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Abstract: Some oscillation and non-oscillation criteria for quasi-linear second order equations are obtained. 

These results are extensions of earlier results of C.Huang(J.Math Anal. Appl.210(1997), 712-723), A. 

Elbert(J.Math.Anal.Apll.226(1998), 207-219) and J.Wong(J.Math.Anal.Apll.291(2004), 180-188) which are 
all about oscillation and non-oscillation criteria of the solution of  the second order linear equation. After the 

proof of the main theorem, two examples are given as the additional remarks of the criteria. At last a special 

case is discussed. And the uniqueness and periodic criteria of the special case are obtained further by using 

comparison theorem and Leray-Schauder degree approach.    
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1. Introduction 
In this paper, we consider the following second 

order quasi-liner second order differential 

equation 

,0)()())()(( =+′′ xtqxtr pp φφ  0* >≥ tt     (1) 

where )),0(,(1 ∞∈ ICr  and 0)( ≥′ tr , 

),0(,(, ∞∈∈ ICqIt  with ),[ * ∞= tI  and 

uuu
p

p

1
)(

−
=φ  is the −p Laplacian for .0>p  

If a solution )(tx  of (1) has arbitrarily large zero, it 

is called oscillatory, otherwise it is called 

non-oscillatory. If all solutions of (1) are oscillatory, 

then (1) is called oscillatory. If all nonzero solutions 

of (1) are non-oscillatory, then (1) is called 

non-oscillatory. It is it can be deduced from [3,5,6] 

that all solutions of (1) exist on I  and if one 

nonzero solution of (1) is oscillatory then (1) is 

oscillatory and if one solution of (1) is 

non-oscillatory, then (1) is non-oscillatory. If 

,1)(,1 ≡= trp  then (1) reduces to the following 

second order linear equation: 

,0)( =+′′ xtqx  0* >≥ tt ,      (2) 

In 1997, Huang[4] proved the following result: 

Theorem 1. If there exists *0 tt ≥  such that for 

every Nn∈  

0
1

02

2 2
)(

0
1

0 t
dttq

n

t

t

n

n +
≤∫

+ α
, 

where 2230 −=α , then (2) is non-oscillatory. 

If there exists *0 tt ≥  and 2230 −=>αα  

such that for every Nn∈ , 

0

2

2 2
)(

0
1

0 t
dttq

n

t

t

n

n

α
≥∫

+

, 

then (2) is oscillatory. 

 

In 1998, Elbert [1] generalized Huang’results and 

obtained the following theorem: 

Theorem 2.  Assume  

.,210* ∞→<<<<<< nn tttttt LL  

Let  

,,1,0,
01

1
L=

−

−
= + n

tt

tt nn
nβ  

then ∑∞
=

∞=>=
00 ,0,1

n nn βββ . 

If )(tq  satisfies the following inequality 
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for any sequence
∞
=0}{ nnz  satisfying the following 

relation 
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we  have 

 ./,2,1,0,10 1+==<< nnnn nz ββθL  

Then (2) is non-oscillatory. 

If )(tq  satisfies the following inequality 

,,1,0,0,)()(
1

1 L=>≥− ∫
+

+ ndssqtt nn

t

t
nn

n

n
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and the recurrence relation 
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has no solution such that 10 << nu  for all ,Nn∈  

where .
1+=

nn ββθ  Then (2)  is oscillatory. 

 

In 2004, Wong [7] generalize Huang’s results in 

another direction and obtained the following 

results: 

Theorem 3. Let .1>λ  If for some 0*0 >≥ tt  

and every  ,Nn∈  

0
1)1(

)(
0

1

0 t
dttq

n

t

t

n

n +−
≤∫

+

λλ
αλ

λ
, 

where .)1()( 2
0 −=≤ λλα k  Then (2) is 

non-oscillatory. 

Suppose .1>λ  If for some *0 tt ≥  and every 

Nn∈ ,  

0)1(
)(

0
1

0 t
dttq

n

t

t

n

n λλ
αλ

λ −
≥∫

+

, 

where .)1()( 2

0 −=> λλα k Then (2) is 

oscillatory. 

 

In this paper, by using a similar method in [1], we 

generalize Elbert’s results to equation (1) and 

obtained the following theorem: 

Theorem 4. Assume 

.,210* ∞→<<<<<< nn tttttt LL  Let nβ  be 

given by Theorem 12 and 

L1,0,)(
1

== + np

nn ββθ  

Assume 10 ≤< p and )(tq  satisfies the 

following inequalities: 

,,1,0,10

),()()(
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L=<≤
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+

+

n

trdttqtt
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nn
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    (3) 

and there exists  a sequence of numbers 
∞
=0}{ nnz  

satisfying the following relations: 

,,2,1,0,
))(()(

)(

,1

1

1

0

L=
−+

−
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+
+ n

ztrtr

ztr
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with .,2,1,10 L=<< nzn Then (1) is 

non-oscillatory. 

Assume 1≥p and )(tq  satisfies the following 

inequalities: 

 

,,2,1,0,0

),()()(
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1

L=>

≥− ∫
+

+

n

trdttqtt

n

nn

t

t

p
nn

n

n

α
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and the recurrence relation 

( )( ) ,,1,01
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1)(
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utr
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  (5)  

has no solution such that 10 << nu  for all ,Nn∈  

Then (1) is oscillatory. 

Corollary 5.  let 1)( ≡tr  and 10 ≤< p , 

)1,0(),1,0( ∈=∈= θθαα nn  such that  

.1≤+ αθ  

Then (1) is non-oscillatory. 

Let 1)( ≡tr  and 1≥p , ,0>=ααn  

)1,0(∈= θθn  such that  

.1≥+ αθθ  

Then (1) is oscillatory. 

Remark 6. Let 1)( ≡tr , 1=p , then Theorem 4 

reduces to Theorem 2. Let 0,1 ttn λλ => , then 

)1,0(/1 ∈= λθ n , then it is not difficult to verify 

that Corollary 5 implies Theorem 3. Therefore, 

Theorem 4 generalizes the results of Huang, Elbert 

and Wong. 

 

 

2. Proofs 
Lemma 7.  Assume 

).,[,0)(,0)( 0 ∞∈≥≥′ tttqtr  If ,0)( ≥tx  

),[],[,0)( 0 ∞⊂∈>′ tttttx ba , then   
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))(( txp
′φ is non-increasing on ],[ ba tt . Especially, if 

],[,0)( ba ttttx ∈≥′ , then )(tx′ is non-increasing 

on ],[ ba tt . 

Proof.  For any 21 tt < such that ],[],[ 21 ba tttt ⊂ , 

assume 0)(,0)(,0)( ≥≥′> tqtrtx  on ],[ 21 tt , 

integrating (1) on ],[ 21 tt , we get 

0))()((

))(()())(()(

2

1

2211

≥=

′−′

∫ dttxtq

txtrtxtr

pt

t

pp φφ
 

which yields 

)).(())((
)(

)(
))(( 11

2

1
2 txtx

tr

tr
tx ppp

′≤′≤′ φφφ  

Since 12 tt >  is arbitrary on ],[ ba tt , we see that 

))(( txp
′φ  is non-increasing on ],[ ba tt . 

 

Lemma 8.  Let )(tx  be a nonzero solution of (1). If 

)(tx  satisfies 0)(,0)( =′= τxax , where 

τ<≤ at0 , then  

dssqaar
a

p ∫−<
τ

τ )()()( ; 

if  )(tx  satisfies 0)(,0)( ==′ τxax , then  

dttqar
a

p ∫−<
τ

ττ )()()( . 

Proof.  We prove the first inequality only, the 

second inequality can be treated similarly. Since if 

x  is a solution of (1), by uniqueness result [2], we 

have 0)( ≠′ ax . Since if )(tx  is a solution of (1), 

)(tx−  is also a solution of (1). We can assume 

without loss of generality that 0)( >′ ax . Let 

ττ ≤=′>= }0)(,inf{0 txat , then ,0)( >′ tx  

[ )0,τat∈ , by Lemma 7, )(tx′  is non-increasing on 

],[ 0τa . Integrating (1) from a  to 0τ  to obtain 

,)()())((

))(()())(()())()((0

0

0

00

dttqaax

dtxtqdttxtqaxar

a

pp

p

a

p

a

p

∫

∫∫
−′≤

<=′<

τ

ττ

τ

τ

which implies that  

dttqadttqaar
a

p

a

p ∫∫ −≤−<
ττ

ττ )()()()()(
0

0
 

 

Lemma 9. if 10,0,0 ≤<≥≥ pBA , then 

ppp BABA )( +≥+ ; if 1≥p , then 

ppp BABA )( +≤+ . 

Proof. Simple calculation yields above results. 

 

Proof of the first part of Theorem 4. 

Since it is proved in[4,5] that (1) can not has 

non-oscillatory and nonzero oscillatory solutions 

at the same time, we need only to prove that (1) has 

a non-oscillatory solution. Therefore we need only 

to prove that the solution )(tx  of (1) satisfying 

initial condition 0)(,0)( 00 >′= txtx  

satisfies ,0)( >tx  0tt >∀ . By the existence and 

uniqueness result proved in [2], we see that the 

solution )(tx  is unique and exists on 

),[ 0 ∞= tI . 

In fact, it follows from (3) that 

)()()()( 00001

1

0

trtrdssqtt
t

t

p <<− ∫ α  and Lemma 8 

implies that ],[,0)( 10 ttttx ∈>′ . We get 

therefore ],[,0)( 10 ttttx ∈>  and by Lemma 7, 

0)( >′ tx  is non-increasing on ],[ 10 tt . 

Moreover, by integrating (1) from 0t  to 1t  to get 

,))()((

)()))((((

)()())()(())()((

000

010

1100

1

0

1

0

p

t

t

p

t

t

ppp

txtr

dttqtttx

dttxtqtxtrtxtr

′≤

−′≤

=′−′

∫

∫

α

 

which yields  

 

0))()(1)((

))()(()())(())()((

000

0000011

>′−≥

′−′≥′
p

ppp

txtr

txtrtrtxtxtr

α

α
 (6) 

 

Claim 10. ],[,0)( 21 ttttx ∈∀> . Otherwise, let 

}0)(],[inf{ 21 =∈= txtttτ , then by Rolle’s 

Theorem, there exists ),[ 1 τtat ∈=  such that 

0)( =′ ax . As ],[),[ 211 ttta ⊂∈ τ , it follows 

from Lemma 8 that  

)()()()(

)()()(

1

1211

2

1

trrdttqa

dttqtttr

a

p

t

t

p

≥>−≥

−≥

∫

∫
ττ

α

τ
, 

which contradicts the assumption 11 <α . Claim 10 

is thus proved and we have 

],[,0)( 21 ttttx ∈> .        (7) 

Next we show the following inequalities by using 

mathematical induction. 
p

n

i

iip
n

np
n tx

z
tx 








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)())(( β
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              (8) 





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

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
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




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′
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=
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i

iip
n
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p
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txtxr
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0

11

)())((

))()((

β
β

α   (9) 
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],[,0)( 21 ++∈> nn ttttx ,                (10) 

where nz  is defined in Theorem 4. 

   The case 0=n  follows from (6) and (7). 

Assume (8)-(10) hold for .,,1,0 nL  We show that 

(8)-(10) holds also for .1+n  As 01 >+nz , it 

follows from (8) and (9) that 
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))((
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From Lemma 9, for ,10 ≤< p  let 

)()( 110 ++

∞
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′=′= ∑ nni ii txBtxA ββ , we get  
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or equivalently, 

0)())((
1

01

1
1 >








′≥′ ∑

+

=+

+
+

p
n

i

iip
n

np
n tx

z
tx β

β
      (11) 

 

By (1), (10) and (11), Lemma 7 implies that 

))(( txp
′φ  is non-increasing on ],[ 21 ++∈ nn ttt , 

hence )()()( 1+′≤′≤′
ntxtxtx  for ],[ 21 ++∈ nn ttt , 

which yields for ],[ 21 ++∈ nn ttt ,  
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where ),( 1 ttnt +∈τ . 

   Integrating (1) over ],[ 21 ++ nn tt , we obtain 
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By the Lagrange mean theorem and the definition of 

nn θβ , , we have 
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That is,  
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Since 02 >+nz  implies 11 ++ > nnz α  and by (11),  

we get 
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which implies 0)( 2 >′ +ntx . Lemma 7 and the 

inequality 
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implies that ],[,0)( 32 ++∈> nn ttttx , which, 

together with (11)-(13), completes the induction 

step. We have showed that 0)( >tx  and 0)( >′ tx  

holds for all 0tt > , hence )(tx  is a positive and 

hence a non-oscillatory solution of (1). This 

completes the proof of the first part of Theorem 4. 

 

Proof of the second part of Theorem 4. 

If the results of the second part of Theorem 4 is 

false, then we can assume without loss of 

generality that there exists a solution )(tx  of (1) 

such that for all 0tt > , 0)( >tx  and it is not 

difficult to verify that 0,0)( tttx >∀≥′ . By 

Lemma 7, )(tx′  is non-increasing for all 0tt > . 
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By using the Lagrange mean value theorem 

again and by the definition of nβ  and nθ ,  we 

obtain, by noticing 0)( 0 >tx , that  
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which implies the following two inequalities: 
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For Nn∈ , we have therefore 
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which yields 
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Let L,, 10 uu  be given by Theorem 4, we are 

going to prove the following claim. 

 

Claim 11. For 1≥p  and ,,2,1 L=n  we  have 
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We prove Claim 11 by induction method. By using 

(15) and (18), it is easy to see that (19)-(20) hold for 

1=n . Assume (19)-(20) hold for n , we show next 

that they hold also for 1+n . 

   We get from (19) 
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It follows from (16), (19) and (21) that  
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))()(1)(())()((

1 1

11

′
−

≤

′
−

=

′−<′

∑ = −

++

β
β

α

that is, 
p

i

n

i

i
p

n

nnn

n
p
nn txtx
utr

tru








′<′

− ∑
=

−+
+ )())((
)1)((

)(

1

11
1 β
α

β
  (22) 

Adding p
n

p
n tx ))(( 1+′β  to both sides of (22) and by 

using Lemma 8 for 1≥p , we get  

 

p

i

n

i

i

p
n

nnn

nnp
n

tx

tx
utr

tru









′<

′








−
+

∑
+

=
−

+
+

)(

))((
)1)((

)(
1

1

1

1

1
1

β

α
β

    (23) 

Multiplying both sides of (23) by 
p
nn 11 / ++ βα and by 

using the definition of 1+nu  in Theorem 4, we 

obtain by using (17) for 1+n , 

( ) .))(()(

))((
)()1(

)(
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))((

1

1

1 1

1

1

1
1

1
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p
n
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i iip
n

n

p
n

nnn
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p
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txu

+
+

= −
+

+

+
+

+
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′<′<

′








−
+=

′

∑ β
β
α

α
θα

  (24) 

Hence Claim 11 is proved. 

   Now it follows from (24) and definition of 1+nu  

that 10 1 << +nu . This completes the induction step 

shows that (19)-(20) hold for any Nn∈ . But this 

contradicts the assumption of Theorem 4. The 

second part of Theorem 4 is thus proved. 

 

Proof of Corollary 5. 

   Assume )1,0(, ∈θα  and ,1≤+ θα we can 

define a function  [ ] )[ 1,01,: →αf    

by     .1,)( ≤≤
−+

−
= x

x

x
xf α

αθ
α
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It is easy to see that  

.1,0
)(

)(
2

≤≤>
−+

=′ x
x

xf α
αθ

θ
 

Let 21 xx ≤  be the two fixed points of f , then  

 ∆++−=≤∆−+−= αθαθ 1212 21 xx  

where  

0)1(

)1)()1((

4)1(

2

2

≥−−

−+−+=

−+−=∆

θα

θααθ

ααθ

 

Then by )1,0(∈θ , it is easy to verify that 

121 <≤< xxα  and 1)1(1 << fx . Since 

]1,(],1,0[)( α∈∀∈′ xxf , we obtain  

)1,()]1(,[]1[ ,1,1,1 xfxxf ⊂⊂ , 

which implies that  

Nnfzfzx nn ∈<≤=<< − ,1)1()( 1,1α . 

Hence (1) is non-oscillatory by the first part of 

Theorem 4. 

Assume now )1,0(,0 ∈> θα  and 

1>+ αθθ . Define a function 

[ ) ( )∞→ ,1,0: θαg  by  

.10,
1

)( <≤







−

+= x
x

x
xg αθ  

Then  

.10,0
)1(

)(
2

<≤>
−

=′ x
x

xg
θ

 

We shall prove the value }{ nu  defined by  

),(,0 10 nn uguu == +          (25) 

can not stay in )1,0[  for all .Nn∈  Since 

.)0()( 01 θα=== gugu  If ,1≥θα  we are done. 

We consider only the case 1<θα . Since the 

function g  is strictly increasing, we see that 

LL <<<<<= nuuuu 2100 . 

If )1,0[∈nu  for all 0≥n , then the limit 

nn uu ∞→= lim*
 exists and 

*u  is a fixed point of 

g  in )1,0[ , which means that 
*u  is a positive 

solution of the quadratic equation 

0)1(2 =++−− αθαθθ xx . 

But this equation has no real root since its 

discriminant δ  is negative: 

.0

)1)(1(

)1)(1(

4)1( 2

<

−−−+•

−+++=

−+−=∆

αθθθαθ

αθθαθθ

αθαθθ

 

Because it is easy to see that the first three factors of 

∆  are positive and the last one is negative if 

1>+ αθθ  and )1,0(∈θ . 

Let 1)( ≡tr  in (1), then the following example 

shows that there exists 0)(,1 >> tqp  satisfying 

the conditions of the first part of Theorem 4, but 

Theorem 4 does not hold. 

Example 1.  Let 1)(,1)( +=≡ ptcptqtr . Then it is 

well known that (1) is oscillatory if  
1)1( ++

>
p

p

p

p
c  and 

(1) is non-oscillatory if 
1)1( ++

≤
p

p

p

p
c .(see, for 

example, [2]) 

Let ,,1,0,2 L== nt n
n

 then ,21
n

nn tt =−+  

p
n

n
n

−=== 2,2 θθβ  and  








 −=− ∫
+

+ p

t

t

p
nn kdssqtt

n

n 2

1
1)()(

1

1 . 

Hence  

L,2,1,1
2

1
1 =<







 −== nk
pn αα . 

In this case, we shall show that there exists ,1* >p  

and 0>ak  such that if *pp > , then (1) is 

non-oscillatory by the first part of Theorem 4. That 

is, we look for 1* >p  such that if *pp > , then for 

k  such that  

1
)1(

++
>

p

p

p

p
k  

and  

1)21(2 2 ≤−+=+ −− pk
p

αθ . 

The above inequalities implies that k  satisfies  

12

2

)1( 2

2

1

+
<<

+ + p

p

k
p

p
p

p

.       (26) 

Define a function [ ) Rf →∞,1:  as  

1)1(1)2(

1)2(
)(

++
−

+

−
=

x

x

x

x

x

x
xf . 

Then it is to see that 0)2(,0)1( >< ff  and 

1,0)( ≥∀>′ xxf . This means that there exists a 

)2,1(* ∈x  such that 0)( * =xf   and 0)( >xf  if 
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*xx > . Let
** xp = , then for 

*pp >  and k  

satisfies (26), we see that (1) is oscillatory. But by 

the first part of Theorem 4, (1) is non-oscillatory. 

Hence Theorem 4 may be incorrect if 1>p . 

Example 2. Assume  ,10,1)( <<≡ Ptr  

1)( += ptcptq , where c  satisfies 

( ) 











+−
<

<
+

−

+1
1

,
12

2
min

1)2(

2)1)2((

p

p

p

p

p

pp

p

p

c

  (27) 

Since the left side of (27) approaches zero when 
+→ 0p , and the right side of (27) approaches 1 

when +→ 0p , we can choose 10 <<< p  such that 

c   satisfies (27). In this case, (1) is non-oscillatory 

by the choose of c . But if we choose 

n
nt 2= , p

n
−== 2θθ , 1

2

12
<







 −
==

p

p

n cαα . Then 

it is easy to verify that 1>+ θαθ . Hence the 

condition of Corollary 5 holds, but at the same time 

(4) and ,10 << nz  ,,2,1 L=n hold. Which shows 

that the second part of  Theorem 4 may be incorrect 

for some ).1,0(∈p  

   In addition, by using the methods in paper [8-10], 

we can also obtain the numerical solutions of (1). 

 

 

3. Special case 
In this section, we will consider the equation  

0),())(( =+′′ xtfxtp          (28) 

where )),0(),2,0((1 +∞∈ πCp  is π2 -periodicI 

),( 2 RRCf ∈  is π2 -periodic in t . 

Let 1=p  in equation (1), it is easy to see that 

the first part of (28) is same as (1)  when 1=p  , 

but only the nonlinear part ),( xtf  of (28) is 

more complex than xtq )(  of equation (1) when 

1=p . So we can consider the equation (28) as the 

special case of the equation (1). 

Landsman-Lazer type conditions play an 

important role in the study of the existence of and 

uniqueness of periodic solutions for second order 

nonlinear differential equations. There has been 

many results on the existence and uniqueness of 

periodic solution for the following scalar equation 

(28) or for the following vector Newton equation  

)()( thxgradGx =+′′          (29)           

See, for example, [11,13-17] and the references 

therein. Recently, Cong[12] considers equation (28), 

by using bilinear form theorem combined with the 

well-known Leary-Schauder degree principle, he 

proved the following theorem. 

 

Theorem 12.  Assume ( 1A ) ),( 21 RRCf ∈  is 

π2 -periodic with respect to the first variable, and 

)(RPCp∈ -the space of all π2 -periodic functions 

in )(1 RC , satisfies 21 )(0 MtpM ≤≤<  on R  

for some constants 1M  and 2M  I 

( 2A )  the exist two positive constants a  and b  
such that  

bfa x ≤≤  on RR×  

and there exists a nonnegative integer m  satisfying 

the condition 

1
2

2
2 )1( MmbaMm +<≤< . 

Then equation (28) has a unique π2 -periodic 

solution. 

However, the results of [12] is not sharp. In this 

paper, by using comparison principle combined 

with Leray-Schauder degree method, we obtain 

the fowling results. 

 

Theorem 13. Assume [ ]( )RRCxtf ,2,0),( ×∈ π  

can be written as  

),(),(),( xthxxtgxtf += ,         (30) 

where hg,  are conditions functions and are 

π2 -periodic in t  with h  satisfying  
 

0
),(

lim =
∞→ x

xth

x
, ]2.0[ π∈∀t ,        (31) 

 

and there exists a nonnegative integer n  such that  

1
2

2
2

)1(),(suplim

),(inflim

Mnxtg

xtgMn

x

x

+≤≤

≤

∞→

∞→
    (32)  

where  

∞<=≤=<
∈∈

2
]2,0[]2,0[

1 )(max)(min0 MtptpM
tt ππ

. 

If at least one of the following conditions holds: )(i  

the function )(tp  is not constant, that is, 

21 MM < I )(ii  the first and last two inequalities 

in (32) are strict in some subsets of ]2,0[ π  of 

positive measure, then (28) has at least one 

π2 -periodic solution. Moreover, if 

),( 21 RRCf ∈  and satisfies 
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1
2

2
2

)1(),(suplim

),(inflim

Mnxt
x

f

xt
x

f
Mn

Rx

Rx

+≤
∂
∂

≤

∂
∂

≤

∈

∈
    (33) 

and the first and last two strict inequalities hold on 

subsets of R×]2,0[ π  of positive measure. Then 

(28) has a unique π2 -periodic solution. 

 

Proof of Theorem  

 

Lemma 14.  Consider the homogeneous equation 

0)())(( =+′′ xtqxtp            (34) 

Assume )()( RPCtp ∈  satisfies the assumptions 

in Theorem 13, ]2,0[)( 1 πLtq ∈  is π2 -periodic 

and satisfies for all Rt∈ ,  

1
2

2
2 )1()( MntqMn +≤≤         (35) 

where n  is a nonnegative integer. If either the 

function )(tp  is not constant or the two inequalities 

in (35) are strict in some subsets of ]2,0[ π  of 

positive measure, then (34) has only the trivial 

π2 -periodic solution 0)( ≡tx . 

Proof.  We only prove the case 1≥n , the case 

0=n  can be proved similarly. Define a generalized 

polar coordinates transformation ),(:1 θrT  with 

Rr ∈> θ,0  as  

,sin:1 θrxT =   θcos)( 1rcxtp =′       (36) 

where 11 )1( Mnc += , then it is easy to see that the 

periodic condition  

),2()0( πxx =    )2()0( πxx ′=′  

for a nontrivial solution )(tx  of (34) is equivalent 

to  

πθπθ
π

k

rr

2)0()2(

,0)2()0(

+=

>=
  for some Zk ∈ . 

Taking derivatives of (36) and substituting them into 

(34), we obtain the following generalized polar 

coordinates system: 










+
++=′










+
−+=′

2
1

2
21

2
1

1

)1(

sin)(
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)(

)1(
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)1(

)(

)(
)1(

nM

tq
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M
n
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tq
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M
nrr

θ
θθ

θθ

(37) 

The first equation of (37) implies that 

∫=
t

dssrtr
0

)(exp)0()( η , where 

)(cos)(sin
)1(

)(

)(
)(

2
1

1 tt
nM

tq

tP

M
t θθη 









+
−= , 

which implies that 0)( >tr  whenever ,0)0( >r  

.Rt∈ Now the inequality )(1 tpM ≤  and 

inequalities (35) implies that the second equation of 

(37) satisfies 1+≤′ nθ  and the strict inequality 

holds on a sunset of ]2,0[ π  of positive measure if 

the assumptions of Lemma 14 are satisfied. We get 

therefore  

πθπθ )1(2)0()2( +<− n .         (38) 

Similarly, we define transformation 2T  as 

,sin:2 θρ=xT   θρ cos)( 1dxtp =′ , 

where 21 nMd =  and rkn=ρ  with 

2

1)1(

nM

Mn
kn

+
= . Comparing 2T  with 1T , we see 

that only the variable r  is replaced by rkn=ρ , 

and the variable θ  is unchanged in 2T . Under the 

transformation 2T , we obtain  

 









+=′









−=′

2
2

2
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2
2

2

sin)(
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)(

,cossin
)(

)(

nM

tq
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M
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tq
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M
n

θ
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θθρρ

         (39) 

The first equation of (39) implies that 

∫=
t

dssrtr
0

)(exp)0()( ξ , where  

)(cos)(sin
)(

)(
)(

2
2

2 tt
nM

tq

tP

M
nt θθξ 








−= , 

the second equation of (38) and (35) implies that 

n≥′θ  and the strict inequality holds on a subset of 

]2,0[ π  of positive measure, which implies that  

)0()2(2 θπθπ −<n .         (40) 

Combining (38) and (40), we see that )(tx  can not 

be a π2 -periodic solution of (36). A contraction. 

Hence (34) has only the trivial π2 -periodic 

solution 0≡x . 

 

Proof of Theorem 13 

Let x  be the usual 
1C  norm for 

)(RPCx∈ , i.e., 

[ ] [ ] )(max)(max 2,02,0 txtxx tt
′+= ∈∈ ππ . For 

any constant ( )12
2

2 )1(, MnMn +∈µ , Lemma 

14. implies that the equation  

0))(( =+′′ xxtp µ  

has only the trivial solution 0≡x . 
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First, we show the existence part. Introduce an 

auxiliary equation  

 [ ]1,0
0),()1())((

∈

=+−+′′

λ
λµλ xtfxxtp

,    (41) 

We claim that there exists a constant 00 >M  such 

that if )(txλ  is a π2 -periodic solution of (14), 

then  

0Mx ≤λ                 (42) 

Suppose (42) is false, then there would exist 

sequences { }
i

xλ  of pπ2  periodic solutions of (41) 

and { } [ ]1,0⊂iλ  such that ∞→
i

xλ  as ∞→i . 

Denote

i

i

x

tx
twi

λ

λ )(
)( = , then )(twi  satisfies 

equation  

0
))(,(

)(
))(,(

)1(
))()((

=+








 +−
+′′

i

i

i

x

txth

tw
txtg

twtp

i

i
i

i

i

λ

λ

λ

λ

λ

µλ

    (43)      

Since ),( xtg  satisfies (33), by passing to 

subsequence, Arzela-Ascoli theorem implies that 

[ ]1,00∈→λλi , )(0 RPCwwi ∈→ , 

[ ]πλ 2,0)())(,( 1
0 Ltgtxtg

i
∈→  as ∞→i . By 

assumption, 0lim
),( =∞→ x

xth

x
, we see that from 

(43) that )(0 tw  is a π2 -periodic solution of the 

equation  

0)())(( =+′′ wtqwtp            (44) 

with 10 =w , where )()1()( 000 tgtq λµλ +−= . 

On the hand, as ),( xtg  satisfies (32) and by the 

choice ofµ , we see that )(tq  satisfies (35). Lemma 

14 implies that (44) has only trivial solution 0≡w . 

This is a contraction. Hence (42) holds. The 

Leacy-Schauder principle implies that (28) has at 

least one π2 -periodic solution.  

Next we prove the uniqueness part. 

Let )0,(),(),( tfxtxgxtf += , where.  

θθ dxt
x

f
xtg ),(),(

1

0∫ ∂
∂

=  

Since f  satisfies (33), g  must satisfies (32). 

Theorem 13 implies that (28) has at least one 

π2 -periodic solution. Assume there exist two 

π2 -periodic solutions )(1 tx , )(2 tx  of (28), then 

)()()( 21 txtxtx −=  is a π2 -periodic solution of 

the following equation: 

0),())((
_

=+′′ xtgxxtr ,           (45) 

where 

θθ dtxtxt
x

f
xtg ))()(,(),( 2

1

0

_

+
∂
∂

= ∫ . 

By assumption (33), ),(
_

xtg  satisfies (32) with g  

replaced by 
_

g . Now Lemma 14 implies that (45) 

has only the trivial solution 0≡x , 

hence )()( 21 txtx ≡ . 

Let 1)( =tp  in (28), the equation is linear. Because 

it is the special case of (28), so we can get easily the 

corresponding theorem with Theorem 13 for  

1)( =tp . 

 

 

4. Conclusion 
In this paper, we consider the solutions of equation 

(1) and (28). The oscillation and non-oscillation 

criteria are obtained by studying the quasi-linear 

equation (1) and while considering the special case , 

that is, equation (28) which is linear when 1)( =tp , 

we can get the periodic and uniqueness criteria. This 

shows that we maybe obtain the wilder conclusion 

when the simpler problem is studied.    
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