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Abstract: - In electrified railway traction power supply systems, the operational qualities and reliabilities of the 
main traction transformer loop is higher, but ones of bus output units is comparatively low. The traction 
transformer loop still works when output loops are in failure, and the output loop interrupts working when the 
main transformer is in failure, and only has residual life when restoring working, the connection formation 
between them is in series. Traditional reliability analysis methods let their lifetime follow exponential 
distribution, and reliability is investigated based on the minimal path sets, which lead to a comparatively rough 
result, consequently. According to Markov theory, in this paper the main loop life is considered as mixed 
Erlang distribution with order n, and the output unit life follows generic distribution. As compared with 
conventional series systems, the acquired results are proved to be reliable and sound. 
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1 Introduction 
In electrified railway traction power supply systems, 
110kV High Voltage electric energy transported by 
power systems is dropped as 27.5kV voltage of 
overhead contact line to ensure electric locomotive 
receiving electrical energy well. Traction load is the 
national first grade loads, hence two circuits are 
required to supply electric energy for it. In general, 
two traction transformers with same capacity are 
located at traction substation together, and they may 
be in parallel operation or single running according 
to practical operation demands. The bus outgoing 
feeder units in Low Voltage side of the traction 
transformer provide overhead contact lines with 
electric energy, region 10kV house-service 
consumption, and traction substation house-service 
consumption [1-2]. In China many kinds of traction 
transformers are applied in national electrified 
railway, for instance, Single-phase connection 
traction transformer, Single-phase and three-phase 
V, v connection traction transformer, three-phase yn, 
d11 traction transformer, Wood-bridge connection 
traction transformer, Leblanc traction transformer, 
Kübler and Scott connection traction transformer, 
and et al. However, the most traction transformer 
applied by railway departments is yn, d11 connection 
type, in general, the traction substation installs two 
transformers, where one is in operation, and another 
one is spare. The operational characteristic of the 
transformer is shown in Figure 1. It may be seen 
from Figure 1 that it has two feeder circuits and one 

main transformer. Thus, the whole system can be 
divided as two areas with 27.5kV bus as boundary: 
one is area 1, which connects electrical sources and 
implements dropping-voltage, the other is area 2, 
which feeds out electrical energy and connects loads. 
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Fig.1 Power supply system model of traction 

substation 
 
 
Practically, the failure number in area 1 is far 

less than one in area 2. The loads in area 1 can 
reduce some when one outgoing feeder is in failure 
in area 2, and consequently, the failure possibility in 
area 1 also for that becomes lower, however it still 
continues operating, and conversely, if area 1 is in 
failure, area 2 then interrupt working. It is 
noticeable that the failure here is referring to 
behavior of interrupting operation of the parts, for 
example, the power supply arm will stop working 
when traction load departs from it, at the moment, 
although the arm is no in failure, from the angle of 
reliability it also serves as fault analysis. Moreover, 
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it still includes lines interrupting due to heavy repair 
and examining repair. 

In the conventional analysis methods, failure rate 
λ is always assumed as a constant, and minimal path 
sets based analysis method is applied to investigate 
the reliability of the systems [3-7]. The essential of 
analysis process is based on approaching of discrete 
states, and therefore, the error is existent due to lack 
of continuity. For example, what is described in 
series system is that the system may then be failure 
if one part is in failure, and other parts will stop 
working in system. But in this paper, what is 
described is that the system may be in failure if one 
part is in failure, and other parts in system will 
continue working. For instance, as shown in Figure 
1, if line L1 is in failure, the feeder related to L1 is 
in failure, due to area 1 is normal, line L2 is still 
works, thus, the traditional analysis methods are 
incompetent. To approach the true model better, in 
this paper mixed Erlang distribution is used to 
approach the life of area 1, more reasonable than 
traditional exponential distribution. Below taking 
the example of line L1 in Figure 1, the continuous 
model is established for the operational 
characteristic of single line. On the basis of it we 
perform reliability analysis. According to 
operational characteristic of traction supply system, 
two supply arms operate alone, the connections 
between L1 and L2 be nonexistent. 
 
 
2 Reliability Mathematics Analysis 
Mathematics Model can be established below. 

The whole system is composed of two parts, if 
part 2 is in failure, it then interrupts working and 
turns into repairing state, at this moment failure rate 
of part 1 becomes smaller because its loads lighten, 
however it still continues operating. If part 1 is in 
failure, it stops working at once and turns into 
repairing state, at the moment part 2 also interrupts 
working. Let the whole system have a set of 
repairman, the repair time follow generic 
distribution, and the restored failure unit be like the 
new. If one part is just repairing and the other is in 
failure, the repair rule is that part 1 is repaired in 
advance, that is, part 1 possesses a title of 
preference repair. After the repair of part 1 is 
completed, the interrupted repair unit then does. Let 
us assume that bus connections are always reliable, 
here. 

For convenient analysis, definitions are below. 
The state 0 expresses the system is fully good; 

the state 1 expresses part 1 is in failure, here part 2 
stops working but not in failure, only has residual 
life when it restores working; the state 2 expresses 

part 2 is in failure and part 1 continues operating; 
the state 3 expresses the two parts are in failure, and 
part 1 is in repair and part 2 is waiting to be repaired. 
Assume that the two parts are new from the start, 
and the life and repair-time of the parts are 
independently stochastic variables one another. 
Because repair-time follows arbitrary distribution, 
the introduced complementary variable Yi(t), where 
i=1 or 2, expresses the consumed time when part is 
repaired. Let the life of part 1 follow Erlang 
distribution with order n, x2 be age of part 2 and 
have the life distribution F(t). Let S(t) express the 
state of the system at time t, and then {S(t),X2(t),Yi(t)} 
is Markov process. According to custom, let failure 
rate of Part 1 be λ1, and failure rate of Part 2 be 
λ2(x2), failure rate of Part 1 be λ3 when part 2 is in 
failure, and λ3<λ1. Let repair risk rate function be 
u(t), and life distribution be F(t) and average value 
be λ-1<∞. Let servicing time distribution be G(t), and 
average value be u-1<∞. The state transfer diagram 
is then shown in Figure 2. 
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Fig.2 State transfer diagram 
 
 

According to reliability mathematics theory[8], we 
have 
 

)(1
)(}|{)(

tG
ttgtYttYtpttu

−
∆

=>∆+≤<=∆  

 
After differential we then have  
 

∫ ∫
∞ ∞

−
=

0 0
)(

)(1
1)( tdG

tG
dttu  

 

WSEAS TRANSACTIONS on MATHEMATICS Hongsheng Su

ISSN: 1109-2769 648 Issue 11, Volume 7, November 2008



Through simple transformation, then 
 

∫ ττ−−=
y

duyG
0

])(exp[1)(     
 

∫ ττ−=−=
y

duyuyGyuyg
0

])(exp[)()](1)[()(  
 

Doing Laplace transform, we then have  
 

∫
∞

−=
0

)exp()()( dysyygsg  

 
For ∀ t≥0, x2≥0, y1≥0, we define 
 
P0j(t,x2)dx=p{S(t)=0, x2<X2(t)≤x2+dx2, j=1,...,n}     
 
P1(t, x2, y1)dy1=p{S(t)=1, dx2=0, y1<Y1(t)≤y1+dy1}     
 
P2j(t,  y2)dy2=p{S(t)=2, y2<Y2(t)≤y2+dy2, j=1,...,n}   
 
P3(t, y1, y2)dy1=p{S(t)=2, y1<Y1(t)≤y1+dy1, dy2=0} 
 
According to Figure 2 and reliability mathematics 
theory [9-11], we can write out Kolmogoro partial 
calculous equation group below. 
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The boundary conditions satisfy 
 

),()0,,( 20121 xtpxtp nλ=                                                        (7) 

∫
∞

=
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          (8) nj ~1=
 

),(),0,( 22323 ytpytp nλ=                                                      (9) 
 

∫
∞

=
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nj ~1=        (10) 
 
The initial conditions satisfy 
 
p01(0,x)=δ(x),  and the rest are zero.                     (11) 
 
where δ(x) is Dirac generalized function. 
Doing Laplace transform from (1) to (6), and then 
we have  
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The Laplace transformation of boundary equations 
(7) to (10) are performed below. 
 

),()0,,( 20121 xspxsp nλ=  
 

∫
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),(),0,( 22323 yspytp nλ=  
 

∫
∞

=
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Through resolving the above equation group we can 
get the following formula. 
 

)(),(),,( 11201121
1 yGexspyxsp sy

n

−
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)(),(),,( 11223213
1 yGeyspyysp sy

n
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During calculation we make use of the initial 
conditions δ(x), it may be incorporate into p01(s, 0). 
In fact, the processing is very sound. 
 
p0j(s, x2) and p2j(s, y2) satisfy the following equations. 
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Substituting (18) and (19) into (14), (15), (16), and 
(17), then we have 
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Characteristic equations of formula (20) and (21) 
are described by  
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1
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Eigenvalue is resolved below.  
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In the above equation ωi is a unit circle root. 
 
Let 
 

0),,( 11 =+ ii UgvsA λ                    (28) 
 

Then, we have the eigenvector Ui of vi described by 
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The above matrix P just is noted Vandermond 

matrix.  
 

According to linear algebra, we then have 
 

P-1A(s, λ1, g1)P=diag(vi)                                                     
 (30) 

 
and then 
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                (31) 

 
Generic solution of (31) is 

 
M0(s, x2)=Pdiag[exp(vix2)]c(s)    

                                       
 (32) 

 
where M0(s,x2) and c(s) are column vector  
composed of consequent elements, ci(s) is 
undetermined constant.  
 
Likewise, we get 

 
M2(s,y2)=Pdiag[exp(ϑiy2)]d(s)   

                                       
 (33) 

 
where di(s) is undetermined constant.  
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To calculate ci(s) and di(s), in the light of (18) 
and (32) and boundary conditions, we have  
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Likewise, according to (19) and (33) and boundary 
conditions, we then have 
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According to (35) and (36), we then have 
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Thus, the state probabilities of the system are 

determined from (1) to (38) 
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Proof. The instantaneous availability of the system 
is given by 
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Doing Laplace transform, and according to (18), we 
then have  
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Substituting above formula in to A(s), and 
considering cT (s) and matrix P, we have 
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Substituting (38) into A(s), then  
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According to the terminative value theorem of 
Laplace transform, we have  
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Considering (26), (27) and (34), then 
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In the above equation, e expresses the column 

vector with all its values being one. 
 
 

Theorem2. The frequency of system fault under 
steady state is given by 
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Proof. The instantaneous frequency of the system 
fault is given by 
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Doing Laplace transform, then 
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Hence, the instant frequency of system fault is
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The frequency of system fault under steady state is 
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Theorem3. The frequency of system updating 
under steady state is 
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Proof. The instantaneous frequency of system 
updating is given by 
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The frequency of system updating under steady 
state is 
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The state 1 and 3 must be seen as an absorbing 

state and construct an absorbing Markov chain to 
calculate the reliability indexes of part 1, and then, 
according to the same method as above we easily 
calculate the reliability and mean time to first failure 
(MTTFF1) of part 1. Likewise, to get the reliability 
and MTTFF2 of part 2, the state 1 and 2 must be 
seen as an absorbing state. Below we take part 1 for 
an example to illustrate the process, and the 
absorbing state transfer diagram can be seen in 
Figure 3. 
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Fig.3 Absorbing state transfer diagram 
 
 
According to Figure 3, we rewrite the above 

partial calculous equation group, that is to say, the 
right sides of (2) and (4) become zero. Then  
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In the same way, doing Laplace transform from (42) 
to (47), and we have  
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Noting that here equation (26) and (34) has n 

multiple equivalent latent roots, that is, -(s+λ1) and -
(s+λ3). It is no difficult to prove P-1A(s, λ1, g1)= 
Jn(vi), where Jn(vi) is the standard Jordan matrix.  

 
Likewise, according to the former method we 

easily calculate R1(s).  
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Substituting (18) and (19) into (48), then 
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Substituting (32) and (33) into R1, and considering 
(37) and (38), then  
 

ePvfGvFscsR T
n

i
iii

T
i∑

=

−−

−−+−=
1

21 )]()()()[()( ϑ     (49) 

 
According to matrix property [12], we then have 
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where e1=[1,0,…,0]T, and  
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and then MTTFF1= 
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In the same way, if we see the state 1 and 2 as 

absorbing one, then 
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and then MTTFF2= 
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3   Examples 
Example 1.As shown in Figure 1, the system only 
possesses a feeder arm such as L1, the life of part 1 
follows Erlong distribution with order 1, and the life 

of part 2 follows exp(λ2) distribution, the average 
values of servicing time are expressed by u1 and u2, 
here λ3=0, n=1, from (39), (40), and (41), we have 
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Let λ1=λ2 =λ , we then have 
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This result is fully consistent with series system 

composed of two parts [10]. 
 
 

Example2. Like example 1, the system possesses 
two feeder arms such as L1 and L2, let λ1=λ3, n=1, 
from (39), (40), and (41), we then have 
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Compared with series system of two parts, the 

availability of the system in steady state reduces a 
little because part 1 still works when part 2 is in 
failure. So long as there is one part in failure the 
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system is in failure, and so fault frequency in steady 
state is consistent. The reason that system updating 
frequency increases in steady state is no interruptive 
of part 1 working when one part 2 is in failure. 

 
 

4 Conclusion 
For series system with its parts being repairable, the 
reliability mathematics model is proposed based on 
hierarchical power supply model of traction 
substation in this paper, and the relevant reliability 
analysis is also performed. The applied technique is 
more accurate and ubiquitous than the traditional 
ones. This indicates that Erlang distribution is more 
reasonable than exponential one for life 
approximation of the parts, and calculation is also 
relatively easy. Under some special conditions, if 
we apply other exponential distribution types as life 
approximation of the elements, and then better 
results can be likely obtained. The model mentioned 
in the paper can be not only applied to traction 
substation, but also for other systems it is also 
available. 
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