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Abstract: Comparing the lopsided Hermitian/skew-Hermitian splitting (LHSS) method and Hermitian/skew-
Hermitian splitting (HSS) method, a new criterion for choosing the above two methods is presented, which is 
better than that of Li, Huang and Liu [Modified Hermitian and skew-Hermitian splitting methods for non-
Hermitian positive-definite linear systems, Numer.  Lin. Alg. Appl., 14 (2007): 217-235]. 
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1 Introduction 

The solutions of many problems in scientific 
computing are eventually turned into the solutions 
of the large linear systems, that is, 

                                Ax b=                               (1) 
where  is a large sparse non-Hermitian 
positive definite matrix, and 

n nA C ×∈
, nx b C∈ . To solve (1) 

iteratively, the efficient splitting of the coefficient 
matrix are usually required. For example, the 
classic Jacobi and Gauss-Seidel iteration split the 
matrix into its diagonal and off-diagonal parts. 
One can see [3, 5-8] for a comprehensive survey. 
Recently, a Hermitian and skew-Hermitian splitting 
[1] gains people’s attention, that is, 

A

A

                                  A H S= +  
where  and  . 12 ( )H A A− ∗= + 12 ( )S A A− ∗= −

In [1], Bai, Golub and Ng developed the HSS 
iteration method by the above splitting of for non-
Hermitian positive definite system:  

A

   Given an initial guess (0)x , for , 
until

0,1, 2,k = …
( )kx converges, compute 

        
1

1

( 2 ) ( )

( 1) ( 2 )

( ) ( )

( ) ( )

k k

k k

,

,

I H x I S x b

I S x I H x b

α α

α α

−

−

+

+ +

⎧ + = −⎪
⎨

+ = −⎪⎩

+

+
    (2) 

where  and are 
the Hermitian and skew-Hermitian parts of A , 
respectively, and 

12 ( )H A A− ∗= + 12 ( )S A A− ∗= −

α  is a given positive constant.  
     In matrix-vector form, the HSS iteration method 
(2) can be equivalently rewritten as 

( 1) ( )( ) ( ) ,k kx M x G bα α+ = +   0,1, 2,k = …

where 
          

1 1

1 1

( ) ( ) ( )( ) ( ),
( ) 2 ( ) ( ) .

M I S I H I H I S
G I S I H

α α α α α
α α α α

− −

− −

⎧ = + − + −
⎨

= + +⎩
 

Here, ( )M α  is the iteration matrix of the HSS 
iteration method. To describe the convergence 
property of the HSS iteration, the following theorem 
was established in [1]. 
Theorem 1 Let  be a positive definite 
matrix, 

n nA C ×∈
12 ( )H A A− ∗= +  and    be, 

respectively, its Hermitian and skew-Hermitian 
parts, and

12 ( )S A A− ∗= −

α  be a positive constant. Then the 
spectral radius ( ( ))Mρ α  of the iteration matrix 

( )M α of the HSS method is bounded by 

( )
( ) max

i

i

H
i

λ λ

α λγ α
α λ∈

−
=

+
 

with 1 2 nλ λ≥ ≥ ≥ λ  being the eigenvalues of . 
Thus, it holds that 

H

( ( )) ( ) 1Mρ α γ α≤ <  for all 0.α >  
The optimal parameter α  is 

1
1arg min max

n
nα λ λ λ

α λα λ λ
α λ≤ ≤

⎧ − ⎫
= =⎨ ⎬+⎩ ⎭

 

and 

                    ( ) 1

1

.n

n

λ λ
γ α

λ λ
−

=
+

                        (3) 

Recently, Li, Huang and Liu [2] presented the 
lopsided Hermitian and skew-Hermitian splitting 

WSEAS TRANSACTIONS on MATHEMATICS Shi-Liang Wu and Ting-Zhu Huang

ISSN: 1109-2769 323 Issue 5, Volume 7, May 2008



(LHSS) iteration method based on the following 
splitting: 

( ) (A H S I S I H )α α= + = + − − . 
The LHSS iteration method: Given an initial guess 

(0)x , for , until0,1,2,k = … ( )kx converges, 
compute 

1

1

( 2 ) ( )

( 1) ( 2 )

,

( ) ( )

k k

k k

Hx Sx b

,I S x I H x bα α

−

−

+

+ +

⎧ = − +⎪
⎨

+ = −⎪⎩ +
   (4) 

where α  is a given non-zero positive constant. 
     Note that when the matrix  is positive definite, 

 must be a positive definite matrix with  being 
skew-Hermitian and  

A
H S

A A H H∗ ∗+ = + . 
Since  is skew-Hermitian, it is not difficult to see 
that 

S
I Sα +  is also nonsingular. The above LHSS 

iteration method (4) can be equivalently transformed 
into the following matrix-vector form: 

( 1) ( )( ) ( ) ,k kx x bα α+ = +M G 0,1, 2,k = …  (5) 
where 

         
1 1

1 1

( ) ( ) ( ) ( ),
( ) ( ) .

I S I H H S
I S H

α α α
α α α

− −

− −

⎧ = + − −
⎨

= +⎩

M
G

 

Here, ( )αM  is the iteration matrix of the LHSS 
method. In fact, (5) may also result from the 
splitting 

A M N= −  
of  the coefficient matrix A , with 

1

1

( )
( )(

,
).

M H I S
N I H

α α
α α

−

−

⎧ = +
⎨

= − −⎩ S
 

The following theorem established in [2] describes 
the convergence property of the LHSS iteration. 
Theorem 2 Let , and  be defined as those in 
Theorem 1 and 

A H S
α  be a non-zero constant. Then the 

spectral radius ( ( ))ρ αM  of the iteration matrix 
( )αM of the LHSS iteration is bounded by 

max
2 2 ( )

max

( ) max ,
i

i

H
i

λ λ

σ α λδ α
λα σ ∈

−
=

+
 

where 1 2 nλ λ≥ ≥ ≥ λ  are the eigenvalues of H  

and maxσ  is the maximum singular value of S . 
Moreover, we have 
(i) If max nσ λ≤ , when 

0α >   or 
2

1 max
2 2
max 1

2λσα
σ λ

<
−

, 

the bound of ( ) 1δ α < , i.e., the LHSS iteration 
converges; 

(ii) If  max 1nλ σ λ< < , when 
2
max

2 2
max

20 n

n

λ σα
σ λ

< <
−

 or  
2

1 max
2 2
max 1

2λσα
σ λ

<
−

 , 

the bound of ( ) 1δ α < , i.e., the LHSS iteration 
converges; 
(iii) If  max 1σ λ≥ , when 

2
max

2 2
max

20 n

n

λ σα
σ λ

< <
−

 

the bound of ( ) 1δ α < , i.e., the LHSS iteration 
converges. 

The optimal parameter α  is obtained at 
1

1

2 n

n

λ λα
λ λ

∗ =
+

 

and 
1 max

2 2 2 2
1 max 1

( )( )
4 (

n

n

n

.
)

λ λ σδ α
λ λ σ λ λ

∗ −
=

+ −
  (6) 

Theorem 2 shows that if the coefficient matrix  is 
positive definite the LHSS iteration (5) converges to 
the unique solution of the linear systems (1) for a 
loose restriction on the choice of 

A

α . Moreover, the 
upper bound of the contraction factor of the LHSS 
iteration is dependent on the choice of α , the 
spectrum of the Hermitian part and the maximum 
singular value of the skew-Hermitian part , that is, 

H
S

maxσ , but is independent of the rest singular values 
of  as well as the eigenvectors of the matrices , 

 and . 
S A

H S
Remark 1 Since  is the skew-Hermitian matrix, 

then the eigenvalues of  are complex number 
without the real parts. Let 

S
S

{ }1 2( ) , , nS i i iμ μ μ μ= …  

i Rμ ∈  ( 1, ,i )n= …  and let { }max 1max , , nμ μ μ= … . 

It is easy to know that max maxσ μ= . That is to say, 

maxσ  of Theorem 2 can be replaced by maxμ , which 
shows that the upper bound of the contraction factor 
of the LHSS iteration is dependent on the choice of 
α , the spectrum of the Hermitian part H  and the 
maximum module of the eigenvalues of the skew-
Hermitian part S , but is independent of the module 
of the rest eigenvalue of S  as well as the 
eigenvectors of the matrices , and . A H S
 
2 Main results 
We now give the following main result, which is a 
new criterion for choosing between the two methods. 
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Theorem 3 Let 1λ , nλ , α∗  and ( )δ α∗  be defined 

as those in Theorem 2, respectively. Let α  and 
( )γ α be defined as those in Theorem 1, respectively. 

Case 1: If 1 nλ λ= , then ( )( )δ α γ α∗ = ; 

Case 2: If 1 nλ λ≠  and  
2 2

21
max2

1 1

,
( )

n

n n

λ λ σ
λ λ λ λ

<
+

 

then the following inequality holds: 

( ) ( ).γ α δ α∗<  

Proof. It is easy to know that Case 1 holds from (3) 
and (6). We need only to prove that Case 2 holds.  

Supposing ( ) ( ).γ α δ α∗<  From 1 nλ λ> , we 

have 

1 1 max
2 2 2 2

1 1 max 1

( ) ,
4 (

n

n n

n n

λ λ λ λ σ
λ λ λ λ σ λ λ

− −
<

+ + − )
 

which implies  

        1 max

2 2 2 2
1 1 max 1

( )1 .
4 (

n

n

n n

λ λ σ
λ λ λ λ σ λ λ

+
<

+ + − )
 

Applying squaring operation on both sides and 
combining the coefficients of maxσ , we get 

2 2 4 2 2
1 1 14 [( ) ( ) ]

n n nλ λ λ λ λ λ σ< + − − max .  
By the simple manipulations, we obtain 

2 2 2 2
1 1 1( )

n n nλ λ λ λ λ λ σ< + max ,  
which completes the proof. 

Apparently, we have the following theorem. 
Theorem 4 Under conditions of Theorem 3, 
If 1 nλ λ≠  and 

2 2
2 1
max 2

1 1

,
( )

n

n n

λ λσ
λ λ λ λ

<
+

 

then ( ) ( )γ α δ α∗<  holds. 

Remark 2  It is easy to know that maxσ  of Theorem 

3 and 4 can be replaced by maxμ . Moreover, 

Theorem 2.5 in [2] is invalid when 1 nλ λ= . In fact, 

in this case,  ( )( )δ α γ α∗ = . 

Corollary 1  Under conditions of Theorem 3,  if 

1 nλ λ≠ and 1 2
1 2 max2 λ λ σ− < , then ( ) ( )γ α δ α∗< . 

  
3 Two examples 

Example 1 We consider the three-dimensional 
convection-diffusion equation  

( ) ( ) (xx yy zz x y zu u u q u u u f x y z, , )− + + + + + =  
on the unit cube [0,1] [0,1] [0,1]Ω = × × , with 
constant coefficient q  and subject to Dirichlet-type 
boundary conditions. Discretizing this equation with 
seven-point finite difference and assuming the 
numbers ( n ) of grid points in all three directions are 
the same, we define 1 (1 )h n= + as the step size, 

/ 2( 0)r qh q= > is the mesh Reynolds number.  
From [1], when the problem size becomes 
reasonably large, i.e., h  is reasonably small, we 
know for the centred difference scheme that  

1 6(1 cos ) 12,hλ π= + ≈  
2 26(1 cos ) 3 ,n h hλ π= − ≈ π

h
 

max 6 cos 3 .r h qσ π= ≈  
From Theorem 3, we know that if  

3 3
2 2

2

8 8 ,
(2 ) 8

h h q
h h

π π π
π π

≤ = <
+

          (7) 

that is,  q π> , then the HSS method may be a good 
choice.  

From Theorem 4, we find that if 
3 3

2
2

8 8 ,
9 (2 )

h hq
h

π π
π

< ≤
+

            (8) 

the LHSS method may be a good choice. 
   In the sequel, we investigate the spectral radius of 
the matrix ( )M α  and ( )αM  with the different 
value of All the matrices tested are 512.q 512×  
unless otherwise mentioned in Example 1, i.e., 

8.n =  From the above discussing, we know that if 
8n = , then 

38 3.0623
9

hπ
 

To confirm the results of (7) and (8), here we test q  
is equal to 1, 1.5, 50 and 100, respectively. In 
figures (1)-(4), we show that the spectral radius 

( ( ))Mρ α  and ( ( ))ρ αM  of the iteration matrices 
of both LHSS and HSS method with the defferent 
value of  α , and the bound ( ).δ α  
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Fig 1. The spectral radius and bound with  =1q
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Fig 2. The spectral radius and bound with  =1.5q
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Fig 3. The spectral radius and bound with  =50q
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Fig 4. The spectral radius and bound with  =100q
From figures (1)-(4), it is not difficult to find that 

the spectral radius of the iteration matrix LHSS 
method is much smaller than that of the HSS 
method with q be 1 and 1.5, on the other hand, the 
spectral radius of the HSS method seems to be 
better than that of LHSS method when q are equal to 
50 and 100. In the meanwhile, here the distribution 
of the eigenvalues of the iteration matrix is depicted 
in figures (5)-(8) with =1α , which correspond to the 
different value of q.  
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Fig 5. The distribution of eigenvalues with  =1q
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Fig 6. The distribution of eigenvalues with  =1.5q
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Fig 7. The distribution of eigenvalues with  =50q
From figures (5)-(8), we find that the distribution 

of the eigenvalues of the iteration matrix becomes 
clustered when q becomes large. It is not difficult to 
find that the spectral radius becomes large with the 
increasing of q (the matrix becomes dominant). 

Next, we study the HSS and LHSS iteation 
method. We try to use the HSS and LHSS iteration 
method to solve the systems of linear equation (1), 
which raises from the disccretized three dimension 
convection-diffusion equations.  
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Fig 8. The distribution of eigenvalues with q  =100
For the simplicity, we set up the tested problem 

so that the right hand side function is equal to 1 
throughout the unit cube domain. All tests are 
started from the zero vector, performed in Matlab 
6.5, and terminated when the current iterate satisfies  

62

0 2

10kr
r

−< , 

where  and  is the residual of the k-th 
HSS and LHSS iteration. 

0r b Ax= − 0 kr

Some results are presented to illustrate the 
behavior of the convergence of the HSS and LHSS 
method, respectively, which are listed in Tables 1 – 
4, corresponding to Figures (9)-(12). The purpose of 
these experiments is just to investigate the influence 
of the eigenvalue distribution on the convergence 

behavior of HSS and LHSS method, respectively.  
 

α  HSS(IT) LHSS(IT) 
1 49 5 
2 34 5 
3 51 5 
4 68 5 
5 85 5 
6 102 5 
7 119 5 
8 136 5 
9 153 5 
10 170 5 

Table 1. Iteration number (IT) of HSS and LHSS with q 1= . 

 
α  HSS(IT) LHSS(IT) 
1 42 7 
2 33 6 
3 50 6 
4 67 6 
5 83 7 
6 100 7 
7 117 7 
8 133 7 
9 150 7 
10 167 7 

Table 2. Iteration number (IT) of HSS and LHSS with q 1.5= . 

 
α  HSS(IT) LHSS(IT) 
1 52 2098 
2 27 1037 
3 20 666 
4 19 550 
5 19 493 
6 20 460 
7 21 437 
8 22 420 
9 23 409 
10 24 401 

Table 3. Iteration number (IT) of HSS and LHSS with q 50= . 

 
α  HSS(IT) LHSS(IT) 
1 54 1525 
2 27 653 
3 25 542 
4 24 452 
5 23 405 
6 25 377 
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7 25 355 
8 26 341 
9 26 329 
10 27 321 

Table 4. Iteration number (IT) of HSS and LHSS with q 100= . 
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Fig 9. Iteration number with the differentα , and  q=1
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Fig 10. Iteration number with the differentα , and  q=15.
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Fig 11. Iteration number with the differentα , and  q=50
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Fig 12. Iteration number with the differentα , and q=100  

From tables 1-4 and figures (9)-(12),  it is shown 
that the LHSS performs very good for a wide range 
of the parameter α when q satisfies (8). In the 
meanwhile, when q satisfies (7), the HSS method is 
more efficient than LHSS method.  
Example 2 We consider the two-dimensional 
convection-diffusion equation 

( ) ( ) g(xx yy x yu u u u x y, )τ− + + + =  
on the unit square [0 , with constant 
coefficient 

,1] [0,1]×
τ  and subject to Dirichlet-type 

boundary conditions. When the five-point centered 
finite difference discretization is used to it, it is easy 
to get the system of the linear system (1) with the 
coefficient matrix 

A T I T I= ⊗ + ⊗   
and  

tridiag( 1 ,2, 1 )T r r= − − − + , 
where / 2r hτ=  is the mesh Reynolds number 
and⊗ denotes the Kronecker product symbol, and 

1 (1 m)h = +  is used in the discretization on both 
disrections and the natural lexicograghic ordering is 
employed to the unkowns. 

From [4], it is easy to get that for the centred 
difference scheme  

1 4(1 cos ) 8,hλ π= + ≈  
2 24(1 cos ) 2 ,n h hλ π= − ≈ π

h
 

max 4 cos 2 .r hσ π τ= ≈  
By simple computations, it is easy to get that if  

            τ π>                                     (9) 
then the HSS method may be a good choice. And if  

3 3
2

2

8 8 ,
9 (2 )

h h
h

π πτ
π

< ≤
+

             (10) 

the LHSS method may be a good choice. 
Be similar to Example 1, we consider the spectral 

radius, the distribution of the eigenvalues of the 
iteration matrix and iteration number in Example 2 
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when the HSS and LHSS method are applied to 
solve linear systems (1), respectively. 

In the sequel, we investigate the spectral radius of 
the matrix ( )M α  and ( )αM  with the different 
value of τ . All the matrices tested are 100 100×  
unless otherwise mentioned in example 2, i.e., 

, From the above discussing, it easy to get 
that if , then 
m 10=

m 10=
38 2.5056

9
hπ

 

To explain the results of (9) and (10), here we test 
τ is also equal to 1, 1.5, 50 and 100, respectively. In 
figures (13)-(16), we show that the spectral radius 

( ( ))Mρ α and ( ( ))ρ αM  of the iteration matrices 
of both LHSS and HSS method with the different 
value ofτ , and the bound ( ).δ α  

 From the following figures (13)-(16), it is also to 
find that the spectral radius of the iteration matrix 
HSS method is much larger than that of LHSS 
method with τ  be 1 and 1.5, on the other hand, the 
spectral radius of the HSS method seems to be 
better than that of LHSS method when τ  becomes 
large. 
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Fig 13. The spectral radius and bound with =1τ  
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 Fig 14. The spectral radius and bound with =1.5τ  

   In the meanwhile, here figures (17)-(20) describe 
the distribution of the eigenvalues of the iteration 
matrix with =1α , which correspond to the different 
value of τ .  

From figures (17)-(20), it is easy to know that the 
distribution of the eigenvalues of the iteration 
matrix becomes clustered when τ  becomes large. 

Now we investigate the perform of the HSS and 
LHSS method, respectively, which is applied to 
solve the systems of linear equation (1) raising from 
the disccretized two-dimensional convection-diffus-
ion equation.  

For convenience, we set up Example 2 so that the 
right hand side function is also equal to 1 
throughout the unit square domain. All tests are also 
started from the zero vector and the current iterate 
satisfies  

62

0 2

10kr
r

−< . 

We present some results in Tables 5–8 to make 
out the behavior of the convergence of the 
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   Fig 15. The spectral radius and bound with =50τ  
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   Fig 16. The spectral radius and bound with =100τ  
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Fig 17. The distribution of eigenvalues with =1τ  

HSS and LHSS method, respectively. Figures (21)-
(24) depict the behavior of the HSS and LHSS 
method with the different value of τ , which is 
applied to solve (1), respectively. The purpose of 
these experiments is just to further reflect and 
confirm the influence of the eigenvalue distribution 
on the convergence behavior of HSS and LHSS 
method in Example 2, respectively. The solutions of 
the linear systems in each iteration are computed 
exactly.  
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Fig 18. The distribution of eigenvalues with =1.5τ  
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Fig 19. The distribution of eigenvalues with =50τ  

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

(hh) Parameter α=1 and τ=100  
Fig 20. The distribution of eigenvalues with =100τ  
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Fig 21. Iteration number with  the different α , and =1τ  
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Fig 22. Iteration number with the differentα , and =1.5τ  
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Fig 23. Iteration number with the differentα , and =50τ  
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Fig 24. Iteration number with the differentα , and =100τ  
 

α  HSS(IT) LHSS(IT) 
1 38 4 
2 74 5 
3 111 5 
4 148 5 
5 185 5 
6 222 5 
7 259 5 
8 296 5 
9 333 5 
10 370 5 

Table 5. Iteration number (IT) of HSS and LHSS with 1τ = . 
 

α  HSS(IT) LHSS(IT) 
1 38 5 
2 72 6 
3 108 7 
4 144 7 
5 181 7 
6 217 7 
7 253 7 
8 289 7 
9 325 7 
10 361 7 

Table 6. Iteration number (IT) of HSS and LHSS with 1.5τ = . 
 

α  HSS(IT) LHSS(IT) 
1 38 1074 
2 23 545 
3 20 459 
4 21 422 
5 22 401 
6 23 389 
7 25 380 
8 27 374 

9 28 369 
10 30 366 

Table 7. Iteration number (IT) of HSS and LHSS with 50τ = . 
 

α  HSS(IT) LHSS(IT) 
1 39 647 
2 25 454 
3 25 374 
4 25 339 
5 25 321 
6 26 308 
7 27 299 
8 28 292 
9 29 287 
10 30 283 

Table 8. Iteration number (IT) of HSS and LHSS with 100τ = . 
 
Remark 3 From (7)-(10), we find that if the 
problem size becomes more and more large, that is, 

 is reasonably small, q orh τ  must be very small 
when the LHSS method is used to apply. That is, 
Theorem 4 is too restrictive to be useful. In fact, for 
the case that q or τ  is very small, many other 
efficient methods like the generalized conjugate 
gradient method should be much more efficient and 
practical than the LHSS method introduced by Li et 
al [2]. However, how to make the LHSS method 
more efficient may be further studied. 
Remark 4 By observing Examples 1 and 2, q  
orτ may be chosen to be independent of h  when 
the HSS method is applied to solve (1). Namely, 
even if the problem size becomes reasonably large, 

orq τ chosen is still independent of the value of h  
involved when the HSS method is applied to solve 
(1). 
Remark 5 In fact, an upper bound may not truly 
reflect the convergence behavior of an iteration 
method from Theorem 3 and Theorem 4. However, 
by comparing the HSS method and the LHSS 
method, it is not difficult to find that the HSS 
method may be much more efficient and practical 
than the LHSS method. There exist two main 
aspects. Firstly, from Theorem 1 and Theorem 2, it 
is not difficult to find that the convergence domain 
of LHSS may be smaller than that of HSS. Secondly, 
from (2) and (4), under conditions of Theorem 1 and 
Theorem 2, we can find that LHSS may be less 
efficient than HSS as only a sub-system of linear 
equations of the coefficient matrix H  is solved 
rather than that of the better-conditioned coefficient 
matrix I Hα + . Indeed, let max ( )Hλ  and min ( )Hλ , 
respectively, be the maximum and minimum 
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eigenvalue of H .  denotes the spectral 
condition number of . It is easy to obtain that 

( )Hκ
H

max max

min min

( ) ( )( ) (
( ) ( )
H H )I H
H H

α Hλ λκ α κ
λ

+ = < =
α λ
+
+

 

with  0α > . 
 
4   Conclusion 

In this note, we have compared the HSS and 
LHSS method to solve non-Hermitian positive 
definite linear systems. A new criterion for choosing 
the above two methods has been presented. 
Numerical tests show that the LHSS method 
performs very well if the Hermitian part of the 
coefficient matrix is dominant, however as the 
skew-Hermitian part becomes dominant the perfor- 
mance of the LHSS method becomes not as good as 
the HSS method. Therefore, we need to improve the 
LHSS method, such as introduce another parameter 
β  in the first equation in (4), which we will study 
in the future. 
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