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Abstract: - The equations of ultrasonic wave propagation in Cartesian coordinates are functions of 27 partial 
displacement derivatives, which first derived and then transformed into cylindrical coordinates. The new 
obtained functions are functions of 27 partial displacements of first and second order derivatives in cylindrical 
coordinates too and they will be linearized using a perturbation method based on the Taylor series expansion. A 
displacement wave, which propagates in a body, composed of two general part; static displacement part, and 
also small dynamic displacement part. Happening of the small dynamic displacement of a particle around its 
static situation, Taylor series expansion can be written around this point. Using this determined static situation 
and considering only the two first components of Taylor series expansion, the equations of motion will be 
linearized. Tremendously lengthy algebraic operations involved in the derivation and linearization process, all 
of the mathematical manipulations are performed using Mathematica. 
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1   Introduction 
One of the most useful nondestructive methods for 
stress analyzing, is using Ultrasonic wave 
propagation in bodies, which is based on difference 
of wave propagation properties in different stress 
fields. Using theoretical methods the relation 
between velocity of wave propagation and strain 
(stress) value can be obtained.  
Considering the importance of this object many 
scientists are focusing on theoretical and 
experimental stress analyzing methods with 
Ultrasonic waves.  
Biot[1] in 1940 was the first person who considered 
the subject scientifically. Hughes and Kelly [2], 
Henneke[3] and Green[4] are the other pioneers of 
this method. The most perfect form of equations 
governing the wave propagation in strained (stressed) 
bodies that ever obtained is named general motion 
equation. 

The equations of wave propagation in isotropic 
elastic solids in Cartesian coordinates have been 
derived by several authors, ether in tensorial notation 
[5] or matrix notation [4].  
The basic concepts and essential expressions used in 
deriving the equations of wave motion are presented 
by Murnaghan [6] for the case of finite deformation. 
In this case the initial and final coordinates of a 
material point in the undeformed and deformed 
states respectively cannot be interchanged, as 
opposed to the case of infinitesimal deformation.  
The equations of motion obtained in Lagrangian 
coordinates are non-linear partial differential 
equations of several variables.  
Obviously the non-linear equations are of little use 
in applied sciences.  
The equations of motion in Cartesian coordinates 
may be used for the case of one-dimensional solids 
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(bars), two-dimensional solids (plates) or three-
dimensional prismatic solids.  
However, for curved objects such as rods and 
cylindrical shells, the equations may be either 
derived basically in the cylindrical coordinates or 
transformed from Cartesian coordinates into 
cylindrical ones.  
A survey of the literature reveals that many 
researchers have experimented on acoustoelastic 
effects in objects of cylindrical shapes.  
Ultrasonic measurements have been made on a set 
of steel products including cylindrical forgings and 
railroad wheels, as done by Deputat and co-workers 
[10,11] , Murayama et al. [12] and Clark et al. [13] 
Residual stresses in stainless steel pipe induced by 
welding processes are determined using longitudinal 
and Rayleigh waves by Talana et al. [14] .  
The acoustoelastic method has been applied to 
obtain the residual stress distribution in a shrink fit 
specimen of steel by Kobori and Iwashimizu [15].  
In situ measurements of biaxial stresses in pressure 
tanks and water pipes have been carried out by 
Fukuoka and Toda [16] using oblique-incident shcar 
waves polarized in the horizontal direction.  
Critically refracted longitudinal waves have been 
used to determine the residual stresses in ductile 
iron round bars by Srinivasan et al. [17] and also in 
tempered steel piping samples by Leon-Sala- manca 
and Nixon [18].  
Residual stress evaluation in turbine shafts as well 
as applied stress evaluation in screws and bolts has 
been carricd out using guided shear and Lamb 
waves by Wilband et al. [19]. 
In recent years more effects and more investigations 
are arranged in this field, for example stress, strain 
determination and texture using of ultrasonic 
velocity measurements is studied by MacDonald 
[20]. Also Finite Element Modeling of Transient 
Ultrasonic Waves in Linear Viscoelastic Media is 
studied by Stucky et al. [21].  
Aiello et al., also, have an investigation in finite 
element analysis of elastic transient ultrasonic wave 
propagation for NDT applications[22].  
Cannas et al. have also a new model of  neural NDT 
by means of Reflected Longitudinal and Torsional 
Waves Modes in Long and Inaccessible Pipes[23].  
Compact ultrasonic beamformer based on Delta-
Sigma modulation, is a sample of new studies in 
ultrasonic field which is done by Lie et al. [24]. 
In the present paper, an analytical approach to the 
problem is presented.  
The equations of wave motion are first rederived in 
Cartesian coordinates in a new compact and concise 
form in order to save space and then transformed 
into cylindrical coordinates and finally linearized 

using a simple perturbation method based on the 
Taylor series expansion.  
Because of the tremendously lengthy algebraic 
operations involed in the derivation and 
linearization process, and also the huge volume of 
the mathematical manipulations in the present work, 
all of the mathematical manipulations are performed 
using a computer software package which is named 
as Mathematica [8].  
 
 
2   Problem Formulation 
The principle of acoustoelastisity is based on the 
deflection of wave-velocity changes by a change in 
internal stress field.  
When ultrasonic waves traverse a stressed body, the 
total displacements of any particle consist of a static 
displacement (due to the stress) and a dynamic one 
(due to the wave propagation).  
In this paper the goal is to derive the equations 
relating ultrasonic wave velocities to the strains (and 
hence stresses) objects.  
In order to derive and analyze the required 
relationships for different bodies, the equations of 
particle motion should be expressed in cylindrical 
coordinates or another form such as spherical 
coordinates. 
 These equations in isotropic elastic solids for 
limited deflections have been derived by several 
authors [6], using tensorial notation in a continuum 
mechanics media [7] and supposing Cartesian 
coordinates , the motion equation 
component in 1 direction (u-direction) derived as: 
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Where 0ρ is density of the body before deflection, 
(1, 2, 3) are principal direction in Cartesian 
coordinates system, (,) is the partial derivative and  

 is the component of displacement in i direction. iu
The equations of motion in the other two directions, 
2 and 3 can be obtained by a circular permutation of 
the subscripts 1, 2 and 3 in equation (1). 
There are 27 partial derivatives( ) 
of displacement functions in each of these non-
linear partial differential equations.  

33,32,11,1 ,...,, UUU

These equations are achieved in Cartesian 
coordinates system and they could be derived in 
other coordinates system.  
Here, because of the main purpose of the paper, the 
relation between Ultrasonic waves velocity and 
strain (stress) in cylindrical shells, the motion 
equations convert to cylindrical coordinate system.                 
 
 
3   Problem Solution 
3.1    The Principals of Transforming From  
Cartesian Coordinates System in to Cylindrical 
As it mentioned before, the cylindrical coordinates 
system is proper to derive the properties of 
cylindrical and cone shells which have curvature in 
one direction and because the equations of motion 
are functions of partial first and second order 
derivatives, we need to change them from Cartesian 
into cylindrical coordinates system.  
By using the relation between independent 
parameters in cylindrical coordinates (θ , z) and 
Cartesian coordinates(x, y, z), transforming relations 
are determined. Because of writing in tensorial form 

in many equations, the triplet ( ) is used 
instead of (x, y, z) [7].   

321 ,, xxx

The relations of a point coordinate in Cartesian and 
cylindrical systems may be written as below;  
 

,cos1 θrx =  

,sin2 θrx =  
zx =3  

 
And so the variables of cylindrical coordinate 
system are as follows:  
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And also: 
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So where  is a function of first order partial 
derivatives in Cartesian coordinate, by using   the 
chain rule of differentiation we can derive the first 
order partial derivatives in cylindrical coordinate as 
follow:  

f
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Substituting the above values in this equation we 
can write: 
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At the way the principal of other first order partial 
derivatives may achieved: 
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For deriving the second order partial derivatives 
principals in cylindrical coordinate system, we 
suppose that  is a function of second order partial 
in Cartesian coordinate system, so we have: 

f
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Now using equation (3), 2

2

1
x

f
∂
∂

 in cylindrical 

coordinate system may be written as follows: 
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Substituting the value of
1x
r

∂
∂

, 
1x∂

∂θ
and 

1x
z

∂
∂

 in 

above relation and summarizing the equation we 
have: 
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And for the other instance 
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  in cylindrical 

coordinate system will be: 
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Substituting the value of
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summarizing the equation we have: 
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And at the same way all of the 27 partial derivatives 
may be obtained.  
By substituting these partial derivatives in Cartesian 
motion equation, the cylindrical form of motion 
equation will obtained.  
And also motion equation in other direction of 
cylindrical coordinates ( zuu 00 , ρρ θ  ), will be 
derived. Each of these motion equation components 
in cylindrical coordinate system are contain of 27 
partial derivatives of first and second order.  
Due to the tremendously lengthy form of the 
resulting equations, however, they cannot be 
presented here in their original form, because of the 
limited space. Nevertheless, it is possible to change 
their form to make them shorter.  
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To accomplish this, the following change of 
notation is adopted:  
 

)3,2,1(),,( →zr θ    
 
And by using tensorial notation in a continuum 
mechanics media [7] we will have: 
 

,1uur = ,    
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3.2     Linearization Process in Cylindrical  
Coordinate System  
Motion equations in cylindrical coordinate system 
are equations with nonlinear partial derivatives 
which for extension and solving some special 
method should be used.  
To accomplish this, cylindrical forms of motion 
equations are changed to linear form using Taylor 
series expansion around the displaced static 
situation.     The total displacement at any moment 
at any point in the elastic medium is composed of 
two parts: the static part caused by the applied stress 
and the dynamic part due to the propagating stress 
wave.  
So, Assuming a low amplitude plane wave 
propagating in an initially isotropic elastic medium, 
the displacement components in cylindrical 
coordinates can written as:  
 

[ ] 3,2,1,)(exp =−+= nxktiAmau jjnnnn ωη   
(5)  
 
Where  are the total displacement components 

(  ,  , ) along the initial coordinates 
nu

1u 2u 3u nna η,  

are the principal strains( 1η  , 2η  , 3η ),  are the 

direction cosines of the polarization vector(  ,  

, ), A is the amplitude of the wave, 

nm

1m 2m

3m ,1−=i  
ω  is the circular frequency of the wave,  is the 
time,  are components of the wave vector (  

,  , ) and  are the current coordinates (  

,  , ), related to the initial coordinates ; (  

,  , ) and at this equation the summing 
convention refer to the dummy index 
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Short form of equation (5) is as:     
 

d
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s
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Where is static displacement and 

 is  the small 
dynamic part of displacement.  

nn
s
n aU .η=

)](exp[ jjn
d
n xktiAmu −= ω

The first term in equation (5) denotes the large static 
displacement  of an initially isotropic medium 
subjected to a triaxial strain (stress) field.  

s
nu

The second term represents the very small dynamic 
deformation  due to the elastic plane wave 
propagating through the then anisotropic medium, 
because the isotropy in wave propagation is already 
removed by the applied strains (stresses). 

d
nu

 The first sentence of equation (5) is supposed from 
initial coordinates without any deformation 
(Lagrangian coordinates), but the second term is not 
so and for transferring of this part to the initial 
coordinates we have: 
 

jjj uax +=  
       
In this equation the components of displacement 
vector  related to the initial coordinates  as 
bellow:  

ju ja
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(Summing convention dose not refer to j ), 
So: 

jjj ax )1( η+=                                  
(Summing convention dose not refer to j )           (6) 
 
The components of the wave vector ( ) may also 

be written in terms of the wave number ( k ) and the 
direction cosines of the wave normal ( ) as: 

jk
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λ
π2

             (7)  3,2,1=j
 
Where λ  is the wavelength.  
Substituting from equations (6) and (7) into 
equation (5), the three components of the total 
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displacement (  ,  , ) in cylindrical 

coordinates related to strain components (
1u 2u 3u

1η  , 2η  , 

3η ), the direction cosines of the wave normal 
 and the direction cosines of the 

polarization vector(  ,  , ), that all referred 
to the initial cylindrical coordinates, as:  
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Where: 
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Equation (8) then represents the superposition of a 
very small dynamic displacement upon a large static 
deformation.  
Equation (8) may, therefore, be written in short as:  
 

dS uUu 111 +=     
  

sd Uu 11 <<

dS uUu 222 +=     
 (9-a)  

sd Uu 22 <<

dS uUu 333 +=     
   

sd Uu 33 <<

With the above considerations, it is now possible to 
proceed with the linearization process. 
 Referring bake to the first component of the 
equation of motion, it can be written in the 
following general form in terms of the 27 variables 

 and  as:  jiu , jkiu ,

 
,...,,,,,( 2,21,23,12,11,110 uuuuufu =ρ

),,...,,,,, 33,332,322,113,112,111,13,3 uuuuuuu  (9)  
 
Or, in short form, as:  
 

),( ,,10 jkiji uufu =ρ                                                                                    
 

Noting that kjijki uu ,, =  similarly, for the two 
remaining components of the equation of motion,  
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The three functions  g and  in equations (9), 
(10) and (11) are analytic functions and may be 
expanded Taylor series around bellow static 
deformation values: 
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So Taylor series will be written as:  
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Where we use equation (9), to expanded Taylor 
series as bellow:  
 

ds uUu 1,11.11.1 =−=ξ  
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. 
. 
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ds uUu 33,333,333,3 =−=ρ  
 
The symbol stat  implies evaluation of the partial 

derivatives for the static values and f, g functions 
in equation (10), (11) may be extend at the same 
way.  

s
nu

Saving the two first sentences of right part of 
equation (12) we can substitute related derivatives 
and using equation (8) the static displacements and 
their derivatives are obtained as follow: 
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Thus the values of all second order derivatives in 
static situation are equal to zero.   
Now considering the mentioned points and equation 
(12) the equation of motion will be achieved.  
First term of this equation is related to motion 
equation in static deformation state and is equal to 
zero.  
Thus: 
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This point could be deduced from the physics of the 
problem, so equation (12) wall be summarized as: 
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+Negligible HOT                                                         (13)                            
 

At the same way the motion equations in other two 
directions (2, 3) will be summarized and the results 
are similar to equation (13).  
The 27 partial derivatives required in the second 
part of equation (13) are all determined and 
substitute in the equation at static position to 
linearizing the equation. Ensuring the correctness, 
the software package Mathematica is employed for 
determination of these derivatives. 
For example,  
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The other derivates in this direction and the other 
directions are also determined at the same way. For 
substituting  to  in equations (13) we use 
equation (8) as follow: 

du 1,1
du 33,3
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At the other hand time-rate of change of 
deformation is achieved from equation (8) as:  
 

Femu ti .2
11

ωω−=                              (15)          
 
Substituting from equations (14) to (15) into 
equation (13), canceling the common multiplier 

 from both sides, dividing the resulting 

equation by  and taking  the 
end result will be as: 

)( tiFe ω−
2k ,/ 222 Vk =ω
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2

10 θμληηηρ mmmlllnmlFVm =   
 
Because of being extremely lengthy, one more 
summarizes process is applied on the equation 
before of presentation.  
Considering a perfect symmetric shell, stress, strain 
and the related equations are independent from the 
value ofθ , so we can suppose 0=θ  for more 
simplification. And finally the linearized equation of 
motion in 1 direction, after the simplification and 
neglecting of the higher order strain statements, will 
be as bellow: 
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Where: 
  

321 ηηηγ ++=    
 
The new quantity V  is the velocity of wave 
propagation in the strained (stressed) solid and the 
last equation is linearized in 1 direction.  
Performing the same lengthy process as above, the 
other two linearized components of the equation of 
motion in (2 , 3) direction are obtained:  
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4 Conclusion 
As it mentioned before, When ultrasonic waves 
traverse a stressed body, the total displacements of 
any particle consist of a static displacement (due to 
the stress) and a dynamic one (due to the wave 
propagation).  

In other words because of the vibration of particles 
is happened due to wave propagation around the 
static position of it, the Taylor series expansion and 
the partial nonlinear derivatives may be written 
around this point.  
Considering the two first terms of Taylor series in 
last equations, the equations are changed to linear 
form as they expressed here.  
This results in an eigenvalue problem which is 
solved for the three eigenvalues to yield one quasi-
longitudinal and two quasi-shear wave velocities.  
The next exact numerical calculations imply that 
linearizing error of these equations and neglecting 
of the next terms of Taylor series is so tiny.  
For example the value of this error for a steel 
cylinder is less than and for an aluminum 
cylinder is less than . 

5101 −×
5105.1 −×

The obtained linearized equation of this paper can 
be used widely in physics, mathematics and 
engineering. For example the equations (16) to (18) 
are applied to stress analyzing by ultrasonic waves 
transmitting as the following form: 
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So the solution of motion equations for measuring 
of the wave velocities from elasticity constants and 
strains (stresses) affects will tend to determination 
of eigen values of the following matrix: 
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Thus for any  vector the determinant of the  
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matrix should be equal to zero: 
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At the general form there are three roots of ( ) 

for this equation, so  and the resulting value 
of propagated wave's velocity will achieved.  

2
0Vρ

2
0Vρ

One of the three mentioned values is related to 
quasi-longitudinal and the other two roots are 
belonged to quasi-transverse wave.  
So obtaining of this determinant the relation 
between wave velocity and the related strain (stress) 
will achieved and the goal of this investigation, 
which is to derive the equations relating ultrasonic 
wave velocities to the strains (and hence stresses) 
objects, will be reached. 
It should be mentioned that as we said before, 
because of the tremendously lengthy algebraic 
operations involed in the derivation and 
linearization process, and also the huge volume of 
the mathematical manipulations in the present work, 
all of the mathematical manipulations are performed 
using a software package Mathematica.  
These equations, (the obtained equations at the final 
stages of this study), are not restricted as to the 
angle of incidence of the wave, so that by varying 
the incident angle, numerous information regarding 
the mechanical properties of the body is obtainable 
easily. 
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