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Abstract: - In this paper, the motion of the knee joint during flexion and extension is investigated. It is 
developed a mathematical model of the knee joint that describes motion in 12 generalized coordinates as a 
function of the externally motion. The model is based on the patellar track geometry experimental data. The 
surface of the patellar track is modeled by using the n-ellipsoid model.  The inverse problem is restricted to 
slow motions, so we consider that static optimization is good enough for our goal.   
 
Key-Words: knee joint motion, surface modeling,  n-ellipsoid model, patellar track geometry, geometric and 
natural compatibilities.   
 
1 Introduction 
The knee joint is one of the most complex joints in 
the human body. The problem of the shape of bones 
and the position of ligaments with given properties 
represents the key for evaluation of knee joint 
properties, and also for study the knee motion. 
Usually, the tibial plateau and the condyles are 
modeled by geometric approximations of the bones 
or by finite element descriptions obtained by 
computer tomography and magnetic resonance 
tomography [1].  Also, the points of attachment to 
the bones simulate the ligaments by using the 
spring-damper elements between the thigh and the 
shank [2]. Zheng et al. describe an analytical model 
for ligaments, muscles and contact forces between 
bones and menisci to examine the joint forces during 
exercise and restricted to the sagittal plane [2].  
     Another works model the passive joint motion 
without load, by using five constraints in terms of 
three ligaments and the medial and lateral 
compartment of the knee to model the passive joint 
movement without load [3],[4]. On the other hand, 
the surface errors can generate large errors in kinetic 
and kinematic simulations of articular joint contacts. 
To avoid such errors, the bone surfaces have to be 
modeled as highly curved surfaces, with unknown 
parameters which can be determined from 
experimental data.  

     The knee joint surface modeling must verify the 
geometric and also, the natural compatibility 
conditions. The geometric compatibility condition 
assures that the distance between the contact points 
on the two surfaces is zero, such that the penetration 
is avoided. The natural compatibility condition 
assures that normals to the surfaces at the point of 
contact are collinear. A method based on 2D 
polynomials to fit bone surface geometry is 
described in [5]-[8].  Generally, it is observed that 
small errors can create penetration of the two objects 
in contact and result in multiple contact points.  
     Another method which uses polygons to 
represent bone surfaces is resented in [9]. In this 
paper, the natural compatibility condition is not 
necessarily satisfied, and the coplanar, colinearity of 
normals at the contact point are not verified. Using 
the cubic splines in investigation of parametric 
surface patches is investigated in [10]-[16].  Here, 
errors are possible for points at other locations on a 
patch which can lead to discontinuous contact points 
in simulations of joint contact. The use of B-splines 
to create geometric models of articular surfaces 
improve the accuracy of this extrapolation grid, but 
it may not represent highly curved surfaces and it 
requires that the digitized anatomy be regularly 
distributed [17]. 
     The present paper investigates the motion of the 
patella relative to the thigh, by constructing an 
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inverse problem based on experimental data and 
simulation of the patellar track geometry as an n-
ellipsoid model. 
     Inverse problems have a well-recognized position 
in research fields, where the values of some model 
parameters or material properties are obtained from 
the experimental data. The shape determination, 
estimation of material properties, experimental 
strategy, system determination, boundary condition 
and source identification, defects identification, non-
destructive testing and characterization of materials 
and structures, are examples of inverse problems 
     The inverse problem reverses the role between 
the unknowns and the data. When we study a 
phenomenon, which is governed by a set of 
equations, the application of the model to real 
problems requires the knowledge of parameters 
which in the model are considered to be known 
whereas, in practice, they are not known. Therefore, 
a preliminary treatment of the model is necessary, in 
which parameters are identified from experimental 
data.  
 
 
2 Knee anatomy 
The important parts of the knee include the end of 
the femur, the top of the tibia, articular cartilage AC, 
meniscus cartilage, four ligaments, and two tendons: 
the anterior cruciate ligament ACL, the posterior 
cruciate ligament PCL, the medial collateral 
ligament MCL, the lateral collateral ligament LCL, 
the quadriceps tendon (QT) and the patellar tendon 
(PTL)  (Fig.1). The apparent space between the 
bones is actually occupied by articular cartilage AC. 
      

 

        Fig.1. Schematic of the knee muscles and ligaments. 
 
     The articular surfaces are the large curved 
condyles of the femur, the flattened condyles of the 
tibia, and the facets of the patella. The articular 
cartilages (AC) act bearing surfaces and the 
meniscus as mobile bearings.  
     There are large muscles in the front of the thigh 
(the quadriceps muscles QM) that straighten the 
knee (extension). The large muscles in the back of 
the thigh (the hamstrings) bend the knee (flexion). 
The patella functions as an important lever for the 
quadriceps muscles, making the muscle more 
efficient. When bending and straightening the knee, 
the surfaces of the tibia and femur roll and slide on 
each other and the patella moves up and down 
against the front of the femur. The quadriceps 
tendon (QT) and the patellar tendon (PTL) surround 
the patella and helps its mechanical motion and also 
functions as a cap for the condyles of the femur.   
     This paper tries to solve the following problem: 
given the ligaments, tendons and muscle forces, 
flexion-extension and internal-external rotation 
angles of the knee, find the motion of the patella 
relative to the thigh during flexion. The muscle 
forces and the flexion–extension and internal-
external rotation angles of the knee are determined 
from experimental data of the patellar track 
geometry. For the patellar geometry an n-ellipsoid 
model is used. 
     The inverse problems are typically ill-posed in 
the sense of Hadamard, as opposed to the well-
posed problems where the model parameters or 
material properties are known.  This means that the 
solution of the inverse problem either does not 
exist, is non-unique, or does not depend 
continuously in the data. 
 
 
3 The theory 
Position of the knee joint is described by the origin 
of local coordinate system with respect to global 
coordinates. The attitude is described by the 
orientation of local coordinate system with respect 
to global axes (a local coordinate system is 
considered for each bone) (Fig.2). So, we have a 
femoral coordinate system ( , , )f f fx y z , a tibial 
coordinate system ( , , )t t tx y z and a patellar 
coordinate system ( , , )p p px y z . The origins of the 
femoral and tibial coordinate systems are located at 
the midpoint of the line between the medial and 
lateral femoral epicondyles and the medial lateral 
tibial condyles, respectively. The origin of the 
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patellar coordinate system ( , , )p p px y z  is located at 
the centroid of the patella. In all three coordinate 
systems, the medial x , posterior , and superior  
directions were chosen to be positive and were 
assumed to be parallel to a global coordinate system 

y z

( , , )x y z . In the global coordinate system, the ( , )x y  
plane was defined as the coronal plane and the 

plane was defined as the sagittal plane.  ( , )y z
     In the global system, a point belonging to knee 
joint articular surface Γ  is denoted by ( , , )x y z . In 
the local coordinate systems, a point belonging to Γ  
is defined by ( , , )LL Lx y z′ ′ ′ , where  denotes the local 
system. 

L

     The transformation from ( , , )L L Lx y z′ ′ ′  to 
( , , )x y z is given by  

i i ik kLx u R x′= + ,                         (1) 
where ijR is the rotation matrix   

( , ) ( , ) ( , )R R z R x R z= ϕ θ ψ , 
with 

cos sin 0
( , ) sin cos 0

0 0
R z

ψ − ψ⎡
⎢ψ = ψ ψ⎢
⎢⎣ 1

⎤
⎥
⎥
⎥⎦

, 

1 0 0
( , ) 0 cos sin

0 sin cos
R x

⎡ ⎤
⎢ ⎥θ = θ − θ⎢ ⎥
⎢ ⎥θ θ⎣ ⎦

,  

cos sin 0
( , ) sin cos 0

0 0
R z

ϕ − ϕ⎡ ⎤
⎢ ⎥ϕ = ϕ ϕ⎢ ⎥
⎢ ⎥⎣ ⎦1

 ,             (2) 

and u  the translation vector.  
 

 

Fig. 2. The global and local systems of 
coordinates. 

 
     We suppose that six generalized coordinates 
described the movement of the patella relative to 
the thigh (Fig.3). The patella is treated as a 
massless body in the model. The orientation of the 
patella was defined by a sequence of three rotations 
about the local mutually perpendicular joint axes: 
patellar rotation, patellar tilt, and flexion-extension. 
The displacement of the origin of the patellar 
reference frame relative to the origin of the thigh 
reference frame was defined by three translations 
along the three joint axes: anterior-posterior 
translation, proximal-distal translation, and medial-
lateral translation, respectively [19].  
     The position and orientation of the knee relative 
to the global coordinate system fixed on the pelvis 
are described by 12 generalized coordinates: 
anterior-posterior translation of the shank relative 
to the thigh , proximal-distal translation of the 
shank relative to the thigh , medial-lateral 
translation of the shank relative to the thigh , 
anterior-posterior translation of the patella relative 
to the thigh , proximal- distal translation of the 
patella relative to the thigh , medial-lateral 
translation of the patella relative to the thigh ; 
varus-valgus rotation

1q

2q

3q

4q

5q

6q
1 of the knee , internal-

external rotation of the knee , flexion–extension 
of the knee , patellar rotation , patellar tilt 

, patellar flexion–extension .  

7q

8q

9q 10q

11q 12q
     So, the 12 1× vector  of 
generalized coordinates describes the 
configurations of the tibio-femoral joint and 
patello-femoral joint. 

1 2 12{ , ,..., }q q q q=

     We suppose that the patellar tendon is 
inextensible and that interpenetration between the 
boundaries of the patella and the patellar surfaces 
of the femur can be neglected. These two 
assumptions define three holonomic constraints for 
movement of the patella on the femur. These three 
constraints can be combined with the six force and 
moment equilibrium equations for the patella to 

                                                           
1 Varus is a status of medial deviation in the frontal-plane (adduction) 
of a segment distal to a joint, or to the proximal end of the same 
segment – occurs at the knee joint. Valgus is a status of lateral 
deviation in the frontal-plane (abduction) of a segment distal to a 
joint, or to the proximal end of the same segment, occurs at the 
proximal femur. The terms adduction, abduction, rotation describe the 
motion. 

. 
 

WSEAS TRANSACTIONS on MATHEMATICS Valerica Mosnegutu, Veturia Chiroiu
Lucian Capitanu and Mihai Popescu

ISSN: 1109-2769 419 Issue 6, Volume 7, June 2008



yield a set of six non-linear algebraic equations for 
patello-femoral mechanics  

( , ) 0i Qp q F = ,  ,          (3) 1,2,...,6i =

where QF  is the magnitude of the force applied by 
the quadriceps tendon to the patella. 
     The dynamical equations of the knee motion can 
be written as 

( ) ( , ) ( ) ( )
( , ) 0,

m m l lA q q C q q M q F M q F
T q q

+ + +
=

+
         (4) 

where   is the 12  mass matrix,  is 
a  vector containing the Coriolis and 
centrifugal forces and torques arising from the 
motion of the thigh, 

( )A q 6× ( , )C q q
6 1×

mF  is a 6  vector of forces 
applied by two muscles (QM, QT), 

1×
( )mM q  is a 

 matrix describing the moment arms of 
applied muscle forces, 
12 6×

lF  is a vector 
containing the forces applied by four  ligaments 
and two tendons,  

6 1×

( )lM q  is a  matrix 
describing the moment arms of the knee ligament 
and tendon forces, and is an  vector of 
external torques applied at the joints. Equations (3), 
(4) define a system of 12 nonlinear differential and 
algebraic equations in 12 unknowns.  

6 12×

( , )T q q 6 1×

 

 
         Fig. 3. Kinematic structure of the knee. 
 
     The problem to be solved can be stated as:  
Given the input data 

( , ) { ( , ), ( , ), ( ), ( ),  ( ),  , },  m l m lI q q C q q T q q A q M q M q F F=
find the motion of the patella relative to the thigh,  
during flexion.  
      The main idea of this paper is to determine the 
unknowns  from the patellar track geometry, 
based on the experimental data found in literature, 
for example in [1] and [20].  

( , )I q q

     The method presented in [20] provided an 
accurate representation of the highly curved surface 
of the patellar track, and also assures the continuity 
of the normal vector field.   
     For determining , we suppose that 

 and  are expressed as polynomials 
in  and q  

( , )I q q
( , )C q q ( , )T q q
q

1 ,1
1,12 1,12

( , ) ( , ) ,1j j ij i
i i

C q q X q q a q b q
= =

= = + ij i∑ ∑ .    (5) 

1,...,6j = , 

2 ,2
1,12 1,12

( , ) ( , ) ,2j j ij i
i i

T q q X q q a q b q
= =

= = + ij i∑ ∑ ,     (6) 

1,...,6j = . 

where ,  are unknown quantities, and ia ib 1,2l = , 
, 1,...,i j k= .  For ( ), ( ),  ( )m lA q M q M q we suppose 

 

1 ,1
1,12

( ) ( ) ,j j ij
i

iA q Y q c q
=

= = ∑
         

(7)
  

 1,...,32,j =

1,12
( ) ( ) ,mj j ij i

i
M 2 ,2q Y q c q

=

= = ∑ 1,...,32,j =

1,12
( ) ( ) ,lj j ij i

i

    
 (8)

  
 

3 ,3M q Y q c q
=

= = ∑        (9)   1,...,32,j =

where  are unknowns, , . The 
quantities 

ic 1,2,3s = , 1,...,i j k=
,mF F  are supposed to be constants. The 

idea is to obtain a reasonable stable simulation 
model which can handle realistic loads.  
     For identification problem, the patellar track 
geometry denoted by Γ  is modelled as an n-
ellipsoid model [21]-[23].  
     The n-ellipsoid is defined by 10 shape 
parameters ,id 1,2,...10i = , that are the arbitrary 
center coordinates , ,G G Gx y z , principal axes 

, the principal directions defined by Euler 
angles 

, ,a b c
, ,ξ ψ ζ  and the exponent . The advantage 

of this model is the small number of parameters 
needed to represent a surface. The surface 

n

Γ  is 
defined as the image of the unit n-sphere  of 
equation 

S

  1n n nx y z+ + = ,                          (10)  

through the affined transformation 

1 2 3 1 2 3( , , ) ( , , ) ,y Y Y Y S y y y y= ∈ → = ∈Γ          (11)  

1 11 1 12 2 13

2 21 1 22 2 23

3 31 1 32 2 33

,
,
,

G

G

G

y x r aY r bY r cY
y y r aY r bY r cY
y z r aY r bY r cY

= + + +
= + + +

= + + +

3

3

3  

 

where ( , , )ij ijr r= ξ ψ ζ  are components of rotation, 
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which transforms the coordinate axes into the 
principal axes of the ellipsoid. These components 
are given by (2) by replacing θ  with , and ξ ϕ  
with ζ . An inverse problem is constructed for 
finding the set of parameters (shape parameters 

, ) and unknown model parameters 
, 

id 1,2,...10i =
{ , ,....}s il ilP a b= 1,2,...,s P= , such that the n-

ellipsoid best fits the set of data points representing 
the motion of pattela.  
     A genetic algorithm is used to solve the 
identification inverse problem. The estimation of 
the unknown parameters sP , 1,2,...,s P=  

, , ,{ , 1,2,...,10; , , ,

1,...,12; 1,...,6;
1,2; 1,...,32; 1,2,3},  

s j jk l jk l jm nP d i a b c

j k
l m n

= =

= =
= = =

    (12) 

is made for non-perturbed data and artificially 
perturbed data introduced by multiplication of the 
data values by 1 ,  being random numbers 
uniformly distributed in [ .  In this paper we 
consider . The algorithm for analysing a 
surface is as follows: 

r+ r
, ]−ε ε

310−ε =

     1. Experimental track the patella surface is used 
to obtain a high number of 3D contact points in the 
system of coordinates ( , , )p p px y z . M points along 
the surface are probed, and at each point, two data 
samples are taken to verify the integrity of the data. 
Therefore, a total of 3M data points are acquired 
for the surface.  
     2. Transform the data to 3M  points ( , , )i i ix y z , 

 belonging to the surface 1,...,3i = M Γ  for 
performing the n-ellipsoid fit. 
     3. Calculate the set of  parameters that define 
the motion of the surface Γ such that the n-ellipsoid 
best fits the set of data points, by using a  genetic 
algorithm. 

P

     4. Determine the best approximating shape of 
the patella during the motion. 
      
 
4 The genetic algorithm 
Optimization methods could be divided into 
derivative and non-derivative methods. The genetic 
algorithm is a non-derivative methods, as it is more 
suitable for engineering design problems. One 
reason is that non-derivative methods do not require 
any derivatives of the objective function in order to 
calculate the optimum. 
     The principles of natural selection have been 
formulated by Darwin before the discovery of 
genetic algorithm. Darwin hypothesized that 
parental qualities combine together like fluids in the 

offsprings [24], [25]. This selection theory arose 
serious objections, that are the crossing fast levels 
off any hereditary distinctions, and there is no 
selection in homogeneous populations (the Jenkins 
nightmare).  
     Genetic algorithms use the vocabulary of the 
natural genetics. The individuals in a population are 
called strings or chromosomes. Chromosomes are 
made of units called genes arranged in linear 
succession. Every gene controls the inheritance of 
one or several characters.  
     The genetic algorithm is able to solve nonlinear, 
nonlocal optimization problems, without the need of 
derivative calculations. Starting with a set of initial 
solutions, the genetic algorithm progressively 
modify the solution set by mimicking the 
evolutionary behavior of biological systems, until an 
acceptable result is achieved.  
    The genetic algorithm is a binary-coded 
algorithm, each individual member of the population 
is represented in binary form. The method is based 
on an assigning measure of fitness to each individual 
related to the value of the objective function at the 
corresponding point in the solution space.  
     A proper formulation of the optimisation problem 
is to determine the set of parameters sP , 

1,2,...,s P=  given by (12), from the condition of 
minimizing of an objective function f  

6
1 2

1 1

( ) ( )
| |

( )

i t eN
ij k ij k

em
j ij

k i j
i ji

F P F P
F

jf P w w
N

=

= =

−

= +
∑

∑ ∑ S

m

,  (13) 

where 1,2,...,i =  represent the number of 
sequence in the patellar track  geometry, t

jF , 
1,2,...,3j N= , represent the theoretical coordinates 

of j  points belonging to the surface of patella 
associated to the sequence i , obtained from the 
theoretical model in terms on , , kP 1,2,...,k P= e

jF  
are the measured corresponding coordinates of the 
same j  points belonging to the surface of patella 
associated to the sequence , and  are weights. In 
(13), 

i iw

is , 1,2...,6i =  represent the measure for 
verifying (3)   

( , )i i Qs p q F= ,  .       (14) 1,2,...,6i =

     The basic operators of the genetic algorithm are 
selection, crossover and mutation. Selection 
involves the choice of the individuals for the 
generation of offspring. By using the fitness 
function (or fitness), a rule for selecting which 
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individuals to use to create the next generation must 
be chosen. 
      Crossover is the method of combining two 
individuals to produce an offspring. The proportion 
of a population that is mated after each generation is 
defined by the cross-over rate. The experiments 
performed suggested an optimum tuning of the 
cross-over rate is 0.8. 
     Mutation is the random changing of some 
individual within the population. A flow chart of the 
genetic algorithm can be presented as: 
{ 
*** Initialisation of time contor 

: 0;t =  
*** population random initialisation  
initpopulation  ( );P t
***evaluation of the fitness for all individuals 
evaluate  ( );P t
*** stop test 
while not done do 
*** increase the time contor 

: 1t t= + ;

t

t

 
*** selection of a subpopulation to produce 
offspring 

: selectparents ( );P P′ =  
*** recombination of genes of chosen parents 
recombine  ( );P t′
*** apply mutation to each offspring 
mutate  ( );P t′
*** evaluation of the new fitness function 
evaluate  ( );P t′
*** selection of individuals according to the fitness 
function value 

: survive , ( );P P P′=  
}. 
     The genetic algorithm uses a binary vector as a 
chromosone to represent real values of the variable 
x . The length of the vector depends on the required 
precision. The domain of of the variable [ , ]x a b∈  
has length l b  and the precision requirement 
implies that the range of the interval should divided 
into at least  equal size ranges.  

a= −

610l ×
    Now we need to solve the inverse problem: first 
compute a displacement field Xδ between the n- 
ellipsoid and 3M  point data, and then, after having 
put the n-ellipsoid in a 3D box, search for the 
“deformation” Pδ of this box which will best 
minimize the displacement field Xδ   

2( ) min || ||
P

J B P X
δ

Γ = δ − δ  .                  (15) 

     In other words Γ  is classically sought as the 
minimizer of some distance  between the 
measured data and the computed  n-ellipsoid data.    

( )J Γ

     To represent 3D data with our model, we use an 
iterative two-step algorithm: 
     Step 1: Computation of the displacement field 
between the previous estimation nX and its 
projection on data a

nX , nXδ  such as  

a
n n nX X X= + δ .                          (16) 

     Step 2: Computation of the control points 1nP +  by 
minimization of   and computation of 
the deformed model  

2|| ||a
nBP X−

1n 1nX BP+ += .                         (17) 

     Stop test on the least-squares error 1|| ||n nX X+ − . 
The quantity  is defined as a uniformly spaced 
parallelepiped box of control points and 

0P

0 0X BP=  
represents the set of points of the initial discretized 
n-ellipsoid.  
     Because the same n-ellipsoid can result from 
many combinations of angles  and ,ξ ψ ζ  and 
permutations of principal axes, it is difficult to 
measure the accuracy of the identification of Γ .      
The optimization methods used in optimal control is 
based on a proper identification of  [25], [26], 
[30]. The accuracy may be measured by means of 
comparison of the identified parameters , 

Γ

kP
1,2,...,k P=  with those defining the true Γ  and 

used to compute the simulated data. Instead of this, 
the relative errors , ,V A Iε ε ε  for the volume, 
boundary area and geometrical inertia tensor (with 
respect to the global system of coordinates ( , , )x y z ) 
are computed.  
     The indicator Iε  is very sensitive to the 
orientation of Γ  in space, together with the ratio 

0/nJ J , where ( )n nJ J= Γ and  is the current nΓ
Γ after the n-th iteration of the minimization 
process. Expressions of indicators  in terms 
of boundary integrals are as follows [27]-[29] 

, ,V A Iε ε ε

( ) 1
( )

n
V

V
V
Γ

ε = −
Γ

,     1( ) d
3 i i y

S

V S y n S= ∫ ,          (18) 

( ) 1
( )

n
A

A
A
Γ

ε = −
Γ

,    ,            (19) ( ) d y
S

A S S= ∫
1/ 22

1 , 3
2

1 , 3

( ( ) ( ))
,

( )
ij n iji j

I
iji j

I I

I
≤ ≤

≤ ≤

⎛ ⎞Γ − Γ
⎜ ⎟ε =
⎜ ⎟Γ⎝ ⎠

∑
∑  
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1( ) d
5ij i j k k y

S

I S y y y n S= ∫ .              (20) 

 
 

 
 

5 Results 
The knee joint flexion is considered next. From 
experiments it results that the knee offers a 
relatively small resistance as it flexes from full 
extension to 90 0 .  
     The ligaments are modeled as elastic elements.  
The articular cartilage is considered homogeneous 
isotropic with elastic modulus of 12MPa and 
Poisson’s ratio of 0.45. The menisci are assumed 
isotropic with 10MPa for elastic modulus and 0.45 
for Poisson’s ratio. The total initial cross-sectional 
areas are 42, 60, 18 and 25  for the ACL, PCL, 
LCL and MCL, respectively [24], [28], [30]. 

2mm

     The run-time parameters of genetic algorithm 
are: population size 120, number of generations 100, 
overall crossover probability 0.9, mutation 
probability 0.03. The number of iteration for  
finding the parameters ,  such that 
the n-ellipsoid best fits the set of data points.  is 509 
for non-perturbed data and 612 for perturbed data..  

kP 1,2,...,k = P

     The values of 0/finalJ J , , ,V A Iε ε ε  given by (18)-
(20) and the least square error || ||BP X−  are 
displayed in table 1,  in the case of non-perturbed 
data ( ) and perturbed data ( ). Results 
show a good convergence and accuracy. 

0ε = 310−ε =

 
 Table 1. Results for non-perturbed data ( ). 0ε =

 || ||BP X−
 

0/finJ J
710−  

Vε  
710−  

Aε  
610−  

Iε  
510−

 
0ε =  1.4 % 

 
3.8 
 

8.3 
 

10.2 
 

9.4 
 

310−ε =
 

8.3 % 
 

2.4 
 

3.3 
 

2.3 
 

3.6 
 

 
     The results of the inverse problem are shown in 
figs. 4, 5 and 6. The upper shape of the surface Γ   
with , during flexion is displayed in fig. 4.  0.37n =
 

 
Fig. 4. A sequence of shapes for  surface (Γ 0.37n = ) 
during flexion. 
 

 
Fig. 5. The shape of patella for  ( ). Γ 0.37n =

 

 
 

Fig. 6.  A sequence of pattela shapes during 
flexion. 

 
     The coefficients , ,  and  that 
appear in (5) and (6)  are shown in appendix (tables 
A1-A4). Also we have obtained  

,1ija ,2ija ,1ijb ,2ijb

(13,44;12,86;11,56;10,65;10,07;10,44},lF =
{2,67;2,26;2,10;1,98;1,67;2,03}.mF =  

    The lack of space is the reason we do not diplay 
here the values of the coefficients ,  and  
that appear in (7)-(9). 

,1ijc ,2ijc ,3ijc

     During flexion, the patella glides smoothly in this 
groove throughout an arc of motion ( ). The 
patella trajectory is 4mm deeper. The experimental 
results (Any Body Technology [32]) are 
summarized in figs.7 and 8. 

00 90− 0

     Fig. 9 represents the forces in ligaments and 
tendons during flexion. Forces transmitted to ACL, 
PCL, MCL, LCL and PTL are plotted versus the 
flexion angle. The optimization procedure is 
statically, so the motion and forces may be a little 
altered, but the optimization method is stable and 
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works. The PTL and ACL exhibit peaks at 
54.25 and respectively, 68 . The MCL have the 
smallest forces, the LCL exhibits a peak at 73.5 and 
PCL exhibits a peak at 82.5 . 

0 0

0

0

     The translation degrees of freedom, i.e. , 
proximal-distal translation of the shank relative to 
the thigh , medial-lateral translation of the shank 
relative to the thigh , anterior-posterior translation 
of the patella relative to the thigh , proximal-
distal translation of the patella relative to the thigh 

, medial-lateral translation of the patella relative 
to the thigh  during flexion are displayed in 
fig.10. The variation of all translation degrees of 
freedom (with exception of ) are increased 
functions with respect to the flexion angle. The  
begins to decrease in the vicinity of 78.75 , and 
near 45 it seems to be almost constant. 

1q

2q

3q

4q

5q

6q

2q

2q
0

0

 

 
            Fig.7.  Snapshots of the patella motion [25]. 
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Fig. 8. The position of the patella in relation to the tubercle. 
     

 
Fig. 9. The forces in ligaments and tendons during 

flexion. 
 

         Fig. 11 presents the rotation degrees of 
freedom, i.e. varus-valgus rotation of the knee , 
internal-external rotation of the knee , flexion–
extension of the knee , patellar rotation , 
patellar tilt , patellar flexion–extension during 
flexion. The variation of   and are increased 
functions with respect to the flexion angle. The other 

degrees of freedom exhibit increasing and 
decreasing regions with respect to the flexion angle. 

7q

8q

9q 10q

11q 12q

7q 10q

 
Fig. 10. The translation degrees of freedom during 

flexion. 
     

 
Fig. 11. The rotation degrees of freedom during flexion. 

 
The similar figures in the case of extension are 
presented in figs.12, 13 and 14. 
 

 
Fig. 12. The forces in ligaments and tendons during 

extension. 
 

     The knee motion is the result of the full-body 
movement, so it is difficult to model only the knee 
motion without taking into consideration the body 
influences. For this reason, the position and 
orientation of the knee relative to the global 
coordinate system fixed on the pelvis are described 
by minimum 12 generalized coordinates.  
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Fig. 13. The translation degrees of freedom during 

extension. 
 

 
Fig. 14. The rotation degrees of freedom during 
extension. 
 
 
6 Conclusions 
In this paper, a mathematical model of the knee joint 
that describes motion in 12 generalized coordinates 
as a function of the externally load is developed. 
The model is based on the patellar track geometry 
experimental data and it is able to describe the 
motion of the knee joint during flexion and 
extension.  
     The surface  of the patellar track is modeled by 
using the n-ellipsoid model, defined by 10 shape 
parameters. The relative small number of parameters 
needed to represent a surface represent an important 
advantage of this model.  The method is restricted to 
slow motions, so we consider that static 
optimization is good enough for our goal. 

Γ

     The motion equations (3), (4) define a system of 
12 nonlinear differential and algebraic equations in 
12 unknowns. The unknown are the anterior-
posterior translation of the shank relative to the 
thigh , proximal-distal translation of the shank 
relative to the thigh , medial-lateral translation 
of the shank relative to the thigh , anterior-
posterior translation of the patella relative to the 

thigh , proximal- distal translation of the patella 
relative to the thigh , medial-lateral translation 
of the patella relative to the thigh ; varus-valgus 
rotation

1q

2q

3q

4q

5q

6q
2 of the knee , internal-external rotation 

of the knee , flexion–extension of the knee , 
patellar rotation , patellar tilt , patellar 
flexion–extension . 

7q

8q 9q

10q 11q

12q
     To solve this system of equations, we need to 
know some input data. The input data is composed 
of the Coriolis and centrifugal forces and torques 
arising from the motion of the thigh , the 
external torques applied at the joints , the 
mass matrix , the moment arms of applied 
muscle forces mass matrix 

( , )C q q
( , )T q q

( )A q
( )mM q  , the moment 

arms of the knee ligament and tendon forces 
( )lM q , the forces applied by two muscles (QM, 

QT) mF , and the forces applied by four  ligaments 
and two tendons lF . The input data is determined 
from the patellar track geometry, based on the 
experimental data found in literature 
     The inverse problem is constructed in such a 
way to evaluate simultaneously the set of unknown  
parameters from the condition that the n-ellipsoid 
best fits the set of experimental data points. 
     The approach is restricted to slow knee motions, 
and the static optimization based ob a genetic 
algorithm is used to determine the unknowns.  
     The inverse problems is ill-posed and have to be 
overcome by developments of new computational 
methods. The traditionally local optimisation 
methods based on the matrix inversion, steepest 
descent and conjugate gradients are trapping into 
local minima and their success depends on the 
choice of starting conditions. To obtain further 
insights into the inverse problems related to the 
identification of certain parameters or to solve 
some nonlinear equations, the genetic algorithm is 
used. Genetic algorithm is a search method suitable 
for the global optimization of multi-objective 
functions. Starting with a set of initial solutions, 
this algorithm progressively modifies the solution 
by mimicking the evolutionary behavior of 
biological systems, until an acceptable result is 
achieved.  

                                                           
2 Varus is a status of medial deviation in the frontal-plane (adduction) 
of a segment distal to a joint, or to the proximal end of the same 
segment – occurs at the knee joint. Valgus is a status of lateral 
deviation in the frontal-plane (abduction) of a segment distal to a 
joint, or to the proximal end of the same segment, occurs at the 
proximal femur. The terms adduction, abduction, rotation describe the 
motion. 

. 
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     An easy way to verify the results is to solve the 
direct approach, by using the input data identified by 
the inverse problem. 
     In conclusion, the model considered in the paper 
is reasonable stable and can handle realistic results. 
 
Appendix. 
          Table A1. The coefficients . ,1ija

a11.1 0.54 a12.1 -0.04 a13.1 -0.04 
a21.1 0.32 a22.1 -0.12 a23.1 -0.12 
a31.1 -4.21 a32.1 3.27 a33.1 2.22 
a41.1 -0.55 a42.1 0.05 a43.1 0.15 
a51.1 1.94 a52.1 -1.04 a53.1 -3.64 
a61.1 0.53 a62.1 -0.13 a63.1 -0.73 
a71.1 0.30 a72.1 0.23 a73.1 0.56 
a81.1 -1.10 a82.1 1.23 a83.1 -1.09 
a91.1 -2.89 a92.1 3.11 a93.1 -1.88 
a10.1.1 4.31 a10.2.1 0.31 a10.3.1 -0.89 
a11.1.1 4.12 a11.2.1 -0.42 a11.3.1 -1.52 
a12.1.1 0.45 a12.2.1 -0.05 a12.3.1 -2.35 

 
 

a14.1 2.09 a15.1 -0.44 a16.1 -0.14 
a24.1 4.44 a25.1 -1.24 a26.1 -112 
a34.1 -1.27 a35.1 -2.27 a36.1 2.71 
a44.1 -0.75 a45.1 0.75 a46.1 0.75 
a54.1 4.34 a55.1 -1.44 a56.1 -0.07 
a64.1 0.43 a65.1 -0.83 a66.1 0.53 
a74.1 -0.93 a75.1 -0.34 a76.1 0.25 
a84.1 -1.03 a85.1 1.19 a86.1 0.43 
a94.1 -3.38 a95.1 1.19 a96.1 2.91 
a10.4.1 0.41 a10.5.1 -2.39 a10.6.1 -0.45 
a11.4.1 -4.02 a11.5.1 -3.02 a11.6.1 -2.02 

 
Table A2. The coefficients . ,2ija

a11.2 -1.15 a12.2 -0.14 a13.2 0.74 
a21.2 2.23 a22.2 -0.02 a23.2 1.12 
a31.2 -3.22 a32.2 3.07 a33.2 -2.02 
a41.2 0.45 a42.2 0.25 a43.2 -0.05 
a51.2 -1.95 a52.2 -1.03 a53.2 -3.04 
a61.2 -0.03 a62.2 -1.15 a63.2 -0.27 
a71.2 0.37 a72.2 2.23 a73.2 -0.95 
a81.2 -1.13 a82.2 -1.03 a83.2 -1.19 
a91.2 -2.05 a92.2 -3.01 a93.2 -1.08 
a10.1.2 4.22 a10.2.2 -1.31 a10.3.2 -0.80 
a11.1.2 -3.02 a11.2.2 1.04 a11.3.2 -1.50 
a12.1.2 0.05 a12.2.2 1.05 a12.3.2 -2.33 

 
a14.2 2.49 a15.2 0.14 a16.2 0.04 
a24.2 4.34 a25.2 -0.44 a26.2 -3.16 
a34.2 -1.57 a35.2 -1.77 a36.2 2.71 
a44.2 1.75 a45.2 0.70 a46.2 3.75 
a54.2 4.30 a55.2 0.40 a56.2 -3.27 
a64.2 0.40 a65.2 -0.63 a66.2 0.54 
a74.2 -1.43 a75.2 0.64 a76.2 -0.55 
a84.2 1.83 a85.2 -1.29 a86.2 -0.73 
a94.2 -1.35 a95.1 1.09 a96.1 -2.91 
a10.4.2 1.41 a10.5.1 -2.39 a10.6.1 0.45 
a11.4.2 4.42 a11.5.1 -3.02 a11.6.1 2.42 
a12.4.2 -1.05 a12.5.1 -1.15 a12.6.1 1.25 

 
 
 

            Table A3. The coefficients . ,1ijb
b11.1 -0.22 b12.1 1.14 b13.1 1.04 

b21.1 -0.39 b22.1 -0.82 b23.1 -0.21 
b31.1 -4.21 b32.1 032 b33.1 -4.02 
b41.1 -0.55 b42.1 -0.95 b43.1 -4.15 
b51.1 1.97 b52.1 -0.33 b53.1 -0.04 
b61.1 -0.33 b62.2 0.83 b63.1 -3.73 
b71.1 -0.89 b72.2 -0.27 b73.1 3.06 
b81.1 -1.00 b82.2 -1.03 b83.1 -1.59 
b91.1 -1.09 b92.2 -0.91 b93.1 -1.58 
b10.1.1 -0.35 b10.2.2 -0.81 b10.3.1 -0.85 
b11.1.1 -0.35 b11.2.2 -2.32 b11.3.1 -1.44 
b12.1.1 0.15 b12.2.2 -2.05 b12.3.1 -2.85 

 
 

b14.1 -3.23 b15.1 1.54 b16.1 -0.94 
b24.1 1.04 b25.1 -0.34 b26.1 -0.12 
b34.1 2.07 b35.1 2.29 b36.1 -2.78 
b44.1 1.05 b45.1 -0.88 b46.1 0.65 
b54.1 -4.01 b55.1 -1.64 b56.1 -0.27 
b64.2 0.24 b65.1 -0.34 b66.1 0.53 
b74.2 0.49 b75.1 -0.78 b76.1 -0.45 
b84.2 -1.83 b85.1 1.09 b86.1 0.73 
b94.2 -3.08 b95.1 1.17 b96.1 2.91 
b10.4.2 0.01 b10.5.1 -2.09 b10.6.1 1.15 
b11.4.2 -0.02 b11.5.1 -3.12 b11.6.1 -4.22 
b12.4.2 -1.05 a12.5.1 -0.55 a12.6.1 -1.05 

 
Table A4. The coefficients . ,2ijb

b11.2 0.39 b12.2 1.88 b13.2 1.15 
b21.2 2.09 b22.2 -0.34 b23.2 -0.43 
b31.2 -2.20 b32.2 0.98 b33.2 -4.44 
b41.2 1.15 b42.2 -0.56 b43.2 -1.12 
b51.2 -1.90 b52.2 1.34 b53.2 0.65 
b61.2 2.32 b62.2 2.23 b63.2 -1.13 
b71.2 -0.80 b72.2 0.77 b73.2 3.98 
b81.2 -1.45 b82.2 2.34 b83.2 -1.76 
b91.2 -1.24 b92.2 2.93 b93.2 -1.05 
b10.1.2 -0.29 b10.2.2 -0.75 b10.3.2 -0.93 
b11.1.2 -0.98 b11.2.2 -2.23 b11.3.2 -2.92 
b12.1.2 0.35 b12.2.2 -2.65 b12.3.2 2.76 

 
 

b14.2 -0.27 b15.2 -1.12 b16.2 0.88 
b24.2 -1.34 b25.2 55 b26.2 0.34 
b34.2 2.17 b35.2 2.78 b36.2 -2.85 
b44.2 -1.15 b45.2 -0.28 b46.2 -0.23 
b54.2 -2.12 b55.2 1.62 b56.2 -3.07 
b64.2 0.22 b65.2 -1.38 b66.2 -0.53 
b74.2 0.45 b75.2 1.04 b76.2 -0.45 
b84.2 -2.13 b85.2 1.08 b86.2 0.03 
b94.2 0.08 b95.2 -1.67 b96.2 -2.01 
b10.4.2 -0.14 b10.5.2 -2.19 b10.6.2 1.75 
b11.4.2 -0.45 b11.5.2 -1.02 b11.6.2 0.72 
b12.4.2 0.05 a12.5.2 0.15 a12.6.2 1.35 
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