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Abstract: In this paper, we consider the existence and uniqueness positive solutions of the following boundary 

Neumann problem� 

,0,)()()( =
∂
∂

∈−=∆−
n

u
Txufxbuxau on ,T∂  

where ),2(},0:),,,({ 21 ≥>== NxxxxxT NNL )(xa and )(xb are continuous functions with )(xb positive on 
NR and n is outward pointing unit normal vector of ,T∂ we show that under rather general conditions on 

)(xa and )(xb for large || x and )(uf behaves like qu , where constant 1>q , the above problems possesses a 

minimal positive solution and a maximal positive solution, respectively, Moreover, we establish a relationship 

between the above problem and the following problem 

,)()()( NRxufxbuxau ∈−=∆−  

We establish a comparison principal which our proof of the existence results rely essentially on. and make use 

of a rather intuitive squeezing method to get the existence theorems. Furthermore, by analyzing the behavior of 

the positive solution for the problem in whole space, we show the boundary Neumann problem in half space has 

only one positive solution. Our results improve the previous works. 

 

Keyword: Sub-super solution, Neumann problem, Comparison principle, Positive solution, Squeezing method 

 

1 Introduction 
In this paper, we are concerned with positive 

solutions of the following boundary Neumann 

problem 

 








∂=
∂

∂

⊂∈−=∆−

T
n

u

RTxufxbuxau N

on,0

),()()(

     (1) 

where ),2(},0:),,,({ 21 ≥>== NxxxxxT NNL  

q is a constant greater than 1, )(xa and )(xb are 

continuous functions with )(xb positive on NR and 

n is outward pointing unit normal vector of ,T∂  

Equations of this kind in bounded or unbounded 

region with different boundary values have attracted 

extensive study because of its interest to 

mathematical biology, Riemannian geometry and 

generalized reaction-diffusion and in non- Newtonian 

fluid theory. The existence of exact solution and the 

asymptotic and numerial solution of problem (1) for 

different nonlinearities have been attracted 
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considerable interest in the last decades. We refer to 

[1,5,6,7,8,10,13,20]and the references therein for 

some of the previous research.  

Recently, the Dirichlet problems with different 

types in the upper half space or rough boundary 

domains, under two measures on the boundary, have 

been thoroughly investigated (see 

[2,3,4,23,24,25,26]). In 2004, Du and Guo in [15] 

proved that any boundary positive solution of the 

following Dirichlet problem: 





∂∈=

∈=∆−

Txu

Txufu

,0

),(
 

is unique and is a function of nx only provide that 

f is locally quasi-monotone on ),0( ∞ and satisfies: 

(2) for some 0>a , 

0)( >sf in ),0( a , 0)( <sf in ),( ∞a , 

(3) for some small d>0, there exists a constant 

0>δ such that 

ssf d)( >  for all ),0( δ∈s  

We say that )(sf is locally quasi-monotone on ),0( ∞  

if for any bounded interval ),0[],[ 21 ∞⊂ss , there 

exists a continuous increasing function )(sL such that 

)()( sLsf + is non-decreasing in s for ],[ 21 sss∈ . 

Clearly, this condition is less restrictive than 

requiring )(sf to be locally Lipschitz continuous on 

),0[ ∞ . 

   In 2005, forα is a positive constant (or∞ ), Dong 
in [12] showed that the folowing problem 





∂∈=

∈=∆−

Txu

Txufu

,

),(

α
 

has a unique positive solution if )(sf is locally 

quasi-monotone on ),0( ∞ and satisfies (2). 

In the present paper, we will consider the boundary 

Neumann problem in the upper half space for more 

general nonlinearity. We only consider the existence 

of positive solutions. By a positive solution to (1), we 

mean a function )(2,1 TCWu I∈  satisfying 0>u  in 

T such that 

)(,),( 0 TTCdxuxgdxDDu
T T

∂∈∀=⋅∫ ∫ ∞
Uψψψ  

and  

,0=
∂
∂
n

u
on T∂  

Where )()()(),( ufxbuxauxg −= . 

   Through out this paper, we always assume that for 

some γ and ξ such that 0>γ , there exist positive 

numbers 21,αα and 21,ββ such that 

ξξ

γγ

ββ

αα

||

)(
lim,

||

)(
lim

||

)(
lim,

||

)(
lim

||2||1

||2||1

x

xb

x

xb

x

xa

x

xa

xx

xx

∞→∞→

∞→∞→

==

==

    (4) 

and )(uf satisfies the conditions(5)and )2(A listed 

below. 

(5): 0)( ≥tf , ttf /)( is increasing on ),0( ∞  and 

0/)(lim 0 =→ uuft ; 

(6): ∞<
−∞

∫ dttF
2

1

1
)( , where dssftF

t

∫= 0
)()(  

It is easily shown that under these conditions, 

problem (1) has at least one (weak) positive solution. 

By standard regularity theory of elliptic equations, 

any )(2,1 N
loc RW  solution of (1) belongs to )(1 NRC . 

Let us now describe our results in more details. In 

section 2, we establish a comparison principal which 

our proofs of the existence results rely essentially on. 

We make use of a rather intuitive squeezing method 

as follows to obtain the existence theorem as follows. 

Let rB be a ball on NR  with centered at origin 

with radius r , TBrr I=Ω , TBr I∂=Γ1 and 

rT Ω∂=Γ I2 . Then for large 0>r , the following 

problem: 













Γ∈=
∂
∂

Γ∈=

Ω∈+=∆−

2

1

,0

,0

),()()(

x
n

u

xu

xufxbuxau r

 

has a unique positive solution ru . On the other hand, 

the mixed boundary problem 













Γ∈=
∂
∂

Γ∈∞=

∈+=∆−

2

1

,0

,

),()()(

x
n

v

xu

Bxvfxbvxau n

 

has a positive solution rv . When r increases to 

infinity, ru and rv converges to a minimal positive 

solution and a maximal positive solution for (1), 

respectively, namely: 

 

Theorem 1 Problem (1) possesses a minimal positive 

solution u  and a maximal positive solution u ,  

respectively.   

In order to obtain a complete understanding of 

problem (1), in section 3, we need to study the 

following problem: 

         NRxufxbuxau ∈−=∆− ),()()(       (7) 
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Under the assumptions on )(),( xbxa and )(tf , 

furthermore, for some positive constants 21,dd and 

1>q , )(tf satisfies 

 0
)(

lim 10 >≥→ d
t

tf
qt , ∞<≤∞→ 2

)(
lim d

t

tf
q

t  (8) 

We obtain the following asymptotic behavior of 

positive solutions for (7) as ∞→|| x first. 

 

Theorem 2  Suppose )(1 NRCu∈ is a positive 

solution of (7). If (4) and (8) are satisfied, then for 

some positive constants 1c and 2c such that 

∞<≤< 210 cc , we have 

              1

1

||
||

)(
lim c

x

xu q

x ≥
−

−

∞→ τγ
          (9) 

and 

             2

1

||

||

)(
lim c

x

xu q

x ≤
−

−

∞→ τγ
          (10) 

Next we combine the squeezing method in [18] 

with the iteration argument motivated by one 

attributed to Safonov (see also [14,17]) to obtain the 

uniqueness result in whole space. 

 

Theorem 3 Suppose )(tf  satisfies (8). Furthermore, 

if )(uf  satisfies:    

   















>==

>=<

>=>

→

∞→

0,)(,when

0
)(

lim,when

0
)(

lim,when

2
0

1

CCuuf

k
u

uf

k
u

uf

q

qu

qu

τγ

τγ

τγ

   (11) 

Then problem (7) has a unique positive solution. 

In section 4, we establish a relationship between 

the positive solutions of (1) and ones of (7), and 

utilizing the uniqueness result for problem (7), we 

obtain our main uniqueness result: 

 

Theorem 4 Assume that )(tf satisfies (9) and (11), 

then problem (1) has a unique positive solution. 

 

 

2 Existence of Positive Solutions of 

Problem (1) 
In this section, we adapt the comparison principle in 

[16] and modify it, we obtain the following new 

comparison principle. 

 

Lemma 5 (Comparison principle) Suppose that Ω  

is a bounded domain in NR which Ω∂  splits into 

1Γ and 2Γ . )(xα and )(xβ are continuous 

with 0)( ≥xβ , 0)( ≠xβ on Ω and ∞<
Ω∞ )(

||||
L

a . Let 

)(, 1
21 Ω∈Cuu  be positive in Ω and satisfy (in the 

weak sense)  

)()()(0)()()( 222111 ufxuxuufxuxu βαβα −+∆≤≤−+∆

in Ω  and  

      0)(lim 12)0,( 1
≤−→Γ uuxdist  

2
21 , Γ∈

∂

∂
≥

∂

∂
x

n

u

n

u
. 

where )(uf is a continuous function which for 

every Ω∈x , uuf /)( is strictly increasing for u in the 

range },{sup},{inf 2121 uuuuu ΩΩ << . Then 12 uu ≤  in 

Ω . 
This Lemma can be easily derived from Lemma 2.1 

in [16]. 

 

Lemma 6. Suppose that Ω is a bounded domain in 
NR  and )(xβ are continuous with 0)( >xβ . If 

0),(1 <Ω αλ and f satisfies )()( 21 AA − , then, the 

following problems  

        




Ω∂∈=

Ω∈−=∆−

xu

xufxuxu

,0

),()()( βα
    (12) 

has a unique positive solution. 

Proof. Let φ be a positive eigenfunction 

corresponding to ),(1 αλ Ω . Since 0/)(lim 0 =→ ttft , 

then for all small positive constant ε , it easily 
checked that εφ  is a subsolution of problem (12). 

Since f satisfies (8), we can easily obtain 

∞=∞→ ttft /)(lim . 

Hence there exists a large number 00 >M such 

that for all  

0MM > , 0)()()( ≤− MfxMx βα . 

Thus, M  is a supersolution of (12). A standard 

sub-and super solution argument (see [10,19]) implies 

problem (12) has at least one positive solution. 

Let )(1 xu  and )(1 xv  be two arbitrary positive 

solutions of (6), by Lemma 5 with Ω∂=Γ1 , we have  

)(1 xu ≤ )(1 xv  and )(1 xu ≥ )(1 xv . 

Then it has a unique positive solution. 

Next we will show the existence result Theorem 2. 

Let rB be a ball on NR with centered at origin with 

radius r , TBrr I=Ω , TBr I∂=Γ1 and rT Ω∂=Γ I2 . 

Now we consider the following problem: 
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











Γ∈=
∂
∂

Γ∈=

Ω∈+=∆−

2

1

,0

,0

),()()(

x
n

u

xu

xufxbuxau r

    (13) 

Since condition (4) holds, by the properties of the 

first eigenvalue (see [11,21]), there exists a large 

00 >r such that for all 0rr ≥ , 0),( <Ω arλ . By Lemma 

6, the problem (13) with rΩ=Ω has a unique 

positive solution 1u . It is clear that 1u  satisfies  

01 =u , 1Γ∈x  and 01 ≤
∂

∂

n

u
, 2Γ∈x  

Then by the comparison principle Lemma 5, we 

obtain 1u  is a subsolution of equation (13). Since f  

satisfies )2(A , we can easily obtain  

∞=∞→
t

tf
t

)(
lim  

Hence there exists a large 10 uM > such that for 

all 0MM > , 0)()()( ≤− MfxbMxa . Thus, M is a 

supersolution of (13). 

By standard sub-supersolution method for elliptic 

equation, the problem (13) has at least one positive 

solution ru in the order interval ],[ 1 Mu . It follows 

from Lemma 5 that it has a unique positive solution. 

Let us choose an increasing sequence of positive 

real numbers 0rrn > and ∞→nr  as ∞→n . By the 

discussion above, problem (13) with
nrr Ω=Ω has a 

unique positive solution nu .It follows from Lemma 5 

that 1+≤ nn uu . If we can find an upper bound 

for )(xun on any fixed RΩ , then by a standard 

regularity argument, )(lim)( xuxu nn ∞→= is 

well-defined inT  and it would be a positive solution 

of problem (1). To find such an upper bound, we 

consider the problem 

∞=Ω∈−=∆− Ω∂ R
vxvfxvxv R |,),()()( βα  

By Theorem 1.1 in [9], the above problem has a 

positive solution )(xv . Then clearly by the 

comparison principle Lemma 5, we obtain  

Rn xxvxu Ω∈∀≤ ),()(  

for all large n such that Rrn > . This is the bound we 

are looking for, and hence the existence of a solution 

for (1) is proved. 

From 1+≤ nn uu we find 

0)()( >≥ xuxu n  

for each n , and hence u is a positive solution of (1). 

For an arbitrary positive solutionu of (1), we can see 

that u satisfies 

0|),()()(
1
>−=∆−

Γ
uufxuxu βα  

By Lemma 5 nuu ≥ on 
rr

Ω for each n , and hence  

nn uuu ∞→=≥ lim  

So u is the minimal positive solution of (1). 

Next we will show the existence of a maximal 

positive solution of (1). To this end, we choose an 

increasing sequence of real number nr  such that 

∞→nr as ∞→n and denote 
nrnB Ω= .We consider 

the following mixed boundary problem 

     













Γ∈=
∂
∂

Γ∈∞=

∈−=∆−

2

1

,0

,

),()()(

x
n

u

xu

Bxufxbuxau n

      (14) 

Obviously 0=u is a subsolution of problem (14). By 

Theorem 1.1 in [9], the following equation 





∂∈=

∈−=∆−

n

n

Bxv

Bxvfxvxv

,0

),()()( βα
 

has a positive solution and we denote it as nv . It is 

easy to show 0≥
∂

∂

n

vn and nv is a supersolution of (14). 

Thus problem (14) has at least one positive solution 

nu . 

Applying Lemma 5, we see  

nnn Bxuuu ∈>≥ + ,1  for all n .  

So nn uu ∞→= lim  is well-defined onT . Furthermore, 

by standard regularity considerations, we know u  

satisfies (1) on T  and uu ≥ , so u  is a positive 

solution of (1). 

Clearly any positive solutionu of (1) satisfies, for 

each n , 

.0,|

),()()(

1
=

∂
∂

∞<

−=∆−

Γ
n

u
u

ufxbuxau

 

It follows from Lemma 5 that we see  

uun ≥  on nB for all n ,  

and hence 

uu nn ≥= ∞→ ωlim  

The proof is now finished. 

 

 

3 The Whole Space Problem 
In this section, we will prove the asymptotic behavior 

of the positive solution of problem (7), and then make 

use of this result to prove the uniqueness result in 

Theorem 3. 

Before we start to prove our uniqueness result 
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Theorem 3, we need the following existence lemma. 

 

Lemma 7. If condition (4) is satisfied, then problem 

(7) possesses a minimal positive solution u  and a 

maximal positive solution u .  

Proof. By condition (4), there exists a large 0>r , 

such that 0),(1 <aBrλ , and it follows from Lemma 6 

that the following problem 

         




∂∈=

∈−=∆−

r

r

Bxu

Bxufxuxu

,0

),()()( βα
     

(15) 

has a unique positive solution ru . 

Let us choose an increasing sequence of positive 

real numbers nr with rr >1 and ∞→nr as ∞→n .By 

the properties of the first eigenvalue in [11,21], and 

by Lemma 6, problem (915 with nrr =  has a unique 

positive solution nu . By the comparison principle 

Lemma 5, we deduce 

1+≤ nn uu .  

If we can find an upper bound for nu on any mixed RB , 

then by a standard regularity argument, 

nn uu ∞→= lim is well-defined in NR  and it would be 

a positive solution of (7).  

To find such an upper bound, we consider the 

problem 

    




∂∈=

∈−=∆−

R

R

Bxu

Bxufxuxu

,0

),()()( βα
       (16) 

Theorem 1.1 in [9] implies that (16) has a positive 

solution v . Then by Lemma 5,  

Rn Bxxvxu ∈∀≤ ),()(  

for all large n such that Rrn > . This is the bound we 

are looking for, and hence the existence of a solution 

for (7) is proved. 

From 1+≤ nn uu  we find 0)( >≥ xuu n  

for each n ,and hence u is a positive solution of (7). 

For an arbitrary positive solution u  of (7), we can 

see that u  satisfies 

                          

)()()( ufxuxu βα −=∆− , 0| >∂
nr

Bu  

So u  is the minimal positive solution of (7). 

Next we will show the existence of a maximal 

positive solution of (7). To this end, we choose an 

increasing sequence of real number nr such 

that ∞→nr as ∞→n and denote 
nrn BB = .We 

consider the boundary blow-up problem: 

     )()()( ωβωαω fxx −=∆− in nB  ∞=∂ nB
u |  (17) 

It follows from Theorem1.1 in [9] that (17) has a 

positive solution and we denote it as nω . Applying 

Lemma 5, we see 

unn ≥≥ +1ωω , nBx∈ for all n . 

Thus 

nnu ω∞→= lim  

is well-defined on NR . Furthermore, by standard 

regularity considerations, we know u  satisfies (7) 

on NR  and uu ≥ , so u  is a positive solution of 

(7). 

Clearly any positive solution u of (7) satisfies, for 

each n , 

)()()( ufxuxu βα −=∆− , ∞<∂
nr

Bu |  

It follows from Lemma 5 that we see 

un ≥ω  on nB for all n . 

And hence 

 uu nn >= ∞→ ωlim  

This finishes the proof. 

Next we will show the asymptotic behavior of 

positive solutions for (7) as ∞→|| x and use the result 

to prove Theorem 3. 

 

Proof of Theorem 3: Because )(uf  satisfies (8), 

then there exist two positive constant 210 hh ≤<  

such that  

          qq thtfth 21 )( ≤≤                (18) 

By Proposition 3.2 in [10], the following problem: 

      Nq Rxvxbhvxav ∈−=∆− ,)()( 2         (19) 

possesses a minimal positive v . 

By the constructions of the minimal positive 

solutions v , on any fixed RB , we have  

)()()( vfxbvxav −>∆−  

By Lemma 5, we can easily obtain uv ≤ , where u  is 

the minimal positive solution of (7). By Lemma 3.1 in 

[11], we have 

22

1
1

||
||

)(
lim

β
α

τγ hx

xvq

x ≥
−

−

∞→  

Thus there exists 01 >c  such that 

         1

1

||
||

)(
lim c

x

xu
q

x ≥
−

−

∞→ τγ
              (20) 

By the same method as above, the following problem: 

       Nq Rxxbhxav ∈−=∆− ,)()( 1 ωω       (21) 

has a maximal positive solution such that ω≤u , 

where u  is the maximal positive solution of (7). By 

the Lemma 3.1 in [14], we have 

          
11

2
1

||

||

)(
lim

β
αω

τγ hx

xq

x ≤
−

−

∞→            (22) 
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Thus  

          
11

2

1

||

||

)(
lim

β
α

τγ hx

xu
q

x ≤
−

−

∞→            (23) 

It follows from (20) and (23) that the Theorem 3 is 

complete. 

What remains is to show the uniqueness result for 

problem (7). The following technical lemma is the 

core of our iteration argument to be used in the 

uniqueness proof. 

 

Lemma 8 Suppose that (4), (5), (6), (8) and (11) hold, 

21,uu are positive solutions of (7). Then there 

exists 1>R large so that, if NRx ∈0 satisfies, for some 

1>≥∗ kk , 

)()(,|| 01020 xukxuRx ∗>> , 

thus we can find NRy ∈0 , and positive 

constants ),(00 kRcc = and ),(00 kRrr = independent of 

0x  and ∗k  such that  

)()1()(,||| 01002
2/

0000 yukcyuxrxy ∗
− +>=− γ  (24) 

Proof.  By (4), (9) and (10), for all large 11 >R and 

1|| Rx > , we have  

    γγ αα ||2)(||)2/1( 21 xxax <<            

and                                    (25) 
γγ ββ ||2)(||)2/1( 21 xxax <<  

And, for ,2,1=i  

  
)1/()(

2

)1/()(

1 ||)(|| −−−− << q

i

q xxux τγτγ µµ   (26) 

where 

)1/(1

11

2
2

)1/(1

22

1
1 )(2,))(2/1( −− == qq

hh β
α

µ
β
α

µ  

We now fixed 11 >R large enough so that 

2/1)2/(1 <−− γR and (25), (26) hold for all x satisfying 

2/|| 1Rx > .Then we define 

)()}()(:{: 0120 xBxukxuRx r
N

I∗>∈=Ω , 

where 
2/

00 || γ−= xrr , }|:|{)( 00 rxxRxxB N
r <−∈= , 

and )1,0(0 ∈r  is to be determined below. 

Clearly 0Ω∈x implies 

rxxrx +≤≤− |||||| 00 , 

which in turn implies, due to 10 || Rx > , |x| >R and our 

choice of 1R , 

       ||)2/3(||||)2/1( 00 xxx <<             (27) 

Using (25)-(27) and the assumption that 

012 >− ∗uku  in 0Ω , we now consider )( 12 uku ∗−∆  

in 0Ω in three cases. 

Case 1: τγ > .  

By Theorem 2, if τγ > , then ∞→)(xu  as ∞→|| x . 

Then, it follows from (11) that 

1
|| )(

))((
lim k

xu

xuf
qx

=
∞→

 

So for some 0>ε small enough, there exists a 

large 12 RR > such that if 2|| Rx > , 

we have 
qq ukufuk )()()( 11 εε +≤≤−  

and  

0)()( 1
1

1 >+−− −
∗ εε kkk
q  

Then we deduce, for 0Ω∈x  

))()(( 12 xukxu ∗−∆  

= ))()()(())()()(( 1212 ufkufxbxukxuxa ∗∗ −+−−  

))(

))((())()()((

))(

))((())()()((

11

12112

11

22112

q

q

q

q

ukk

ukxbxukxuxa

ukk

ukxbxukxuxa

ε

ε

ε

ε

+−

−+−−≥

+−

−+−−≥

∗

∗

∗

∗

))()((||

||
2

1
))()((||

))(

)(()())()((||2

1
1

1
1

)(

1112

1

1
11122

εε

β

ε

εα

τγ

τγ

γ

+−−

+−−≥

+−

−+−−≥

−
∗

−

−

∗∗∗

−
∗∗∗

kkkx

AxkxukxuxM

k

kkukxbxukxux

qq

q

qq

q

σγ ||))()((|| 112 ∗∗∗∗ +−−≥ xkmxukxuxM  

where  

1

)(
),)

2

3
(,)

2

1
max((2 2 −

−
+==

q

q
M

τγ
τσα γγ  

))
2

3
(,)

2

1
min(())()((

2

1
1

1
1111

σσεεβ +−−= −
∗ kkkAm
qq  

Case 2: τγ < .  

By Theorem 2, if τγ < , then ∞→)(xu  as 

∞→|| x . Then, it follows from (11) that    

2
|| )(

))((
lim k

xu

xuf
qx

=
∞→

. 

So for some 0>ε small enough, there exists a 

large 13 RR > such that if 3|| Rx > , 

We have 
qq ukufuk )()()( 22 εε +≤≤−  

and  

0)()( 2
1

2 >+−− −
∗ εε kkk
q  

Then we deduce, for 0Ω∈x  

))()(( 12 xukxu ∗−∆  

= ))()()(())()()(( 1212 ufkufxbxukxuxa ∗∗ −+−−  
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))(

))((())()()((

))(

))((())()()((

12

12212

12

22212

q

q

q

q

ukk

ukxbxukxuxa

ukk

ukxbxukxuxa

ε

ε

ε

ε

+−

−+−−≥

+−

−+−−≥

∗

∗

∗

∗

))()((||

||
2

1
))()((||

))()((

)())()((||2

2
1

2
1

)(

11

12

2
1

2

1122

εεβ

εε

α

τγ

τγ

γ

+−−

+−−≥

+−−

+−−≥

−
∗

−

−

∗∗∗

−
∗

∗∗

kkkxA

xkxukxuxM

kkk

ukxbxukxux

qqq

q

q

q

σγ ||))()((|| 212 ∗∗∗∗ +−−≥ xkmxukxuxM  

where  

1

)(
),)

2

3
(,)

2

1
max((2 2 −

−
+==

q

q
M

τγ
τσα γγ  

))
2

3
(,)

2

1
min(())()((

2

1
2

1
2112

σσεεβ +−−= −
∗ kkkAm
qq  

Case 3: τγ = .  

It follows from (11) that there exists a 

large 14 RR > such that qCuuf =)( . Then we deduce, 

for 0Ω∈x  

))()(( 12 xukxu ∗−∆  

= ))()()(())()()(( 1212 ufkufxbxukxuxa ∗∗ −+−−  

)()())()()((

))(())()()((

11212

12212

qqq

qq

ukukCxbxukxuxa

CuCuxbxukxuxa

∗∗∗

∗

−+−−≥

−+−−≥

( )

( 1)

2 2 * 1 * 1 * 1

1
* 2 * 1 1 1 * *2

* 2 * 1 2 * *

2 ( ( ) ( )) ( ) ( )

( ( ) ( )) ( )

( ( ) ( ))

q

q

q q q

q q

x u x k u x b x C k u k u

M x u x k u x x A x C k k

M x u x k u x m k x

γ τ

γ

γ τ

γ σ

α

β
−
−

≥ − − + −

≥ − − + −

≥ − − +

 

where 

2

1

3 1 1 *

1 3 ( )
2 max(( ) , ( ) ), ,

2 2 ( 1)

1 1 3
( 1)min(( ) , ( ) )

2 2 2

q q

q
M

q

m A C k

γ γ

σ σ

γ τ
α σ τ

β −

−
= = +

−

= −

 

Overall, for 

{ } { }1 2 3 4 1 2 3max , , , , min , , 0R R R R R m m m m> = >  

we have 

2 * 1 * 2 * 1 * *
( ( ) ( )) | | ( ( ) ( )) | |u x k u x M x u x k u x mk xγ σ∆ − ≥ − − +

With these preparations, we now define 
1 2 2

* 0 0
( ) (2 ) | | ( | | ).x N mk x r x xδω −= − −  

Clearly ( ) 0xω >  in
0

( )
r

B x  

and  

* 0| | .mk x δω∆ =−   

It follows that, for
0

x∈Ω  

2 * 1 0 2 * 1 0 2 * 1( ) | | ( ) | | ( )u k u M x u k u M x u k uγ γω ω∆ − + ≥− − ≥− − +  

(28) 

If we denote by 
1
( )λ Ω  the first eigenvalue of −∆  

over Ω under homogeneous Dirichlet boundary 

conditions, we have  
2

1 0 0 1 1 0( ) ( ( )) ( ( )).rB x r B xλ λ−Ω ≤ =  

Therefore, by the definition of 0r , we obtain 
2

1 0 0 0 1
( ) | | ,r X γλ λ−Ω ≥  

where 
1 1 1 0

( ( ))B xλ λ=  is independent of 0x . we now 

choose 
0
(0,1)r ∈ small enough so that     

2

0 1
r Mλ− >  

And hence  

1 0 0
( ) | | .M x γλ Ω ≥  

Then by the maximum principle (see [5]), due to (28), 

02 0 * 1 0 0 2 * 1( ) ( ) ( ) max ( ).u x k u x x u k uω ω∂Ω− + ≤ − +  

We observe that the maximum of 
2 * 1

( ).u k u ω− +  

over 
0

∂Ω  has to be achieved by some 
0 0

( )
r

y B x∈∂  

since any 
0 0 0

\ ( )
r

y B x∈∂Ω ∂  satisfies, by the 

definition of 0Ω , 
2 * 1
( ) ( )u y k u y=  and hence 

2 * 1 0 2 0 * 1 0 0
( ) ( ) ( ) (| ) ( ) ( ) ( ) ( ).u y k u y y y x u x k u x xω ω ω ω− + = ≤ < − +

Thus we can find 
0 0

y ∈∂Ω  satisfying 
0 0

| |y x r− =  

(hence 
0

( ) 0yω = ) such that 

2 0 * 1 0 2 0 * 1 0 0
( ) ( ) ( ) ( ) ( ).u y k u y u y k u y yω− = − +  

2 0 * 1 0 0

1 2

0 * 0

( ) /( 1)1 2

* 0 0

( ) /( 1)

* 0

( ) ( ) ( )

( ) (2 )

(2 )

,

q

q

u x k u x x

x N mk x r

N mk r x

dk y

δ

γ τ

γ τ

ω

ω −

− −−

− −

≥ − +

> =

=

≥

 

where  
1 2 ( ) /( 1) ( ) /( 1)

0
(2 ) min{(1/ 2) , (2 / 3) } 0,q qd N mr γ τ γ τ− − − − − − −= >  

and we have used (27). Making use of (26), we finally 

deduce 
( ) /( 1) 1

2 0 * 1 0 * 0 1 2 * 1 0
( ) ( ) | | ( ).qu y k u y dk y c k u yγ τ µ− − −− > ≥  

Therefore we can take 1

0 2
c dµ −= and the proof is 

complete.  

 

Proof of Theorem 3: By Lemma 7 above and 

Theorem 2, under conditions (4) and (8), problem (1) 

possesses a minimal positive solution 1u  and a 

maximal positive solution u2 and any positive solution 

of (1) satisfies (9) and (10).  

Let 2
| |1

1

lim .x

u
k

u
→∞=  

By (4) and (5) we know that 
1
1k ≥  is finite. If 11 =k , 

then for any 0ε >  there exists 0Rε > such that for all 

x satisfying | |x Rε>  

2 1
( ) (1 ) ( )u x u xε≤ +  

Since 
1

(1 )uε+  is a supersolution of (7), we apply 
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Lemma 5 over (0),
R

B R RεΩ = > , and deduce 

2 1
( ) (1 ) ( ), .Nu x u x x Rε≤ + ∈  

Letting 0ε → we obtain 
1 2

u u≡ . This complete the 

proof. 

Next we will prove the result is true when 11 >k . 

Therefore there exists a constant 
1

(1, )k k∈  and a 

sequence { }nx such that 

2 1
| | , ( ) / ( ) , 1,2,

n n n
x u x u x k n→∞ > = K  

We are now ready to apply Lemma 8. Let 

R , 0r and ),(00 kRcc =  be determined by Lemma 8. 

We recall that R satisfies 1 ( / 2) 1/ 2R γ− − < . We first 

find an integer j > 1 such that 

2

0 | |

1

(1 ) sup
j

x R

u
c k

u
>+ > . 

Since | |
n

x →∞ , we can then find 0n large enough 

such that 

0
| | (1/ 2) .

j

nx R>  

Taking 
00 nx x= and *k k= in Lemma 8, we can 

find 10 yy = such that 
/ 2

1 0 0 0 2 1 0 1 1
| | | | , ( ) (1 ) ( )y x r x u y c ku yγ−− = > +  

Clearly 

0

0

/ 2 1 ( / 2)

1 0 0 0| | | | | | | | (1 )

| | (1/ 2)

n

n

y x r x x R

x R

γ γ− − − −≥ − ≥ −

> >
 

We now take 10 yx = and 
* 0
(1 )k c k= +  in Lemma 

8, and we can find 2y such that 
/ 2 2

2 1 0 1 2 2 0 1 2
| | | | , ( ) (1 ) ( )y y r y u y c ku yγ−− = > +  

Let us note that 

0

2

2 1| | | | (1/ 2) | | (1/ 2) .ny y x R≥ ≥ >  

We can repeat the above process until we obtain 

jy which satisfies 

02 0 1( ) (1 ) ( ), | | | | (1/ 2) .
j j

j j j nu y c ku y y x R> + ≥ >  

Therefore 

2 2

0 | |

1 1

( )
(1 ) sup

( )

j j

x R

j

u y u
c k

u y u
>≥ + >  

This contradiction completes our proof. 

 

Remark If ( ) (| |)a x a x= and ( ) (| |)b x b x= , then  

the unique positive solution of (7) must be radially 

symmetric solution, we can use the methods in 

[7,8,20] to obtain the analytic solution. 

 

 

4 Proof of the Main Theorem 
In this section, we will span the positive solution of 

problem (1) to whole space, and use the results in 

section 3 to prove the uniqueness Theorem 4.  

To start, we should prove the following lemma. 

 

Lemma 9. Assume 1u to be an arbitrary positive 

solution of problem (1), letting 

2

,

, \N

u x T
u

u x R T

∈
= 

∈
 

Where 
2 1 1 2

( , , , ), \N

N
u u x x x x R T= − ∈L , then u is the 

positive solution of the following problem 

( ) ( ) , .q Nu a x u b x u x R−∆ = − ∈  

Proof  For any R > 0, we denote 

1 2 1
, , \

R R R
B T B T BΓ = ∂ Ω = Ω = ΩI I  

By a simple computation, we can obtain that u2 is a 

positive solution of 

2
( ) ( ) , , 0.q u

u a x u b x u x
n

∂
−∆ = − ∈Ω =

∂
 

Next we will show that 

1 21 1 2 2| ; | ;u u x u u xΩ Ω= ∈Ω = ∈Ω  

is a positive solution of the following equation  

( ) ( ) , .q

R
u a x u b x u x B−∆ = − ∈  (29) 

For ( )
c R

C Bϕ ∞∀ ∈ , since 

2

1 2

1 1 2

2

1

2

( )

1
1 2

2

1 1

2 2

( , )

( ) ( )

( ) ( )

( ) ( )

( ( ) ( ) ,

R

R

R R

R

L B

B

B B

q

q

q

B

q

u

u dx

u
DuD dx dx

v

DuD DuD dx

u
u dx dx u dx

v

u
dx

v

a x u b x u dx

a x u b x u dx

a x u b x u dx

a x u b x u

ϕ

ϕ

ϕ ϕ

ϕ ϕ

ϕ ϕ ϕ

ϕ

ϕ

ϕ

ϕ

∂

Ω Ω

Ω ∂Ω Ω

∂Ω

Ω

Ω

−∆

= −∆ ⋅

∂
= −

∂

= +

∂
= −∆ + + −∆

∂
∂

+
∂

 = − 

 + − 

 = − 

= −

∫

∫ ∫

∫ ∫

∫ ∫ ∫

∫

∫

∫

∫
2 ( )

) , .
RL B

ϕ

 

Hence u is a positive solution of problem (29). It 

follows from the arbitrary of R  that 

1 2
, , , \Nu u x T u u x R T= ∈ = ∈  

is a positive solution of 

.)()( Nq Rxuxbuxau ∈−=∆−  

The proof is complete. 

Now we are ready to complete the proof of Theorem 

4. 

 

Proof of Theorem 4  Let )(1 xu  and )(1 xv  be two 

arbitrary positive solutions of (1). By Lemma 9, letting  
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





∈

∈
=

TRxu

Txu
u

N
\,

,

2

1
 

and 







∈

∈
=

TRxv

Txv
v

N
\,

,

2

1
 

 

We know that )(xu and )(xv corresponding to 1u  and 

1v , respectively, is the positive solution of  

.)()( Nq Rxuxbuxau ∈−=∆−  

By Theorem 3 above, the problem in whole space has 

only one positive solution. It follows that 
NRxxvxu ∈= ),()(  

Thus           Txvu ∈= ,11  

This completes our proof. 

 

 

5 Conclusion 
In this paper, under less restricted conditions on 

coefficients )(xa and )(xb , we obtain existence and 

uniqueness theorem for a class of semilinear logistic 

equations with Neumann boundary value in 

unbounded domain in NR . It improves the previous 

result. We can use the same method to handle with 

more complicated cases. For example, assume that 

the coefficient b(x)≥0 and b(x)≠0 on NR , named 

degenerate logistic type semilinear equations, if the 

volume of the set D={
NRxx ∈: , b(x)=0} is small 

enough we can show the unique result in our paper 

remains the same. 
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