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Abstract: We provide two congruence classes for symmetric binary matrices over a finite field of characteristic 2.
We use standard methods of matrix analysis to prove directly that there exist two congruence classes. Our proof
gives explicit algorithms to compute the congruence classes.
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1 Introduction
We call two square matrices A and B congruent when
there exists a nonsingular matrix Q satisfying B =
QtAQ. For such A and B, we denote A ∼c B.
Clearly, ∼c is an equivalence relation. In [7], Gow
computed the number of congruence classes for in-
vertible matrices over finite fields. Waterhouse[9] ex-
tended the result of Gow to find the number of con-
gruence classes where B−1Bt is unipotent. Recently
Corbas and Williams[4, 5] have determined the sizes
of congruence classes of (2× 2) and (3× 3) matrices
over a finite field Fq.

A matrix A is called binary if A ∈ Mn×n(F2).
Binary matrices have been widely used to deal with
the adjacency of a graph.(See [1, 2, 3]) In particular,
Anderson and Feil[1] transformed the light bulb puz-
zle into the problem of solving a linear system Ax = b
from its graphical structure, where A ∈ Mn×n(F2)
and x, b ∈ F

n
2

. Then the solution could be obtained by
computing the inverse of A, i.e., x = A−1b. Binary
matrices are also useful for dealing with the cut/cycle
subspace of a graph, which is a vector space over
F2.([2]) Moreover they can be used to represent a ba-
sis change of a vector space over F2 in many combi-
natorial problems.

Define Jn = (jij) ∈ Mn×n(F2) as follows:

jij =







1 if (i − j = 1 and i is even)
or (j − i = 1 and j is even)

0 otherwise.

For instance, J2 =

(

0 1
1 0

)

, J3 =





0 1 0
1 0 0
0 0 0



,

and J4 =









0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0









.

Let A ∈ Mn×n(F2). We assume that A ∼c Ik

(k ≤ n) means A ∼c

(

Ik 0
0 On−k

)

and also

A ∼c Jk (k ≤ n) means A ∼c

(

Jk 0
0 On−k

)

.

By the definition of Jn, one can easily see that I2 =
(

1 0
0 1

)

�c J2 =

(

0 1
1 0

)

.

In page 171 of [8], it was proven that if F has char-
acteristic two and g(x, y) is a non-alternate symmetric
bilinear form in a vector space V over F, then there
exists a basis of V such that the matrix of g(x, y) is
congruent to a symmetric diagonal matrix. In this pa-
per, however, we deal with arbitrary symmetric binary
matrices and give a classification of these matrices.

Theorem 1. Let A ∈ Mn×n(F2) be symmetric with
rank k. Then we have the following.
(i) If every diagonal element of A is 0, then A ∼c Jk

and hence k is even.
(ii) If at least one diagonal element of A is 1, then
A ∼c Ik.

In particular, when n = 2 or 3, this result is the
same as [5]. As an immediate consequence, we have
the following.

Corollary 1. Let A ∈ Mn×n(Z2) be symmetric with
rank k. If k is odd, then A ∼c Ik.
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2 Preliminaries
We need some useful lemmas.

Lemma 1. Let A,B ∈ Mn×n(F2). If A ∼c B, then
we have rank(A) = rank(B).

Definition 2. Let A ∈ Mn×n(F2). Any one of the
following two operations on the rows of A is called an
elementary row operation:
(i) interchanging any two rows of A
(ii) adding a row of A to another row.

Elementary row operations are of type 1 or type
2 depending on whether they are obtained by (i) or
(ii). An n × n elementary matrix over F2 field is a
matrix obtained by performing an elementary row op-
eration on In. The elementary matrix is said to be of
type 1 or type 2 according to whether the elementary
row operation performed on In is a type 1 or type 2,
respectively.

Lemma 3. Suppose that Q ∈ Mn×n(F2) is a
nonsingular matrix. Then Q is a product of el-
ementary matrices, i.e., Q = E1E2 · · ·Ek. So
QtAQ = Et

k(· · · (E
t
2
(Et

1
AE1)E2) · · ·)Ek for any

A ∈ Mn×n(F2).

Lemma 4. rank(Jn) = 2 · [n/2], where [ ] means
Gauss symbol.

Furthermore we have

I3 =





1 0 0
0 1 0
0 0 1



 ∼c





1 0 0
0 0 1
0 1 0



 , (1)

since taking Q =





1 1 1
1 0 1
1 1 0



 gives QtI3Q =

QtQ = Q2 =





1 0 0
0 0 1
0 1 0



 .

Proposition 5. Let A ∈ Mn×n(F2). If A ∼c Ik or
A ∼c Jk for some k ∈ N, then A is symmetric.

Proof. See [6], which gives more general theorem.
On the other hand, we have the following as a criterion
of symmetric binary matrices.

Lemma 6. Let A = (aij) ∈ Mn×n(F2) be symmetric.
If every diagonal element of A is 0, then A �c Ik for
some k ∈ N. In particular, In �c Jn for every n ∈ N.

Proof. By Lemma 3, it is enough to show that,
for the elementary matrix E of each type, every
diagonal element of EtAE is 0. First we consider

the elementary matrix E1 of type 1. We may assume
that E1 interchanges row i and row j (i < j). Let
aij = aji = F (F = 0 or 1). Then we have

A =

0

B

B

B

B

B

B

B

B

@

. . .
0 F

. . .
F 0

. . .

1

C

C

C

C

C

C

C

C

A

,

E1 = E
t
1 =

0

B

B

B

B

@

Ii−1

0 1

Ij−i−1

1 0

In−j

1

C

C

C

C

A

,

E
t
1A =

0

B

B

B

B

@

Ii−1

0 1

Ij−i−1

1 0

In−j

1

C

C

C

C

A

×

0

B

B

B

B

B

B

B

B

@

. . .
0 F

. . .
F 0

. . .

1

C

C

C

C

C

C

C

C

A

=

0

B

B

B

B

B

B

B

B

@

. . .
F 0

. . .
0 F

. . .

1

C

C

C

C

C

C

C

C

A

, and

E
t
1AE1 =

0

B

B

B

B

B

B

B

B

@

. . .
F 0

. . .
0 F

. . .

1

C

C

C

C

C

C

C

C

A

×

0

B

B

B

B

@

Ii−1

0 1

Ij−i−1

1 0

In−j

1

C

C

C

C

A

=

0

B

B

B

B

B

B

B

B

@

. . .
0 F

. . .
F 0

. . .

1

C

C

C

C

C

C

C

C

A

.

So every diagonal element of Et
1
AE1 is 0. Next we

consider the elementary matrix E2 of type 2 which
adds row i to row j (i < j). Let aij = aji = ♣ (♣ =
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0 or 1).

A =

0

B

B

B

B

B

B

B

B

@

. . .
0 ♣

. . .
♣ 0

. . .

1

C

C

C

C

C

C

C

C

A

,

E2 =

0

B

B

B

B

@

Ii−1

1 0

Ij−i−1

1 1

In−j

1

C

C

C

C

A

, and

E
t
2A =

0

B

B

B

B

@

Ii−1

1 1

Ij−i−1

0 1

In−j

1

C

C

C

C

A

×

0

B

B

B

B

B

B

B

B

@

. . .
0 ♣

. . .
♣ 0

. . .

1

C

C

C

C

C

C

C

C

A

=

0

B

B

B

B

B

B

B

B

@

. . .
♣ ♣

. . .
♣ 0

. . .

1

C

C

C

C

C

C

C

C

A

.

Since ♣ + ♣ = 0, we get

E
t
2AE2 =

0

B

B

B

B

B

B

B

B

@

. . .
♣ ♣

. . .
♣ 0

. . .

1

C

C

C

C

C

C

C

C

A

×

0

B

B

B

B

@

Ii−1

1 0

Ij−i−1

1 1

In−j

1

C

C

C

C

A

=

0

B

B

B

B

B

B

B

B

@

. . .
0 ♣

. . .
♣ 0

. . .

1

C

C

C

C

C

C

C

C

A

.

Hence every diagonal element of E t
2
AE2 is still 0.

3 Proof of the theorem
First we show that by a sequence of elementary oper-
ations

A ∼c





Im 0
Jk−m

0 On−k



 , (2)

where k − m is even. To prove this, we need the fol-
lowing claim.

Claim 1. A is congruent to one of the following three
types:

Type(I) :











0 0 · · · 0

0
... ∗

0











,

Type(II) :











1 0 · · · 0

0
... ∗

0











, and

Type(III) :















0 1 0 · · · 0
1 0 0 · · · 0

0 0
...

... ∗

0 0















.

Once we prove the above claim, then by induc-
tion and applying a sequence of elementary matrices
of type 1, we can obtain (2). Now we prove the claim.
If all the elements of the first column of A are zero,
trivially A ∼c Type(I). Otherwise, at least one ele-
ment of the first column of A are one. If a11 = 1, by
applying a sequence of elementary matrices of type 2,
we remove the remaining 1’s in the first column of A.
So A ∼c Type(II). If a11 = 0, by applying an ele-
mentary matrix E1 of type 1, we can make a21 = 1
(i.e., (Et

1
AE1)21 = 1). Then by applying a sequence

of elementary matrices of type 2, we remove the re-
maining 1’s in the first column of A. So

A ∼c















0 1 0 · · · 0

1
0
... ∗

0















.
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Also by applying a sequence of elementary matrices
of type 2 to remove 1’s in the second column of A,

A ∼c















0 1 0 · · · 0
1 0 0 · · · 0

0 0
...

... ∗

0 0















or Type(S) :=















0 1 0 · · · 0
1 1 0 · · · 0

0 0
...

... ∗

0 0















.

If A �c Type(S), then A ∼c Type(III). In the case
that A ∼c Type(S), we consider the elementary matrix
E2 of type 2 such that E2 adds row 1 to row 2. If we
apply E2 to Type(S), i.e., Et

2
Type(S) E2,

A ∼c Type(S) ∼c















1 0 0 · · · 0
0 1 0 · · · 0

0 0
...

... ∗

0 0















,

which is Type(II). Hence the claim is proved.

If m = 0, then A ∼c

(

Jk 0
0 On−k

)

.

If m > 0, using the equivalence relation (1), one

can get A ∼c

(

Ik 0
0 On−k

)

.

Hence we have

A ∼c Ik or A ∼c Jk. (3)

Proof of (i): By Lemma 6, A �c Ik. Then A ∼c Jk

by (3). Moreover we have

k = rank(A)

= rank(Jk) (by Lemma 1)

= 2 · [k/2] (by Lemma 4).

Therefore k is even.
Proof of (ii): By Lemma 3, if the following claim is
proved, then we have A �c Jk since every diagonal
element of Jk is 0. Therefore A ∼c Ik by (3).

Claim 2. When at least one diagonal element of A
is 1, for an elementary matrix E of each type, E tAE
also has at least one nonzero diagonal element.

To prove the claim, we first consider an elemen-
tary matrix E1 of type 1. As in the proof of Lemma 6,
it is easy to see that the number of 1’s in the diagonal
part of Et

1
AE1 is equal to that of A. Next we consider

the elementary matrix E2 of type 2. We may assume
that E2 adds row i to row j (i < j). Let aij = aji = ♣

(♣ = 0 or 1). There are four cases depending on the
values of aii and ajj in the following.
Case (1):

If A =

0

B

B

B

B

B

B

B

B

@

. . .
0 ♣

. . .
♣ 0

. . .

1

C

C

C

C

C

C

C

C

A

, then

E
t
2AE2 =

0

B

B

B

B

B

B

B

B

@

. . .
0 ♣

. . .
♣ 0

. . .

1

C

C

C

C

C

C

C

C

A

.

Case (2):

If A =

0

B

B

B

B

B

B

B

B

@

. . .
1 ♣

. . .
♣ 0

. . .

1

C

C

C

C

C

C

C

C

A

, then

E
t
2AE2 =

0

B

B

B

B

B

B

B

B

@

. . .
1 ♣

. . .
♣ 0

. . .

1

C

C

C

C

C

C

C

C

A

.

Case (3):

If A =

0

B

B

B

B

B

B

B

B

@

. . .
0 ♣

. . .
♣ 1

. . .

1

C

C

C

C

C

C

C

C

A

, then

E
t
2AE2 =

0

B

B

B

B

B

B

B

B

@

. . .
1 1 + ♣

. . .
1 + ♣ 1

. . .

1

C

C

C

C

C

C

C

C

A

.
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Case (4):

If A =

0

B

B

B

B

B

B

B

B

@

. . .
1 ♣

. . .
♣ 1

. . .

1

C

C

C

C

C

C

C

C

A

, then

E
t
2AE2 =

0

B

B

B

B

B

B

B

B

@

. . .
0 1 + ♣

. . .
1 + ♣ 1

. . .

1

C

C

C

C

C

C

C

C

A

.

For all the cases, at least one diagonal element of
Et

2
AE2 is 1.
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