Two Congruence Classes for Symmetric Binary Matrices over \mathbb{F}_{2}

YONG-HYUK KIM
Department of Computer Science and Engineering
Kwangwoon University
Wolge-dong, Nowon-gu
Seoul, 139-701
KOREA
yhdfly@kw.ac.kr

KEOMKYO SEO
School of Mathematics
Korea Institute for Advanced Study
Cheongnyangni 2-dong, Dongdaemun-gu
Seoul, 130-722
KOREA
kseo@kias.re.kr

Abstract

We provide two congruence classes for symmetric binary matrices over a finite field of characteristic 2 . We use standard methods of matrix analysis to prove directly that there exist two congruence classes. Our proof gives explicit algorithms to compute the congruence classes.

Key-Words: congruence of matrices, binary matrices, finite field of characteristic 2.

1 Introduction

We call two square matrices A and B congruent when there exists a nonsingular matrix Q satisfying $B=$ $Q^{t} A Q$. For such A and B, we denote $A \sim_{c} B$. Clearly, \sim_{c} is an equivalence relation. In [7], Gow computed the number of congruence classes for invertible matrices over finite fields. Waterhouse[9] extended the result of Gow to find the number of congruence classes where $B^{-1} B^{t}$ is unipotent. Recently Corbas and Williams $[4,5]$ have determined the sizes of congruence classes of (2×2) and (3×3) matrices over a finite field \mathbb{F}_{q}.

A matrix A is called binary if $A \in M_{n \times n}\left(\mathbb{F}_{2}\right)$. Binary matrices have been widely used to deal with the adjacency of a graph.(See $[1,2,3])$ In particular, Anderson and Feil[1] transformed the light bulb puz$z l e$ into the problem of solving a linear system $A x=b$ from its graphical structure, where $A \in M_{n \times n}\left(\mathbb{F}_{2}\right)$ and $x, b \in \mathbb{F}_{2}^{n}$. Then the solution could be obtained by computing the inverse of A, i.e., $x=A^{-1} b$. Binary matrices are also useful for dealing with the cut/cycle subspace of a graph, which is a vector space over \mathbb{F}_{2}.([2]) Moreover they can be used to represent a basis change of a vector space over \mathbb{F}_{2} in many combinatorial problems.

Define $J_{n}=\left(\mathfrak{j}_{i j}\right) \in M_{n \times n}\left(\mathbb{F}_{2}\right)$ as follows:

$$
\mathfrak{j}_{i j}=\left\{\begin{array}{cc}
1 & \text { if }(i-j=1 \text { and } i \text { is even }) \\
& \text { or }(j-i=1 \text { and } j \text { is even }) \\
0 & \text { otherwise. }
\end{array}\right.
$$

For instance, $J_{2}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), J_{3}=\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$,
and $J_{4}=\left(\begin{array}{cccc}0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)$.
Let $A \in M_{n \times n}\left(\mathbb{F}_{2}\right)$. We assume that $A \sim_{c} I_{k}$ $(k \leq n)$ means $A \sim_{c}\left(\begin{array}{cc}I_{k} & 0 \\ 0 & O_{n-k}\end{array}\right)$ and also $A \sim_{c} J_{k}(k \leq n)$ means $A \sim_{c}\left(\begin{array}{cc}J_{k} & 0 \\ 0 & O_{n-k}\end{array}\right)$. By the definition of J_{n}, one can easily see that $I_{2}=$ $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \not \overbrace{c} J_{2}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.

In page 171 of [8], it was proven that if \mathbb{F} has characteristic two and $g(x, y)$ is a non-alternate symmetric bilinear form in a vector space V over \mathbb{F}, then there exists a basis of V such that the matrix of $g(x, y)$ is congruent to a symmetric diagonal matrix. In this paper, however, we deal with arbitrary symmetric binary matrices and give a classification of these matrices.

Theorem 1. Let $A \in M_{n \times n}\left(\mathbb{F}_{2}\right)$ be symmetric with rank k. Then we have the following.
(i) If every diagonal element of A is 0 , then $A \sim_{c} J_{k}$ and hence k is even.
(ii) If at least one diagonal element of A is 1 , then $A \sim_{c} I_{k}$.

In particular, when $n=2$ or 3 , this result is the same as [5]. As an immediate consequence, we have the following.

Corollary 1. Let $A \in M_{n \times n}\left(\mathbb{Z}_{2}\right)$ be symmetric with rank k. If k is odd, then $A \sim_{c} I_{k}$.

2 Preliminaries

We need some useful lemmas.
Lemma 1. Let $A, B \in M_{n \times n}\left(\mathbb{F}_{2}\right)$. If $A \sim_{c} B$, then we have $\operatorname{rank}(A)=\operatorname{rank}(B)$.

Definition 2. Let $A \in M_{n \times n}\left(\mathbb{F}_{2}\right)$. Any one of the following two operations on the rows of A is called an elementary row operation:
(i) interchanging any two rows of A
(ii) adding a row of A to another row.

Elementary row operations are of type 1 or type 2 depending on whether they are obtained by (i) or (ii). An $n \times n$ elementary matrix over \mathbb{F}_{2} field is a matrix obtained by performing an elementary row operation on I_{n}. The elementary matrix is said to be of type 1 or type 2 according to whether the elementary row operation performed on I_{n} is a type 1 or type 2 , respectively.

Lemma 3. Suppose that $Q \in M_{n \times n}\left(\mathbb{F}_{2}\right)$ is a nonsingular matrix. Then Q is a product of elementary matrices, i.e., $Q=E_{1} E_{2} \cdots E_{k}$. So $Q^{t} A Q=E_{k}^{t}\left(\cdots\left(E_{2}^{t}\left(E_{1}^{t} A E_{1}\right) E_{2}\right) \cdots\right) E_{k}$ for any $A \in M_{n \times n}\left(\mathbb{F}_{2}\right)$.

Lemma 4. $\operatorname{rank}\left(J_{n}\right)=2 \cdot[n / 2]$, where [] means Gauss symbol.

Furthermore we have

$$
I_{3}=\left(\begin{array}{lll}
1 & 0 & 0 \tag{1}\\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \sim_{c}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

since taking $Q=\left(\begin{array}{ccc}1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right)$ gives $Q^{t} I_{3} Q=$ $Q^{t} Q=Q^{2}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$.

Proposition 5. Let $A \in M_{n \times n}\left(\mathbb{F}_{2}\right)$. If $A \sim_{c} I_{k}$ or $A \sim_{c} J_{k}$ for some $k \in \mathbb{N}$, then A is symmetric.

Proof. See [6], which gives more general theorem. On the other hand, we have the following as a criterion of symmetric binary matrices.

Lemma 6. Let $A=\left(a_{i j}\right) \in M_{n \times n}\left(\mathbb{F}_{2}\right)$ be symmetric. If every diagonal element of A is 0 , then $A \varkappa_{c} I_{k}$ for some $k \in \mathbb{N}$. In particular, $I_{n} \nsim c J_{n}$ for every $n \in \mathbb{N}$.

Proof. By Lemma 3, it is enough to show that, for the elementary matrix E of each type, every diagonal element of $E^{t} A E$ is 0 . First we consider
the elementary matrix E_{1} of type 1 . We may assume that E_{1} interchanges row i and row $j(i<j)$. Let $a_{i j}=a_{j i}=\star(\boldsymbol{\star}=0$ or 1$)$. Then we have

$$
\begin{aligned}
& A=\left(\begin{array}{lllll}
\ddots & & & & \\
& 0 & & \star & \\
& & \ddots & & \\
& \star & & 0 & \\
& & & & \ddots
\end{array}\right), \\
& E_{1}=E_{1}^{t}=\left(\begin{array}{lllll}
I_{i-1} & & & & \\
& 0 & & 1 & \\
& & I_{j-i-1} & & \\
& 1 & & 0 & \\
& & & & I_{n-j}
\end{array}\right) \text {, } \\
& E_{1}^{t} A=\left(\begin{array}{ccccc}
I_{i-1} & & & & \\
& 0 & & 1 & \\
& & I_{j-i-1} & & \\
& 1 & & 0 & \\
& & & & I_{n-j}
\end{array}\right) \times \\
& \left(\begin{array}{lllll}
\ddots & & & & \\
& 0 & & \star & \\
& & \ddots & & \\
& \star & & 0 & \\
& & & & \ddots
\end{array}\right) \\
& =\left(\begin{array}{lllll}
\ddots & & & & \\
& \star & & 0 & \\
& & \ddots & & \\
& 0 & & \star & \\
& & & & \ddots
\end{array}\right) \text {, and } \\
& E_{1}^{t} A E_{1}=\left(\begin{array}{llllll}
\ddots & & & & \\
& \star & & 0 & \\
& & \ddots & & \\
& 0 & & \star & \\
& & & & \ddots
\end{array}\right) \times \\
& \left(\begin{array}{ccccc}
I_{i-1} & & & & \\
& 0 & & 1 & \\
& & I_{j-i-1} & & \\
& 1 & & 0 & \\
& & & & I_{n-j}
\end{array}\right) \\
& =\left(\begin{array}{lllll}
\ddots & & & & \\
& 0 & & \star & \\
& & \ddots & & \\
& \star & & 0 & \\
& & & & \ddots
\end{array}\right) .
\end{aligned}
$$

So every diagonal element of $E_{1}^{t} A E_{1}$ is 0 . Next we consider the elementary matrix E_{2} of type 2 which adds row i to row $j(i<j)$. Let $a_{i j}=a_{j i}=\boldsymbol{\&}(\boldsymbol{\AA}=$

0 or 1).

$$
\begin{aligned}
& A=\left(\begin{array}{lllll}
\ddots & & & & \\
& 0 & & \text { के } & \\
& & \ddots & & \\
& \text { \& } & & 0 & \\
& & & & \ddots
\end{array}\right) \text {, } \\
& E_{2}=\left(\begin{array}{lllll}
I_{i-1} & & & & \\
& 1 & & 0 & \\
& & I_{j-i-1} & & \\
& 1 & & 1 & \\
& & & & I_{n-j}
\end{array}\right) \text {, and } \\
& E_{2}^{t} A=\left(\begin{array}{ccccc}
I_{i-1} & & & & \\
& 1 & & 1 & \\
& & I_{j-i-1} & & \\
& 0 & & 1 & \\
& & & & I_{n-j}
\end{array}\right) \times \\
& \left(\begin{array}{lllll}
\ddots & & & & \\
& 0 & & \& & \\
& & \ddots & & \\
& \& & & 0 & \\
& & & & \ddots
\end{array}\right) \\
& =\left(\begin{array}{lllll}
\ddots & & & & \\
& \boldsymbol{4} & & \boldsymbol{\%} & \\
& & \ddots & & \\
& \boldsymbol{4} & & 0 & \\
& & & & \ddots
\end{array}\right) \text {. }
\end{aligned}
$$

Since $\boldsymbol{Q}+\boldsymbol{Q}=0$, we get

$$
\begin{aligned}
& E_{2}^{t} A E_{2}=\left(\begin{array}{ccccc}
\ddots & & & & \\
& \boldsymbol{\mu} & & \boldsymbol{4} & \\
& & \ddots & & \\
& \boldsymbol{\sim} & & 0 & \\
& & & & \ddots
\end{array}\right) \times \\
& \left(\begin{array}{ccccc}
I_{i-1} & & & & \\
& 1 & & 0 & \\
& & I_{j-i-1} & & \\
& 1 & & 1 & \\
& & & & I_{n-j}
\end{array}\right)= \\
& \left(\begin{array}{lllll}
\ddots & & & & \\
& 0 & & \boldsymbol{\alpha} & \\
& & \ddots & & \\
& \boldsymbol{\&} & & 0 & \\
& & & & \ddots
\end{array}\right) .
\end{aligned}
$$

Hence every diagonal element of $E_{2}^{t} A E_{2}$ is still 0 .

3 Proof of the theorem

First we show that by a sequence of elementary operations

$$
A \sim_{c}\left(\begin{array}{ccc}
I_{m} & & 0 \tag{2}\\
& J_{k-m} & \\
0 & & O_{n-k}
\end{array}\right)
$$

where $k-m$ is even. To prove this, we need the following claim.

Claim 1. A is congruent to one of the following three types:

$$
\begin{gathered}
\operatorname{Type}(\mathrm{I}):\left(\begin{array}{c|ccc}
0 & 0 & \cdots & 0 \\
\hline 0 & & & \\
\vdots & & * & \\
0 & & &
\end{array}\right), \\
\operatorname{Type}(\mathrm{II}):\left(\begin{array}{c|ccc}
1 & 0 & \cdots & 0 \\
\hline 0 & & & \\
\vdots & & * & \\
0 & & &
\end{array}\right) \text {, and } \\
\operatorname{Type}(\mathrm{IIII}):\left(\begin{array}{cc|ccc}
0 & 1 & 0 & \cdots & 0 \\
1 & 0 & 0 & \cdots & 0 \\
\hline 0 & 0 & & & \\
\vdots & \vdots & & * & \\
0 & 0 & &
\end{array}\right) .
\end{gathered}
$$

Once we prove the above claim, then by induction and applying a sequence of elementary matrices of type 1 , we can obtain (2). Now we prove the claim. If all the elements of the first column of A are zero, trivially $A \sim_{c}$ Type(I). Otherwise, at least one element of the first column of A are one. If $a_{11}=1$, by applying a sequence of elementary matrices of type 2 , we remove the remaining 1 's in the first column of A. So $A \sim_{c}$ Type(II). If $a_{11}=0$, by applying an elementary matrix E_{1} of type 1 , we can make $a_{21}=1$ (i.e., $\left(E_{1}^{t} A E_{1}\right)_{21}=1$). Then by applying a sequence of elementary matrices of type 2 , we remove the remaining 1's in the first column of A. So

$$
A \sim_{c}\left(\begin{array}{c|cccc}
0 & 1 & 0 & \cdots & 0 \\
\hline 1 & & & & \\
0 & & & & \\
\vdots & & & * & \\
0 & & & &
\end{array}\right) .
$$

Also by applying a sequence of elementary matrices of type 2 to remove 1 's in the second column of A,

$$
\begin{gathered}
A \sim_{c}\left(\begin{array}{cc|ccc}
0 & 1 & 0 & \cdots & 0 \\
1 & 0 & 0 & \cdots & 0 \\
\hline 0 & 0 & & & \\
\vdots & \vdots & & * & \\
0 & 0 & & &
\end{array}\right) \\
\text { or Type(S) }:=\left(\begin{array}{cc|ccc}
0 & 1 & 0 & \cdots & 0 \\
1 & 1 & 0 & \cdots & 0 \\
\hline 0 & 0 & & & \\
\vdots & \vdots & & * \\
0 & 0 & &
\end{array}\right) .
\end{gathered}
$$

If $A \propto_{c}$ Type(S), then $A \sim_{c}$ Type(III). In the case that $A \sim_{c}$ Type(S), we consider the elementary matrix E_{2} of type 2 such that E_{2} adds row 1 to row 2 . If we apply E_{2} to Type(S), i.e., $E_{2}^{t} \operatorname{Type}(S) E_{2}$,

$$
A \sim_{c} \operatorname{Type}(\mathrm{~S}) \sim_{c}\left(\begin{array}{cc|ccc}
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
\hline 0 & 0 & & & \\
\vdots & \vdots & & * & \\
0 & 0 & & &
\end{array}\right)
$$

which is Type(II). Hence the claim is proved.

$$
\text { If } m=0 \text {, then } A \sim_{c}\left(\begin{array}{cc}
J_{k} & 0 \\
0 & O_{n-k}
\end{array}\right)
$$

If $m>0$, using the equivalence relation (1), one can get $A \sim_{c}\left(\begin{array}{cc}I_{k} & 0 \\ 0 & O_{n-k}\end{array}\right)$.
Hence we have

$$
\begin{equation*}
A \sim_{c} I_{k} \text { or } A \sim_{c} J_{k} \tag{3}
\end{equation*}
$$

Proof of (i): By Lemma 6, $A \propto_{c} I_{k}$. Then $A \sim_{c} J_{k}$ by (3). Moreover we have

$$
\begin{aligned}
k & =\operatorname{rank}(A) \\
& =\operatorname{rank}\left(J_{k}\right)(\text { by Lemma } 1) \\
& =2 \cdot[k / 2](\text { by Lemma } 4) .
\end{aligned}
$$

Therefore k is even.
Proof of (ii): By Lemma 3, if the following claim is proved, then we have $A \varkappa_{c} J_{k}$ since every diagonal element of J_{k} is 0 . Therefore $A \sim_{c} I_{k}$ by (3).

Claim 2. When at least one diagonal element of A is 1, for an elementary matrix E of each type, $E^{t} A E$ also has at least one nonzero diagonal element.

To prove the claim, we first consider an elementary matrix E_{1} of type 1 . As in the proof of Lemma 6, it is easy to see that the number of 1 's in the diagonal part of $E_{1}^{t} A E_{1}$ is equal to that of A. Next we consider the elementary matrix E_{2} of type 2 . We may assume that E_{2} adds row i to row $j(i<j)$. Let $a_{i j}=a_{j i}=\boldsymbol{\infty}$ ($\&=0$ or 1). There are four cases depending on the values of $a_{i i}$ and $a_{j j}$ in the following.
Case (1):

$$
\text { If } A=\left(\begin{array}{ccccc}
\ddots & & & & \\
& 0 & & \text { \& } & \\
& & \ddots & & \\
& \& & & 0 & \\
& & & & \ddots
\end{array}\right) \text {, then }
$$

$$
E_{2}^{t} A E_{2}=\left(\begin{array}{ccccc}
\ddots & & & & \\
& 0 & & \text { \& } & \\
& & \ddots & & \\
& \text { \& } & & 0 & \\
& & & & \ddots
\end{array}\right) .
$$

Case (2):

$$
E_{2}^{t} A E_{2}=\left(\begin{array}{ccccc}
\ddots & & & & \\
& 1 & & \boldsymbol{\alpha} & \\
& & \ddots & & \\
& \boldsymbol{\alpha} & & 0 & \\
& & & & \ddots
\end{array}\right) .
$$

Case (3):

Case (4):

$$
\begin{aligned}
\text { If } A & =\left(\begin{array}{llllll}
\ddots & & & & \\
& 1 & & \boldsymbol{\%} & \\
& & \ddots & & \\
& \boldsymbol{\&} & & 1 & \\
& & & & & \ddots
\end{array}\right) \text {, then } \\
E_{2}^{t} A E_{2} & =\left(\begin{array}{llllll}
\ddots & & & & \\
& 0 & & 1+\boldsymbol{\alpha} & \\
& 1+\boldsymbol{\phi} & & 1 & \\
& & & & \ddots
\end{array}\right)
\end{aligned}
$$

For all the cases, at least one diagonal element of $E_{2}^{t} A E_{2}$ is 1 .

References.

[1] M. Anderson and T. Feil, Turning lights out with linear algebra, Mathematics Magazine, 71(1998), 300-303.
[2] N. Biggs, Algebraic Graph Theory, Cambridge University Press, second edition, 1994.
[3] R. A. Brualdi and H. J. Ryser, Combinatorial Matrix Theory, Cambridge University Press, 1991.
[4] B. Corbas and G. Williams, Congruence classes in $M_{3}\left(\mathbb{F}_{q}\right)(q$ odd $)$, Discrete Math., 219(2000), 37-47.
[5] B. Corbas and G. Williams. Congruence classes in $M_{3}\left(\mathbb{F}_{q}\right)(q$ even $)$, Discrete Math., 257(2002), 15-27.
[6] S. H. Friedberg, A. J. Insel, and L. E. Spence, Linear Algebra, Prentice-Hall, third edition, 1997.
[7] R. Gow, The number of equivalence classes of nondegenerate bilinear and sesquilinear forms over a finite field, Linear Algebra Appl., 41(1981), 175-181.
[8] N. Jacobson, Lectures in Abstract Algebra II, Linear Algebra, Springer-Verlag, 1975.
[9] W. Waterhouse, The number of congruence classes in $M_{n}\left(\mathbb{F}_{q}\right)$, Finite Fields Appl., 1(1995), 57-63.

