?

+6E, {Yi DY O2Y oY, (t)Z}
1=1
- 60, E,Y, ()Y, (1)’
- 3Giz Ele (t)zYk (t)zl
Integrating both sides of the formula above with
respect to t, and then dividing the both sides by t,
finaly, letting t approach to infinity gives

+(3‘]—GJ‘ ylykdﬂ'-

+—2ISyiyE(Za.2yfjdﬂ

I y,yidz

3J—

3J GJ.y'Z

We add up the both sides of the formula above from
k=1to k=n with k=i first, and then add

o’ jS y>d 7 to the both sides to obtain (7) because
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= Y [ofyyidr+o?] yid

k=1,k=i
This completes the proof.

Lemma?2.1.2

Under the assumption of Lemma 2.1.1, if
O<o,<0,<--<0,,<0, and
2__4
J> - 29942 Tn — , then we have
15m|n{c7j -0 :1<i< < n}
the following evaluations (i)-(ii) for each fixed
i,j, 1<i<j<n;

(i)
4] (0-2 —Giz)

J

nZ(ZJ —6]-2)(2\] —Giz)

1
+3{fi—fj+o,—oj},

{46V+2n u—39|——f}

99464
15J

‘f—f +0 - o‘<

Proof:
By (4), itisnot hard to see

4] (61-2 —O'iz)
n2(2J —612)(2\] —Giz)

m_m]:

1
+3{fi -f,+0 —oj}.
This establishes the first part of this Lemma.
Obvioudly, (7) gives
fi— 1, =GV —szvj
JGJ-ZUJ- Jolu
+ 5 _ | I2
n@J-o;) n@BJI-o) 9)
+1 (1) = 1)+ 1L,30) - 1,())
+15(0) = 15(1) + 1, 30) = 1,3)),

where
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J- Yy dm,

: 30 ol
(i) = — 1k
=3 3 j Y
In order to evaluate |1(I) for details, we do a

routine computation as above by employing (8)
and Ito formulato obtain that for k =1,

CEXOV0 =2 {EY®+EX0)
—2JE, X ()Y, (1)
+6E, {Yi(t)Yk(t)Zn)GfY. (t)z}
- 20¢E Y, (t)Y, (t)*
- 2(yi2 EyY| (t)zYk (t)’

which implies

E,Y; (1)Y, (1)

_ ijt{Ein(s)+ E,Y, (s)}ds

n 0

- 23] E,Y

+ 6I; E, {Yi (s)Yk(s)Zn: o 2Y, (s)z}ds

i (s)Y,(s)ds

—Zokz.[OtEin(s)Yk(s)zds

t
- Zaizjo E,Y ()Y, (s)ds+ vy, y,.
By (2) and (4), we obtain
.[S yiyidz

m, + m,
2n

3 n
5_'-8 Yi Y« (lz_l Cf'znydﬂ

2 2
O 2 Oy 2
_TJ-S y ydx _TJ-S Yy dr

1
= n? * T
where
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f.+ f, —Gizui —szuk
fik = 2nJ

3 S o2
N d
] ISY.yk(;G| \ j 43
2
o.
_le.g YiZka”

2
Oy 2
__J IS Yy, dr

Therefore,

(10)

ZJGJ-2
n*(3J —c?)

J

2Jo’

BJ-0?)

+5;,

() -1,(1) =
(11)

where

n 2Jo? n 2Jo?
§= 2. N DY 5 T
K re N8I — ) ktre N(3J — Uk)

Itisclear that
2
Ir < A T2
! 2nJ 23 2]

2, lul<1, n>2,

dueto
fi|<ol, |0'i2|£0
(Zn: G|2 ylszﬂ:
=1
2

O
J

Sanz,

.[g y’y.dz

2
O « 2
‘J—J.S yiyedrz
Since
994n°c*
15min{c7.2—ai2 1<i<j< n}
2__4
994n;7 > 262,
150

J>

we have

(12)
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1 2

2J-c2 3J° (13)
1 2

3)-c? 5 (14)

We always keep (12) (13) (14) and n>2 in
mind to establish the inequalities (15)-(26)
below.

On the other hand, we use

ILS

evaluate |§j| asfollows.

2Jo}
k= lk¢| n(3‘] o ) Ik

s 2Jo;
+ — I
2 n@BJ-o2) *

k=L k]
2
9

5| <

(15

2l & 2)o;
<2 -
n@J-oy)
2J

2 K=1,ki
9on2j( 2Jo? j
2

902 &  23o7 |
k1 N(3J _Uf)|
<
J 3J-o
4
S360‘n
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2404

[1,30) = 1,())[ < (16)

1,6~ 1,())] < 22,

(17)

1,0~ 1,())| < 12" .

Moreover, from (4) (5), we get

(18)

B
n(2-o?) "

I{glJii}

t =
2) -o,
{1 f —laizu-
J

2] }
J e

(19)

where

+

Note that

(20)

+
2(23-07)

902 602

T 2)-062 3
Anaogously, from (4) (5) (6), we have

<
2J—c72

2J?
n*(21-o?)(J -0

S

n(J —GiZ;EZJ —ovf){E

J
2
(b ta]
J J

nz(J—af)(ZJ—of){

V. =

+k, 21
) (21)

where

k]_

J- G

9-—<

+
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Also notice that

K

2 3,
—N—-—0o W
3" 3

J-o

Eg—ﬂazv
RGN

“n(0-0?)(20-07)

lf__l 2
J ' J

(22)

+ f ! + 4
n(J-c?)|23-07 n(23-02)
106> 607 160°
< + = .
J J J
By (219) (20) (21) (22) (23), we have

J(szuj _ ‘]Gizui
n(3J —sz) n(3J —Giz)
B 232612 . chjztj
- n*(2)-02)(33-07) n(33-0?)

B 2)%c7 B Jo'’t
n*(2J-67)(33-67) n(31-07)
N 2)%c7
n*(21-o7)(d-07)
B ZJZGJ-Z ok
(23-07)(3-07)
B —4\]361.2
" (3-o7)(23-0])(39-07)
4\]3c7i2
n*(J-07)(23-07)(33-07)

+o’v -0y,

rarks (23)

+

+W,
where

Jaizti ‘Jo_izti
n(3.J —O'jz) - n(BJ —O'iz)
Plainly, by (14) (20) (23), we have

W=

2 2
+0o°k —cyjkj.
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126¢ 326! 17207
wj <=0 4 2200 _ 2100
5J J 5J
Therefore, (11) (24) gives

‘JO-JZUJ B 'Jo-izui e
n(3J—012) n(3J—O'i2) !
+1,(0) = 1,(1)

B —4J3sz
(o2 o))
4J3O'i2
n3(J—Gi2)(ZJ—Gi2)(3J—O'iz)
. 2o}  2Jo}

n3(3J—012) n3(3J—Gi2)
+§, +wW
B —ZJG?
“w(1-ar)(21a1)
N 2Jo]
n*(J-o7)(23-07)
+§, +W,
which implies

2
Vv, =0}V,

+

4o,
n*(J —GZ)CEZJ —az)+|s“|+|w|
4o , 2080,
" n’(J-07)(23-02) 5I
.20, 2085, 6340,
< + = ,
5]  15J

[Fl<

(24)

3J
where
Jolu

- Joju, - +oV —o’v,
n(3J—O'J-2) n(3J—0'i2) e

+1,3) = 1,())-
By (16) (17) (18) (24), we get

£ = £ | < [F|+1,0) = L3 +1:0) - 15()))
+[1,() = 1,())|
_ 6340 +6oo;‘ _ 8l4s?
15 5]  15]

(25)
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On the other hand, by the definition of o in the
first part of this Lemma, we have

[ -0;|<lo|+|o]
2
32(2 JG_"GIJ(%f ) (26)

125
J )

<

dueto
| Giz | < O-f?
‘2\] —Giz‘ " 2)-o?’
4oy |< 4o,
207
n

-39,/ <30,

2
<o,

2
<o,.

=
n
Combine (25) (26), we obtain

8l4c" N 1207 9940,

15 J 15J
This compl etes the proof.

‘fi—fl.+o|—oj‘§

2.2 Showing main result

In order to present our main result in the theoretical
framework, we conclude it as the following
Theorem 2.2.1.

Theorem 2.2.1
Under the assumption of Lemma 2.1.1, if

0<o,<0,<:<0,,<0, and
An’c !
J> . 299 20”_ - , then
15min{c; -0/ :1<i< j<n}

m>m,>-->m,, >M,.

Proof:
Inlight of Lemma2.1.1 and Lemma2.1.2, for
any fixed i, j, 1<i< j<n,weobtain
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~ 4J2(Gj2—6i2)
J(m _mj)_ nZ(ZJ —012)(2\] —Giz)
+{fi - fj +0 —Oj}
N 4J2((7]2—O'i2)
- n2(2J —Gf)(ZJ —Giz) 27)
_9940;1
15J
zn—lzmin{af—of 1<i<j<n
_9940;11
15

On the other hand, since J satisfiesthe

condition (3) and by (27), we get
J(m-m)>0,

which establishes m >m; for any fixed i, j,

1<i < j <n.Inconseguence, we have
m>m,>-->m, >m,.

This completes the proof.

3 Numerical study

For the reason that the visualization is becoming
increasingly popular as a manner of enhancing one’s
understanding of a stochastic differential equation,
we perform our main result for n=2 by numerical
analysisin this section.

Now, assume o, =0.2, 0,=0.6, J=110,
X,(0) =40000, X,(0)=60000. It is trivid that
J =110 satisfies the condition (3). Now, the mean-
field Bouchaud-Mezard model becomes

dX, (t) = 0.2X,(t)dB, (t) + 55{ X, (t) — X, (t)} d,
dX, (t) = 0.6X, (t)dB, (t) +55{ X, (t) — X, ()} cit.
Refer to [2][6][7], we take a sample size N = 7000

and atime mesh 10°° to run the simulation. We use
the method of the Euler approximation to generate

an approximate sample path of Y,(t) as depicted in
Fig. 1, where Y,(t) is obtained by the value
1-Y,(t).
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(HE= S
045+

0.4
L
[t} 100

Y10

I I 1 I \
3000 4000 5000 000 o0

time ¢

I
2000

0B

D& |
045 . s s ; . : .

1000 2000 3000 4000 a000 G000 7000
tirre ¢

Fig. 1 The sample paths of Y,(t) and Y,(t)
plotted versus t

¥l

The average 1ZYl(k) is computed and
Nz

compared  with 1ZYZ(k) recursively  until
nia

n= N. Theresult isplottedin Fig. 2.

=
~d
d

o
m

Lang-time average
!

04
0

Larigtime s erage

2710 3610 4510 5410 B310 7000

Sample size of time

1o 910 1810

Fig 2. The comparison of the long-time
averages based on the datain Fig. 1.
The blue solid line represents the long-

timeaverageof {Y,(t)} _, ., thered
dash line represents the long-time
average of {Y,(t)}

t>0

This simulation demonstrates conclusively that

19 19
Wé\ﬁ(kbﬁé\é(k),

which coincides with our main result.
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4 Discussion

In this section, we address a conjecture that the
condition (3) on J may be unnecessary. Indeed,
for n=2, it is valid that the stochastic differential

equation of Y,(t) satisfies the following;
dy,(t)

= ol +o2Y, () (1-Y, (1)) dw/(t)

+Edt—JYl(t)dt

+Y,() (1-Y,()) {03 (1-Y,(1)) -
where W(t) = 0,B,(t)—0,B,(t)

2 2
\/61 +0,

Brownian motion. It is well-known that Y,(t) is

ergodic and the invariant probability measure 7 ()
has the following probability density function;

o2y, ()} dt,

is a standard

202 201

(1 y 0'1 +C72

C
|0(y)2 y
G

(y) — o‘l +c72 (28)

where C isthe normalization constant and

p(y) = exps— 2J2 T Jz :
(Gl+o-2)y (61+62)(1_y)

By (28), we have

m = J.S y,d7

1
= [, yr(y)dy
Cao,
cl+ol’

(29)

where
262 2

0'1 2
o= [y Wy TE p(y)oy.
On the other hand, we have

m, = IS y,dz

= [{a-y)z(yay
Ca,
Col+o?’

(30)

where

202 201

o= [yt -y p(y)ay.
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Assume o, <o, . Now, by (29) (30), to show

m > m,, it sufficestoclam o, > a,.
Let t :%— y, then the integration by change
of variables gives

2 2
205 207

1 2,52 1 2 22
a,= [y (@-y) T p(y)dy

(31)
- _[_055 (0.5—-t)a(t) p(0.5-t)at,
where
20‘22 2 2012 B
a(t) = (05-1)"" (0.5+1)%
Similarly,
20'22 ) 20_12 B
1 (o2+02 02103
“zzfoy( P -y piy)dy )

- j_ojs (0.5+t)a(t) p(0.5-t)at.
According to (31) (32), we obtain
o, —a,=-2[ " ta(t) pO5-t)dt

~ 2 j:'sta(t) p(0.5—t)dt
+2[ “ta(-t) pO5-+t)ct

0.5
=2 jo t{a(-t)-a(t)} p(0.5+t)dt.
Notice that we use p(0.5+t)= p(0.5-t) for
0<t<0.5 to establish the last equality of the
formula above.
It remainsto claim
[ “t{at-t)-a()} pO.5+t)dt > 0.
To show thisclaim, it sufficesto prove
a(-t)—a(t)>0for 0<t<0.5.
Since
203 B 202
a(-t)—a(t) = (0.5+1)" "% (0.5-t)% "
20% 2 2612
—(0.5-t)%"  (0.5+t)% "
2((75—0‘212) 2((75—0212)
_ (05+t) #™2 —(0.5-t) "
- 2c7§ 2c7§

(0.5+1)7 "7 (0.5 1)

-2

and
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2 2
2((72 -0, )
2 2
o, +0;

we obtain a(-t)—a(t) >0 for O0<t<0.5. This
turns out thet if o, <o,, then m > m,. However,

in this case, we do not need the condition (3) on J.
This arises the conjecture that the condition (3) may
be unnecessary for n>3 . But showing the
correctness of this conjecture appears to be not so
easy. It is left as an open problem for the further
study.

0.5+t >0.5-t, >0,

5 Conclusion

This study shows that a strictly increasing

sequence {o,},  of investment volatilities

implies a strictly decreasing sequence {”‘K}E:y
given appropriate J, based on both theoretical
and numerical analyses. The simulation yields
conclusively the same result as obtained by
theoretical analysis. It reveals a negative
correlation between the investment volatilities
and the ratio processes. As an empirica
application, this negative correlation can be
employed to characterize the mean-field
Bouchaud-Mezard model.

On the other hand, our main result has the
following interpretation in economics. Since the

long-time  average %j;Yi(s)ds must

converge to m as t tends to infinity, for any
given positiveinteger N and o, <o, we have

1
lim =

toowo t

t
N(Yi(s)—Yj(s))ds: m, - m, > 0.
Hence, for t large enough, it gives

[ (Y(8)-Y,(s))ds >0,
which together with the mean-value theorem for
integrals prove that Y, (&) > Y, () for some
Ee(N,t) . Thus, we immediately obtan
Xi(&)> X,(&) for some &e(N,t). This

indicates that the wealth of an agent who
prefers a high volatility becomes smaller than

Issue 6, Volume 7, June 2008



WSEAS TRANSACTIONS on MATHEMATICS

that of an agent who prefers alow volatility for
a long time. This interesting result gives a
sufficient condition for becoming arich agent in
mean-field Bouchaud-Mezard model. An agent
whose spontaneous growth or decrease in
wealth due to investment in stock markets is
always small will eventually becomerich in the
mean-field Bouchaud-Mezard model.
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