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Abstract: - Multi-layered perceptron (MLP) neural networks are well known as universal approximators. They are 
often used as estimation tools in place of the classical statistical methods. The focus of this study is to compare the 
approximation ability of MLP with a traditional statistical regression model, namely the polynomial regression. 
Comparison among the single hidden layer MLP, double hidden layer MLP and polynomial regression is carried 
out on the basis of similar number of weights or parameters. The performance of these three categories is measured 
using fraction of variance unexplained (FVU). The closer the FVU value is to zero, the better the estimation result 
and this is associated with a higher degree of accuracy. From the empirical results obtained in this study, we 
conclude that overall polynomial regression performs slightly better than MLP for a similar number of parameter 
except for the complicated interaction function. Meanwhile, double hidden layer MLP outperforms single hidden 
layer MLP. The MLP is more appropriate than the polynomial regression in approximating the complicated 
interaction function. 
 
Key words: - Artificial neural network, Multi-layered perceptrons, Polynomial regression 
 
1 Introduction 
1.1 Neural Network (NN) 
A Neural Network (NN) is a system composed of 
many simple processing elements operating in 
parallel whose function is determined by the 
network structure, connection strengths and the 
processing performed at computing elements or 
nodes [1]. In other words, NNs are able to learn and 
generalize from noisy data, which is similar to 
statistical methods such as polynomial regression, 
kernel discriminant analysis, k-mean cluster 
analysis, projection pursuit regression and 
component analysis [2][3]. Furthermore, NN is 
employed to recognize some complex nonlinear 
functions. The excellent performance of NN can be 
attributed to the nonlinear nature of the network. 
Hence, we can model a smooth nonlinear 
mathematical function by adjusting the number of 
hidden layers and the number of nodes in each layer. 

In our study, we use supervised learning technique 
to train the NN. Supervised learning technique refers 
to when the correct results (target values or desired 
outputs) are known and are given to the NN so that 

the NN can adjust its weights to match its outputs to 
the target values. After training, only input values 
are given when the NN is tested. Output values are 
then to be compared with the target values. Also in 
our study, we use feed forward neural networks 
(FANN) as our main topology where the connection 
between units do not form cycles and FANN must 
be trained to map input values into desired output 
values [4]. 
 
 
1.2 Multi-layered Perceptron (MLP) 
Multi-layered perceptron (MLP) is a type of NN that 
is most widely used. It consists of a number of 
interconnected processing elements, which are also 
known as neurons. The neurons interact with each 
other through weighted connections and they are 
arranged in two or more layers. These weights verify 
the nature and strength of the influence between the 
interconnected neurons. Each neuron is connected to 
all the neurons in the next layer. The data is 
presented to the neural network in an input layer. 
Meanwhile, an output layer holds the response of the 
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network to the input values. The intermediate layers 
(hidden layers) enable this network to compute 
complicated associations between neurons. 
 
 
1.3 Error Backpropagation Algorithm 
Error backpropagation algorithm is a supervised 
learning technique used to train a NN [5][6]. In error 
backpropagation NN, each hidden and output neuron 
processes its inputs by multiplying each input by its 
weight, summing the product and then passing the 
sum through a nonlinear function to produce a result. 
NN learns by adjusting the weights of the neurons in 
response to the errors between the actual output 
values and the target output values. This is 
performed through the gradient descent on the sum 
of squares of the error for all the training sets. The 
training stops when average sum of squares of the 
error is minimized. 
 
 
1.4 Polynomial Regression 
A polynomial regression consists of constants and 
variables that are combined using operations such 
as addition, subtraction and multiplication. An 
example of polynomial regression is � = �0 + �1x + 
�2x

2 + �3x
3 + �4x

4 + … + �mxm where � is the 
predicted outcome value for the polynomial model 
with regression coefficients �1 to �m for each 
degree m and � intercept �0. It has m predictors 
raised to the power of i where i=1 until m. A first 
order polynomial (m=1) forms a linear expression. 
Meanwhile, a second order (m=2) polynomial 
forms a quadratic expression (parabolic curve), a 
third order (m=3) polynomial forms a cubic 
expression and a fourth order (m=4) forms a 
quartic expression [7] [8]. 
 
 
1.5 Data Background 
In this study a total of 225 sets of data for five 
different nonlinear functions are generated. There 
are 3 factors in the sets of data generated, which are 
X1, X2 (input values) and Y (output values). The input 
data are independent of each other. The abscissa 
values were generated as uniform random variates 
on [0, 1] which are independent of each other. They 
are all translated to be non negative and scaled so 
that the standard deviation is 1 (for a large regular 
grid with 2500 points on the unit square [0, 1]2). 
 
 
 

2 Methodology 
2.1 Equation of the Five Non-linear 
Functions for Training 
Five non-linear functions taken from [9] are chosen 
as the training sets in this study. These functions are 
as follows: 
1. Simple Interaction Function: 

)]36.0)6.0)(4.0[(391.10),( 2121
)1( +−−= xxxxg

 
2. Radial Function: 

(2) 2 2
1 2( , ) 24.234 (0.75 ),g x x r r= −  

2 2 2
1 2( .05) ( 0.5)r x x= − + −  

 
3. Harmonic Function: 

)],Re(20/)2[(659.42),( 5
121

)3( zxxxg ++=
 

where )1(5.021 iixxz +−+=  
  or equivalently to  

(3) 4
1 2 1 1( , ) 42.659[0.1 (0.05g x x x x= + + −� �  

2 2 4
1 2 210 5 )],x x x+� � �  

where 5.0~,5.0~
2211 −=−= xxxx  

 
4. Additive Function: 

12 1(4)
1 2 1( , ) 1.33561[1.5(1 ) xg x x x e −= − +

23( .5)2
1sin(3 ( 0.6) ) xx eπ −− +  

2
2sin(4 ( .9) )]xπ −  

 
5. Complicated Interaction Function: 

)]7sin())6.0(13sin(35.1[9.1),( 2
2

121
)5( 21 xexexxg xx −⋅−+=

 
 
2.2 Multi-layered Perceptron  
A comparison is made between the data generated 
from multi-layered perceptron (MLP) and a 
nonlinear regression model, namely polynomial 
regression using fraction of variance unexplained 
(FVU). Five non-linear functions )( jy , j = 1, 2, …, 5 
in this study are used to test the performance of the 
single and double hidden layered MLP and the 
polynomial regression models as well. The error 
back-propagation is chosen as the supervised 
training algorithm and hyperbolic tangent function is 
the activation function that is used in the multi-
layered perceptrons.  Just as in [10], these five 

functions are, [ ] Rg j →2)( 1,0:  where j = 1, 2, 

…,5. 225 generated points ( ){ }21 , qq xx  where q = 1, 
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2, …, 225, are from the range [0, 1]2 and are 
independent of each other. This same set of values is 
used to train the MLP. In short, 

( )21
)()( , qq

jj xxgy =  where q = 1, 2, …, 225 and j = 

1, 2, …, 5. Since the MLP model has two inputs and 
one output, the MLP with single hidden layer of J 
neurons will result in (2 × J) + (J × 1) weights; 
however, double hidden layer with (J,K) neurons 
(i.e. J neurons in the first hidden layer and K neurons 
in the second hidden layer) will produce (2 × J) + (J 
× K) + (K × 1) weights. Results are tested for single 
hidden layer with 6, 8, 9, 16, 18, 54 and 60 neurons 
whereas double hidden layer are with (3,3) , (4,4) , 
(6,6) and (8,8) neurons. These different sets of 
neurons are used to check whether the number of 
neurons is the determining factor for the accuracy. 
 
 
2.3 Polynomial Regression 
Approximation of these 5 non-linear functions can 
be carried out by estimating the parameters of the 
polynomial regression models. Statistical software 
MINITAB version 14 is used to perform the 
statistical analysis based on the four polynomial 
regression models in this study. The polynomial fit 
is done by using an approximately similar number of 
parameters (weights). There are four types of the 
polynomial regression model that are used in this 
study: 
 

i. Without interaction (18 parameters except 
X1X2 term) 
� = �0 + �1X1 + �2X2 + �3X1

2 + �4X2
2 + 

�5X1
3 + �6X2

3 + �7X1
4 + �8X2

4 + �9X1
5 + 

�10X2
5 + �11X1

6 + �12X2
6 + �13X1

7 + 
�14X2

7 + �15X1
8 + �16X2

8 + �17X1X2  
 

ii. Without interaction (24 parameters except 
X1X2 term) 
� = �0 + �1X1 + �2X2 + �3X1

2 + �4X2
2 + 

�5X1
3 + �6X2

3 + �7X1
4 + �8X2

4 + �9X1
5 + 

�10X2
5 + �11X1

6 + �12X2
6 + + �13X1

7 + 
�14X2

7 + �15X1
8 + �16X2

8 + �17X1
9 + 

�18X2
9 + �19X1

10 + �20X2
10 + �21X1

11 + 
�22X2

11+ �23X1X2 

 
iii. Without interaction (25 parameters) 

� = �0 + �1X1 + �2X2 + �3X1
2 + �4X2

2 + 
�5X1

3 + �6X2
3 + �7X1

4 + �8X2
4 + �9X1

5 + 
�10X2

5 + �11X1
6 + �12X2

6 + + �13X1
7 + 

�14X2
7 + �15X1

8 + �16X2
8 + �17X1

9 + 
�18X2

9 + �19X1
10 + �20X2

10 + �21X1
11 + 

�22X2
11+ �23X1

12 + �24X2
12 

 
iv. With interaction (28 parameters) 

� = �0 + �1X1 + �2X2 + �3X1X2 + �4X1
2 +  

�5X2
2 + �6X1

3 + �7X2
3 + �8X1

2X2 + 
�9X1X2

2 + �10X1
4 + �11X2

4 + �12X1X2
3 + 

�13X1
2X2

2 + �14X1
3X2 + �15X1

5 + �16X2
5 + 

�17X1X2
4 + �18X1

2X2
3 + �19X1

3X2
2 + 

�20X1
4X2 + �21X1

6 + �22X2
6 + �23X1X2

5 + 
�24X1

2X2
4 + �25X1

3X2
3 + �26X1

4X2
2 + 

�27X1
5X2 

 

The main null hypothesis of a regression is that there 
is no relationship between independent variables and 
that particular dependent variable.  

The hypothesis is written as:   

H0: �i = �j = 0     

H1: at least one �i � �j � 0    
for i � j    for i, j = 0,1,2,3,4…27 

p-values are used to test whether the regression 
coefficients and the constant are equal to zero. If 
corresponding p-value is less than 0.05 at 5% 
significant level, we reject the null hypothesis and 
accept the alternative hypothesis that indicates that 
at least one of the regression coefficients is not equal 
to zero. Then there is a statistically significant 
relationship between these variables.  

In regression model, the coefficient of 
determination, R Squared (R²) is a measure of the 
variation of the dependent variable that can be well 
explained by the regression line and the independent 
variables. It is used to determine if the equation is of 
adequate accuracy. The closer the R Squared is to 
100%, the better the equation fits the data and the 
better the regression model is. R Squared of �% 
carries the meaning of about �% of the total 
variation of the dependent variable is caused by the 
deviation in the independent variables. Adjusted R 
Squared is a modification of R Squared that adjusts 
for the number of dependent variables in a model. 
The adjusted R Squared increases only if the new 
term (explanatory variable) improves the model 
more than would be expected by chance.  
 
 
2.4 Criteria for Comparison 
According to [9], the fraction of variance 
unexplained (FVU) on the training set is used for the 
comparison of the accuracy in the simulations of the 
five non-linear functions. Fraction of Variance 
Unexplained (FVU) is the proportion of the variation 
among the observed values y1, y2 … yn that remains 
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unexplained by the fitted regression. When the FVU 
is close to 0, the variation of the observed values of y 
around the fitted regression function is much smaller 
than their variation around y . It is defined as FVU = 

2

1

2

1

ˆ
n

i
i

n

i
i

iyy

y y

=

=

� �
−� �

� �

� �
−� �

� �

�

�

 

 
where y

i
, 

iŷ  and y  represent true y, predicted y 

and the mean of y respectively. 

The FVU values of these three categories are 
compared by using the similar number of parameter 
or weights as the basis of comparison. The 
effectiveness of the approximation nature of a neural 
network (multi-layered perceptrons) versus a 
classical statistical method (polynomial regressions) 
can be determined. The smaller the FVU value, the 
better the approximation ability. Table 1 shows the 
comparison criteria in our study. For example, single 
hidden layer MLP with 6 neurons, double hidden 
layer MLP with 3,3 neurons and polynomial 
regression with 18 parameters are compared because 
all of them have 18 weights. 

 
 

Table 1: Comparison of Three Methods by using Comparable Number of Parameters or Weights 

Single 
Hidden 
Layer 

Perceptron  
(J neurons) 

Corresponding 
Weights for Single 

Hidden Layer  
(2 x J) + (J x 1) 

Double 
Hidden 
Layer 

Perceptron  
(J,K 

neurons) 

Corresponding 
Weights for Double 

Hidden Layer  
(2 x J) + (J x K) +  

(K x 1) 

Polynomial 
Regression  

(Parameters) 

6  18 3,3 18 18 
8 24 - - 24, 25 
9 27 4,4 28 28 

18 54 6,6 54 - 
16 48 8,8 88 - 
54 162 - - - 
60 180 - - - 

 

 
Table 2: Summary of Results for Polynomial Regression  

 

Without 
interaction 

(18 parameters) 
except the X1X2 

term 

Without 
interaction 

(24 parameters) 
except the X1X2 

term 

Without 
interaction 

(25 
parameters) 

With interaction 
(28 parameters) 

P-value of 
coefficient 

of term 
<0.05 

 

Constant, X1, X2, 

X1X2 
Constant, X1, X2, 

X1X2 
Constant 

Constant, X1, X2, 
X1X2, X1

2, X2
2, 

X1
3, X1

2X2, 
X1X2

2, X1X2
3, 

X1
3X2, X1X2

4, 
X1

4X2, X1X2
5, 

X1
5X2 

R-Sq (R²) 
 100.0% 100.0% 17.4% 100.0% 

g1 

R-Sq(adj) 
 100.0% 100.0% 7.4% 100.0% 
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P-value of 
coefficient 

of term 
<0.05 

 

Constant Constant Constant 

Constant, X1, X2, 
X1X2, X1

2, X2
2, 

X1
3, X2

3, X1
2X2, 

X1X2
2, X1

4, X2
4, 

X1
2X2

2, X1
5, X2

5, 
X1

6, X2
6 

R-Sq (R²) 
 88.1% 88.1% 88.1% 100.0% 

g2 

R-Sq(adj) 
 87.1% 86.7% 86.7% 100.0% 

P-value of 
coefficient 

of term 
<0.05 

 

Constant Constant Constant 

Constant, X1, 
X1X2, X1

2, X2
2, 

X2
3, X1

2X2, X1
4, 

X2
4, X1X2

3, 
X1

2X2
2, X1

3X2, 
X1

5, X1X2
4, X1

3 
X2

2 
R-Sq (R²) 

 25.8% 25.8% 25.8% 100.0% 

g3 

R-Sq(adj) 
 19.7% 17.3% 16.9% 100.0% 

P-value of 
coefficient 

of term 
<0.05 

 

Constant, X1, X2, 
X1

2
, X2

2
, X1

3
, X2

3
, 

X1
4, X2

4
, X2

5
, X2

6
, 

X2
7

, X1
8

, X2
8

 

Constant, X1, X2, 
X1

2, X2
2, X2

3, X2
4, 

X1
5, X2

5, X1
6, X2

6, 
X1

7, X2
7, X1

8, X2
8, 

X1
9, X2

9, X1
10, 

X2
10, X1

11, X2
11 

Constant, X1, 
X2, X1

2, X2
2, 

X1
3, X2

3, X2
4, 

X2
5, X2

6, X2
7, 

X2
8, X2

9, X2
10, 

X2
11, X2

12 

Constant, X1, X2, 
X2

2, X2
3, X2

4, X2
5 

and X2
6 

R-Sq (R²) 
 100.0% 100.0% 100.0% 97.9% 

g4 

R-Sq(adj) 
 99.9% 100.0% 100.0% 97.6% 

P-value of 
coefficient 

of term 
<0.05 

 

Constant, X1X2 Constant, X1X2 Constant 

Constant, X2, 
X1X2, X1

3, X1
2X2, 

X1X2
2, X1

4, 
X1

2X2
2, X1

3X2, 
X1X2

4, X1
2X2

3, 
X1

3X2
2, X1

4X2, 
X1X2

5, X1
3X2

3, 
X1

4X2
2, X1

5X2 

 
R-Sq (R²) 

 48.2% 48.2% 40.0% 91.0% 

g5 

R-Sq(adj) 
 43.9% 42.3% 32.8% 89.8% 

 

where gi , i = 1,2,3,4,5 represents the five non-linear training functions in [9]. 
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Table 3: FVU Values for Five Non-linear Functions with MLP and Polynomial Fits 
Single hidden layer MLP 

 
MLP (6 
hidden 

neurons) 

MLP (8 
hidden 

neurons) 

MLP (9 
hidden 

neurons) 

MLP (16 
hidden 

neurons) 

MLP (18 
hidden 

neurons) 

MLP (54 
hidden 

neurons) 

MLP (60 
hidden 

neurons) 
g1 0.25574 0.25620 0.03528 0.03113 0.03123 0.03137 0.02954 
g2 1.01019 1.01010 1.01005 1.00991 1.00988 1.00965 0.99550 
g3 0.87975 0.87713 0.81884 0.40545 0.55329 1.00874 0.11256 
g4 0.51714 0.47955 0.30814 0.29690 0.29249 0.27076 0.29381 
g5 0.55677 0.32834 0.19475 0.05738 0.06437 0.13110 0.04997 

Double hidden layer MLP 

   
MLP  (3,3 

hidden 
neurons) 

MLP (4,4 
hidden  

neurons) 

MLP (6,6 
hidden  

neurons) 

MLP (8,8 
hidden 

neurons) 
 

  g1 0.03774 0.02857 0.02833 0.02812  

  g2 0.02773 0.01343 0.00294 0.00254  

  g3 0.41188 0.48098 0.17491 0.18651  

  g4 0.38449 0.23379 0.03878 0.01713  

  g5 0.25665 0.12465 0.04318 0.02250  

Polynomial regression fit 

   

Without 
interaction 

(18 
parameters 

except X1X2 
term) 

Without 
interaction 

(24 
parameters 

except X1X2 
term) 

Without 
interaction 

(25 
parameters) 

Interaction 
(28 

parameters) 
 

  g1 1.65E-10 1.09E-09 0.90230 2.92E-10  

  g2 0.14411 0.16250 0.20569 1.64E-09  

  g3 0.74230 0.83265 0.89502 1.68E-07  

  g4 0.00095 0.07538 0.13753 0.02139  

  g5 0.84031 0.90431 0.66272 0.09193  
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Comparison of FVU Values
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Figure 1: FVU Values for Five Non-Linear Functions with 18 Weights/Parameters 

 
 

Comparison of FVU Values

0

0.2

0.4

0.6

0.8

1

1.2

MLP (9 hidden neurons) MLP (4,4 hidden neurons) Interaction (28 parameters)

Number of Neurons/Parameters

FV
U

 V
al

ue

g1

g2

g3

g4

g5

 
 
 

Figure 2: FVU Values for Five Non-Linear Functions with around 28 Weights/Parameters 
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Comparison of FVU Values
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Figure 3: FVU Values for Five Non-Linear Functions with 54 Weights 

 
 

Comparison of FVU Values
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Figure 4: FVU Values for Five Non-Linear Functions with around 24 Weights/Parameters 

 

WSEAS TRANSACTIONS on MATHEMATICS Ong Hong Choon, Leong Chee Hoong and Tai Sheue Huey

ISSN: 1109-2769 360 Issue 6, Volume 7, June 2008



Comparison of FVU Values
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Figure 5: FVU Values for Five Non-Linear Functions with Total 16 hidden neurons 

 
 

3 Results 
From Table 2, the polynomial regression model with 
interaction terms (28 parameters) reveals that when 
interactions exist in the model, more significant terms 
are found at 95% significant level. This model provides 
the good fit for these five non-linear functions with 
higher values of R Squared and adjusted R Squared. Its 
variability is well explained by the independent 
variables. The existence of interaction in regression 
model contributes to a better estimate ability for non-
linear functions. 

Referring to Table 3, the FVU values generally 
decrease as the number of hidden neurons increase in 
the single hidden layer MLP as well as the double 
hidden layer MLP. This fact is true for all the 5 
different non-linear functions. However, for the case of 
the polynomial regression, the FVU values of all 5 
functions are relatively small and close to 0 
respectively when model of 28 parameters with 
interaction is employed. As these FVU values approach 
0, the predicted output will be very close to the value of 
target output. From the optimal FVU values, 
polynomial regression outperforms the MLP with 
single hidden layer MLP and double hidden layer MLP 
for all functions except for the complicated interaction 
function (g5). Meanwhile, double hidden layer MLP is 
more suitable to be employed in the complicated 
interaction function g5. Double hidden layer MLP 

outperforms single hidden layer MLP. The MLP is 
more appropriate than the polynomial regression in 
approximating the complicated interaction function. 

From Figure 1, we observe that simple 
interaction function (g1) and additive function (g4) 
have the smallest FVU value when the approximation 
is done by using  polynomial regression model 
without interaction (18 parameters except X1X2 term). 
However, MLP with double hidden layer (3, 3) 
hidden neurons gives the smallest FVU value to 
radial function (g2), harmonic function (g3) and 
complicated interaction function (g5). 

Figure 2 shows that polynomial regression with 
interaction (28 parameters) contributes the lowest 
FVU values to all five non-linear functions in our 
study compared to the other two methods, which are 
9 hidden neurons in single hidden layer MLP and (4, 
4) hidden neurons in double hidden layer MLP. The 
existence of interaction in regression model provides 
better estimation ability for non-linear functions as 
compared to MLP when all three have the same 
number of around 28 weights. 

As we can notice, the negative slope appears in 
the Figure 3. This indicates that double hidden layer 
MLP with (6, 6) neurons give the smaller FVU 
values throughout all five non-linear functions as 
compared to the single hidden layer MLP with 18 
neurons. We realize that the single hidden layer MLP 
does not outperform the double hidden layer MLP 
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because the larger the FVU value, the greater the 
variation of the model.  

We observe that polynomial regression without 
interaction (24 parameters except X1X2 term) gives the 
lowest FVU values for the five non-linear functions 
respectively except for complicated interaction function 
(g5) from the comparison in Figure 4. This polynomial 
regression fit is slightly better than polynomial 
regression model without interaction (25 parameters) 
because of the existence of the only interaction term 
(X1X2) in regression model with 24 parameters. The 
interaction feature possesses the better estimating 
ability than those models without interaction. For 
complicated interaction function (g5), its FVU value is 
the lowest when the approximation is done by using 8 
hidden neurons MLP. 

The comparison of FVU values under the similar 
number of hidden neurons is shown in Figure 5. As we 
can see from the figure above, 16 hidden neurons and 
(8, 8) hidden neurons are used in the comparison for 
single hidden layer MLP and double hidden layer MLP 
respectively. Both of these MLP models have 16 
hidden neurons, but the total number of their weights is 
different. (8, 8) hidden neurons contribute more 
weights (1x8 + 8x8 + 2x8 = 88) than 16 hidden neurons 
(1x16 + 2x16 = 48). A larger number of weights 
usually give the better approximation result with 
smaller FVU value as we observe from Figure 5. 
 
  

4 Conclusion 
In general, when we do not consider the number of 
parameters or weights being used, approximation using 
polynomial regression generates lower FVU value as 
compared to approximation using neural networks with 
single hidden layer MLP and double hidden layer MLP. 
This is true for all training functions except for the 
complicated interaction function (g5) and this is 
consistent with the result from [11]. According to [11], 
neural networks are capable of exploring relationships 
among the data which are difficult to arrive at using 
traditional statistical methods. The optimal number of 
parameters in polynomial regression is 18 parameters 
(without interaction except for X1X2 term) and 28 
parameters (with interaction term). The existence of 
interaction term in the regression model will produce 
higher R Squared and adjusted R Squared value. 
Polynomial fit without interaction does not give many 
significant terms and this situation contributes to less 
desirable approximation ability.  

On the other hand, double hidden layer MLP 
provides better estimation results than single hidden 
layer MLP without considering the number of 
parameters being used. Apart from that, the number 
of hidden neurons also plays a crucial role in 
determining the effectiveness of an approximator. We 
found that the approximator with more weights or 
parameters will perform slightly better than those 
with less weights or parameters. The performance of 
the MLP can be improved by increasing the number 
of neurons to handle very complicated functions 
(provided no over fitting occurs) but increasing the 
weight of polynomial regression does not give any 
large influence to the model (see [12]). Furthermore, 
the increasing the number of parameters or weights in 
the polynomial regression model will make the model 
more complicated when doing the approximation 

When the comparison of FVU values is carried 
out on the basis of similar number of parameters or 
weights, polynomial regression generally performs 
better than the MLP except for the complicated 
interaction function. In neural networks, double 
hidden layer MLP has lower FVU values when 
compared to the single hidden layer MLP. This is 
consistent with the result in which double hidden 
layer MLP is superior in extracting information [13].  

If the comparison of FVU values is based on 
similar number of hidden neurons, double hidden 
layer MLP performs better than single hidden layer 
MLP. In fact, having similar number of neurons does 
not necessarily imply similar number of weights or 
parameters. 

The need for function approximation arises in 
many branches of applied mathematics. In general, a 
function approximation problem requires us to select 
a function among a well defined class that closely 
matches or approximates a target function. In this 
study, we have compared the approximation ability 
of multi-layered perceptron (MLP) neural network 
with the polynomial regression using five nonlinear 
functions from [9]. 

A comparison can also be done using other types 
of neural networks like, for example, the radial basis 
function neural network and using a different 
appropriate set of nonlinear functions as training sets. 
Similarly, other multivariate statistical methods like 
the projection pursuit regression can be used for 
comparison. 
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