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Abstract: - This paper presents the peak-valley (PV) segmentation algorithm for the purpose of producing a reliable 
method of fatigue time series segmentation and statistical segment-by-segment analysis of fatigue damage. The time 
series were segmented using a piecewise linear representation (PLR) based segmentation algorithm and consecutively 
the peak-valley (PV) segmentation algorithm. Statistical analysis and fatigue damage calculations were made on each 
segment and scatter plots were produced based on the relationship between segmental damage and its corresponding 
kurtosis value. Observations were made on the scatter plots produced by the PV segmentation algorithm to determine 
the reliability of the data scattering for fatigue data clustering prospects.  
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1   Introduction 
It has been established over the years that proper 
evaluation of statistical properties will give reasonable 
diagnostic indication of damage in critical automotive 
components [1]. Although there are a large number of 
such statistical attributes such as root mean square value, 
crest factor, skewness, kurtosis, and so on, kurtosis has 
emerged as one of the good indicators of damage of 
automotive components such as gears. 

This paper discusses on the segmentation of fatigue 
data (represented as time series), the statistical 
evaluation of each segment of the data, and the resulting 
data scatter. A peak-valley (PV) segmentation algorithm 
was introduced in order to produce reliable data scatters. 
Scatter plots of PV segmented data were made to see if 
the method resulted in reliable data scatters based on the 
statistical property of segmental kurtosis.  It is 
hypothesized that by using PV segmentation on the 
fatigue time series data, the resulting data scatter 
produced would be more reliable and suitable for fatigue 
data editing. 

 
 
2   Literature Background 
2.1 Time series behavior 
Since all the data that were measured from this 
experiment are recorded as strain time histories, it is also 
important to have a better understanding about the 
behavior of this data before applying the detection of 
abrupt changes algorithm. The identification of fatigue 
data behavior is based on the existence of time series 
component which involves with the identification of 

trend, cyclical, seasonal and irregular component in time 
period t. The method used in the identification of this 
component is called the classical decomposition of time 
series.  This process is used to segregate and to analyse 
the existence components in a systematic manner. The 
trend component represents the long-run growth or 
decline over time. On the other hand, the cyclical 
component refers to the rises and falls of the series over 
unspecified period of time. The seasonal component also 
known as seasonal variation refers to the 
characterization of regular fluctuations occurring within 
a specific period of time. Although this component is 
individually identified, in fact it also related to each 
other in a certain mathematical functional form. The 
type of relationship that these components have is 
divided into two which are multiplicative effect and 
additive effect. Multiplicative effect means that the 
components are interacted to each other such that  the 
sizes of the seasonal variation increase in accordance 
with  in the level of data. On the other part, additive 
effect involve with the assumption that the components 
of the series are interacted in additive manner [8].  
 
2.2 Segmentation 
For the purpose of this study, a time series segmentation 
algorithm that inputs a time series and returns a 
piecewise linear representation (PLR) was used for the 
initial segmentation of the time series data. Based on the 
studies by Keogh et al. [2], a segmentation algorithm 
that has a global perspective of the data produces the 
best PLR with the least amount of error. Such algorithms 
are called batch algorithms, and of the two segmentation 
methods that fall under this category, Bottom-up 
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segmentation algorithm has proven to be the best at 
performing batch segmentation with the least amount of 
error [2]. 
 
2.2.1   Piecewise Linear Representation  
By definition, a piecewise linear representation (PLR) 
refers to the approximation of a time series T, of length 
n, with K straight lines [2]. The Bottom-up algorithm 
first creates the finest approximation of the data, which 
contains at most n/2 segments. Then it recursively 
calculates the cost of merging each pair of adjacent 
segments and proceeds to merge the segments beginning 
with the lowest cost pair. The number of segments in the 
PLR will gradually be reduced until a stopping criterion 
is met.  

Since producing a PLR requires approximation of the 
time series using straight lines, linear regression was 
used as the approximation method for the Bottom-up 
algorithm. This is because the approximating lines 
produced using the linear regression approach is 
superior to the method of linear interpolation in terms of 
Euclidean distance [2]. 

 
2.2.2   Peaks and Valleys 
A PLR with many non-parallel lines contains a 
significant number of local optima, which can be either 
classified as peaks or valleys. A peak is defined to be 
associated with change in the slope from positive to 
negative, while a valley is associated with a change in 
the slope from negative to positive [3]. Peaks in a PLR 
are essentially the local maxima and valleys are the local 
minima. Depending on the resulting PLR, some points 
can be classified as neither peaks nor valleys. 

Peak-valley (PV) identification can be used to 
segment signals so that each segment may contain 
certain numbers of peaks and/or valleys, according to the 
needs of the study. This is particularly useful for fatigue 
time series data, since peaks and valleys feature 
predominantly in rainflow counting algorithms for 
fatigue damage calculations [4]. 

 
2.3   Kurtosis  
In real applications, mechanical signals can be classified 
as having a stationary or a non-stationary behaviour. 
Stationary signals exhibit the statistical properties 
remain unchanged with the changes in time and the 
statistics of non-stationary signal is dependent on the 
time of measurement [5]. The most commonly used 
statistical parameters are the mean value, the root-mean-
square (r.m.s.) value and the kurtosis [6].  

The r.m.s. value, which is the 2nd
 
statistical moment, 

is used to quantify the overall energy content of the 
signal and is defined by the following equation:  
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where xj is the jth data and n is the number of data in the 
signal. 

The kurtosis, which is the signal’s 4th statistical 
moment, is a global signal statistic which is highly 
sensitive to the spikiness of the data. It is defined by the 
following equation: 

 

∑
=

−=
n

j
j xx

smrn
K

1

4
4 )(

)..(
1

 (2)

 
where r.m.s is the root mean square as calculated in 
Equation 1 and x  is the mean value of the signal data. 

For a Gaussian distribution the kurtosis value is 
approximately 3.0. In some definitions of kurtosis, a 
deduction of 3 is added to the definition in order to 
maintain the kurtosis of a Gaussian distribution to be 
equal to zero. For clarity and convenience, in this study 
the former definition of kurtosis (where the Gaussian 
distribution has a kurtosis value of 3) was used since the 
kurtosis function in MATLAB® uses this definition. 
Therefore kurtosis values which are higher than 3.0 
indicate the presence of more extreme values than 
should be found in a Gaussian distribution. Kurtosis is 
used in engineering for detection of fault symptoms 
because of its sensitivity to high amplitude events [7]. 

 
2.4   Fatigue damage 
It is common that the service loadings caused by 
machines and vehicles is evaluated using a strain-life 
fatigue damage approach [3]. The strain-life approach 
considers the plastic deformation that occurs in the 
localised region where fatigue cracks begin under the 
influence of a mean stress.  

The total strain amplitude, εa is produced by the 
combination of elastic and plastic amplitudes 

paeaa εεε +=  (3)
where eaε  is the elastic strain amplitude and paε  is the 
plastic strain amplitude. The elastic strain amplitude is 
defined by 

( )bf
fa

ea N
EE

2
σσε
′

==  (4)

while the plastic strain amplitude is given as 
( )c

ffpa N2εε ′=                          (5)
where aσ  is the stress amplitude, fN  is the number of 
cycles to failure, fσ ′  is the fatigue strength coefficient, b 
is the fatigue strength exponent, fε ′  is the fatigue  
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Fig. 1: Fatigue time series data for (a) highway road, (b) in-campus road, (c) pavé road 
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Fig. 2: Peak-Valley data for (a) highway road, (b) in-campus road, (c) pavé road 

 
 
 

WSEAS TRANSACTIONS on MATHEMATICS Z. M. Nopiah, M. I. Khairir, S. Abdullah, C. K. E. Nizwan

ISSN: 1109-2769 700 Issue 12, Volume 7, December 2008



 
ductility coefficient, c is the fatigue ductility component 
and E is the modulus of elasticity.  

Combining Equations 4 and 5 gives the Coffin-
Manson relationship, which is mathematically defined as 

( ) ( )cff
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22 ε
σ

ε ′+
′

=                      (6)

which is essentially Equation 3 above and is the 
foundation of the strain-life approach. 

Some realistic service loads involve nonzero mean 
stresses. One common mean stress effect model is the 
Smith-Watson-Topper (SWT) strain-life model, which is 
defined by 
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and the damage parameter is taken to be the product of 
the maximum stress and the strain amplitude of a cycle. 
In our study the strain-life approach and the Smith-
Watson-Topper strain-life model for mean stress effect 
were used in all fatigue damage calculations. Fatigue 
damage is derived from the number of cycles to failure 
where the relationship is 

fN
Damage 1

=  (8)

and therefore fatigue damage have values in the range 
(0, 1] where zero denotes no damage (extremely high or 
infinite number of cycles to failure) and 1 means total 
failure (one cycle to failure). 
 
2.1 Methodologies 
2.1.1 Data acquisition 
The fatigue data for this study was obtained from field 
tests conducted on the lower suspension arm of a mid-
sized sedan car using strain gauges and data logging 
instrumentation. The fatigue data were measured on the 
car’s front lower suspension arm as it was subjected to a 
variety of road load services. All data were recorded as 
strain time histories and Figure 3 shows the fatigue data 
measurement set-up that was used during the tests. The 
strain value was measured using a strain gauge that was 
connected to a SoMat eDAQ® data logger for data 
acquisition. Experimental parameters such as the 
sampling frequency and type of output data being 
measured were specified in TCE eDAQ V3.9.0 software.  
 The material for the lower suspension arm is 
SAE1045 steel, and this material’s specifications were 
used in all fatigue damage calculations. The road load 
conditions were from a stretch of highway road to 
represent mostly consistent load features (Figure 1a), an 
in-campus road to represent load features that might 
include turning and braking, rough road surfaces and 
speed bumps (Figure 1b), and a stretch of brick-paved 

(pavé) road to represent noisy but mostly consistent load 
features (Figure 1c). All data was recorded at a constant 
sampling rate of 500 Hz. Each set of data contains 50000 
discrete points, giving a total signal length of 100 
seconds per signal. 
 

 
Fig. 3: Diagrammatic flow chart for fatigue data 

collection process 
 

2.1.2 Statistical analysis 
For the purpose of this study, kurtosis, mean, and root 
mean square were chosen as the global statistical 
parameters evaluated for each signal. The global 
statistical values for each signal are presented in Table 1. 

 
Table 1: Global statistical parameters for the 

measured fatigue data 
 

Data Kurtosis Mean R.M.S. 
Highway 3.41 63.73 67.72 
Campus 3.70 45.91 62.78 
Pave 3.48 61.37 73.00 
 
We can see that the global kurtosis values of the 

signals are quite close to 3.0 which is the kurtosis of a 
Gaussian distribution. To further clarify this evaluation, 
normal distribution fitting was done on all three sets of 
signal data. 

We can see from Figure 4 that the distribution for all 
three sets of data roughly approach that of a Gaussian 
distribution. These distributions mirror the 
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characteristics of the averaged sum of a large number of 
independent random variables, as explained by the 
Central Limit Theorem. This supports the earlier 
assumption that the fatigue loads in the signals are 
independent and random in nature. 

 
2.1.2 Time series behavior analysis 
In order to further understand the characteristics of the 
fatigue time series data, time series behavior analysis 
was performed based on the classical decomposition of 
time series. 

In the classical decomposition of time series, a few 
identification methods were selected for all time series 
components. The methods used in detecting the 
existence of trend, cyclical, seasonal and irregular 
behaviors were the linear trend line, the residual method, 
and the method of seasonal differencing. 

 

Table 2: Summary of the fatigue time series 
behavior 

 
Data Trend Cyclical Irregular 
Highway Positive  Yes  Random 
Campus Positive  Yes  Random 
Pavé Negative  Yes  Random 

 
Table 2 shows that all three sets of data have similar 

time series component behavior except for the Pavé 
(brick-paved road) data which has a negative trend. In 
this time series behavior analysis, the seasonal 
component behavior was not considered since events 
that occur in the fatigue data were determined to be 
random and independent and therefore not regular 
fluctuations occurring within specific periods of time. 
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Fig. 4: Normal distribution fit for (a) Highway data, (b) Campus road data, (c) Pavé road data 
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2.1.3 Peak-Valley Segmentation 
Because the Bottom-Up segmentation method produces 
the best PLR with the least amount of error, for the 
purpose of this study, the Bottom-Up segmentation 
algorithm which was developed by Keogh et al. [2] was 
used to segmentise the time series signals. As the 
algorithm was run, the number of segments in the PLR 
will gradually be reduced until a stopping criterion is 
met. The stopping criterion for the algorithm was set to 
be the number of segments in the resulting PLR, which 
for the purpose of simplicity and statistical acceptability, 
was decided to be 300 segments. This procedure is 
important so that we can simplify the original signal into 
a PLR with a workable number of critical points. Peak-
valley identification was then used to classify these 
points on the PLR into peaks and valleys. Datapoints 
and timepoints on the PLR are grouped into sets and a 
set of ordered pairs is obtained using the Cartesian 
product of two sets. 

};,...,2,1:{ 1+≠== jjj xxnjxX           (9)

},...,2,1:{ njtT j ==  (10)  

TXD ×=   (11)  

 
algorithm varargout = peakvalley(c, T) 
 
%% initialize first point as peak or valley 
if (c(1)>c(2)) 
   peak(1)=c(1); 
   else 
   valley(1)=c(1); 
end 
%% assign peaks & valleys and their timepoints 
for n=1:(length(c)-2) 
   if (c(n+1)>max(c(n),c(n+2))) 
      peak(i)=c(n+1); tpeak(i)=T(n+1); 
   elseif (c(n+1)<min(c(n),c(n+2))) 
      valley(j)=c(n+1); tvalley(j)=T(n+1); 
   else % ignore if not peak or valley 
   end 
end 
%% last point designation as peak or valley 
if c(length(c))>c(length(c)-1) 
   if tpeak(i-1)<tvalley(j-1) 
      peak(i)=c(length(c)); 
      tpeak(i)=T(length(c)); 
   else 
   end 
else 
   if tpeak(i-1)>tvalley(j-1) 
   valley(j)=c(length(c)); 
   tvalley(i)=T(length(c)); 
   else 
   end 
end 

 
Fig. 5: The peak-valley identification algorithm 

 

The ordered set X contains elements that denote the 
datapoints of the PLR, the ordered set T contains the 
corresponding timepoints, n is the number of points and 
D  is the ordered pair obtained by pairing each datapoint 
in X with a timepoint in T. 
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The ordered set P contains elements of X that are 
classified as peaks in the signal, V is an ordered set of 
datapoints that are classified as valleys, and P and V are 
non-intersecting and their union is a proper subset of X.  

As in Equation 12, a datapoint xj is classified as a 
peak if it is strictly greater than xj-1 (the datapoint before 
it) and xj+1 (the datapoint after it); conversely Equation 
13 states that a datapoint is classified as a valley if it is 
strictly smaller than the points before and after it. These 
conditions are relaxed for the endpoints of the dataset 
where a comparison of only two adjacent datapoints are 
needed. Additionally there may be points that are not 
classified as neither peaks nor valleys because they do 
not fit the conditions for both sets. These datapoints are 
therefore ignored and not included in the peak-valley 
algorithm. 

The timepoints that correspond to valley datapoints 
are then identified 

 
}:{ VxtT jjV ∈=  (16)

 
and these timepoints were then used as segmentation 
points for the purpose of segmenting the original data 
(Figure 1). The algorithm for the peak-valley 
identification process is shown in Figure 5 and the 
resulting peak-valley data can be seen in Figure 2. A 
summary of the complete peak-valley segmentation 
procedure is represented as a flowchart in Figure 6. 

The PV segmented data was then analysed using the 
GlyphWorks® software package, where the fatigue 
damage for each segment of the time series was 
calculated. The segmented data was also run through a 
MATLAB® algorithm that calculates the kurtosis values 
of each segment. Another MATLAB® algorithm 
generates comparison scatter plots of fatigue damage 
against segmental kurtosis values. Based on these 
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scatter plots, patterns of data scattering, if any, were 
identified and noted. 

 
 

3   Results and Discussion 
By introducing PV identification in the segmentation 
process, segmental kurtosis analysis can be made 
accurately since every segment contains one overall 
peak. It is reasonable and practical to perform kurtosis 
analysis on data segments that each contains an overall 
peak so that the kurtosis measurement is a better 
representative of the segmental peakedness of the time 
series. 

The resulting data scatter from this segmentation 
method also better fits the characteristics expected of a 
kurtosis versus fatigue damage scatter plot. Kurtosis 
shows the presence of significantly high amplitudes or 
peaks in each segment, which supposedly translates into 
a higher fatigue damage value for the particular 
segment. Therefore it is expected that scatter plots of 
kurtosis versus fatigue damage should reflect this trend 
in some manner. In Figures 7a, 7b and 7c we can see the 
high kurtosis points are only present in the high fatigue 
damage range. This means that these scatter plots 
truthfully reflect the hypothesized relationship between 
kurtosis and fatigue damage. 

Intuitively the range of kurtosis values for the 
highway data should generally be lower than the kurtosis 
values for the in-campus road data. This is because the 
highway stretch is generally straight and the road surface 
is mostly consistent, and therefore the service loads on 
the lower arm of the car’s suspension are generally low 
and consistent (see Figures 1a and 1b). On the other 
hand, the in-campus road consists of speed bumps, 
rough road surfaces, curves and intersections (which 
prompted for turning and braking) and so it is expected 
that some segments of the in-campus road load data 
have more significant peaks than the highway data. In 
Figures 7a and 7b we can see that the maximum kurtosis 
value for the highway data is smaller than the in-campus 
road data, which is consistent with what is expected for 
both signals. A scatter plot for the pavé road data 
(Figure 7c) is also included here to show that the scatter 
plot is also reliable for input signals that are noisy but 
mostly consistent, in this case, the road load data from 
the brick-paved (pavé) road (Figure 1c). 
 

 
 

Fig. 6: Flowchart of the Peak-Valley segmentation 
algorithm 
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Fig. 7: Scatter plots of kurtosis vs fatigue damage for (a) highway road, (b) in-campus road, (c) pavé road 
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For further research work, scatter plots of segmental 

kurtosis versus segmental damage as shown in Figure 4 
can be utilized for fatigue data classification and 
clustering. The utilization of PV segmentation has 
resulted in the production of reliable data scatters for the 
described purpose. As seen in Figure 7, significant 
clusters of data can be visually identified in all of the 
scatter plots, which opened up the prospect of using data 
clustering algorithms on the data scatters for future 
analysis and research works. 

 
4   Conclusion 
The study has demonstrated the use of Peak-Valley 
segmentation of time series data for fatigue analysis. 
Combining time series segmentation with statistical 
analysis has produced reliable results. By analysing the 
data this way, we may identify trends and patterns of 
data scattering based on critical statistical parameters. 
From the scattering of data we may acknowledge which 
parts of the data made significant contribution and which 
did not. Finally based on our findings we may eliminate 
or exclude certain parts of the data in order to make 
further study and analysis of the signal much faster and 
more efficient without significant loss of data. 

As our main focus in this study, we suggested that 
the implementation of the PV segmentation algorithm 
will produce significantly reliable scatter plots for 
fatigue data clustering prospects. Finally, as a possible 
future work, after identifying and clustering the data in 
the signal, fatigue data editing through the elimination of 
certain non-contributory or insignificant segments of the 
signal may help in reducing the length and complexity 
of the data and may thus speed up the process of fatigue 
testing of metal components of mechanical systems or 
any similar application. 
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