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Abstract: Some oscillation and non-oscillation criteria for quasi-linear second order equations are obtained.
These results are extensions of earlier results of C.Huang(J.Math Anal. Appl.210(1997), 712-723), A.
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comparison theorem and Leray-Schauder degree approach.
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1. Introduction J‘ 2"y (t)dt < —20
In this paper, we consider the following second 2"t q Togntly
order quasi-liner second order differential 0
equation where o, =3 — 2\/5 , then (2) is non-oscillatory.
()¢, (x) +q(1)P ,(x) =0, t26.>0 (1) If there exists ¢, >2¢. and a >a, =3 - 22
where reC'(1,(0,0)) and r' ()20 such that for every ne N,
tel, qeC,(0,0) with [=[t.,©) and 2", a
q _E (0,0) [ ) ,[2"; g(dt > ——,
¢ ,(u)= |u|p u is the p— Laplacian for p>0. 0 271,

If a solution x(#) of (1) has arbitrarily large zero, it then (2) is oscillatory.

is called oscillatory, —otherwise it is called In 1998, Elbert [1] generalized Huang’results and
non-oscillatory. If all solutions of (1) are oscillatory, obtained the following theorem:

then (1) is called oscillatory. If all nonzero solutions Theorem 2. Assume
of (1) are non-oscillatory, then (1) is called
non-oscillatory. It is it can be deduced from [3,5,6] be <ty <ty <ly <eoo <ty <eosly =0,

that all solutions of (1) exist on / and if one Let

nonzero solution of (1) is oscillatory then (1) is a1y, —0L...
oscillatory and if one solution of (1) is Bn= t 1, > BEUL
non-oscillatory, then (1) is non-oscillatory. If "

p=1, r(t)=1, then (1) reduces to the following then SBo=1, S,>0, anoﬁ,F .
second order linear equation: If g(¢) satisfies the following inequality

x"+qt)x=0, t>t. >0, )
In 1997, Huang[4] proved the following result:
Theorem 1. If there exists #, = ¢, such that for

every ne N
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t+
(1 —zn)L" ‘g)ds<a,, 0<a,<l,

and
n=0,,"--,
for any sequence{z,, } o satisfying the following
relation
zZ, —a
n+l— #9 n= 09192' )
0+z,-a,
ZOZ 1,
we have

0<z,<1l, n=012---,
Then (2) is non-oscillatory.
If g(¢) satisfies the following inequality

Hn :ﬂn/ﬁnﬂ'

(t,—t,) f gs)ds>a,, a,>0, n=0,

and the recurrence relation

an+19n (1+W';—_u§l n=0,1,---,
u,=0,
has no solution such that 0 <u, <1 forall ne N,
where @=f,/f ., . Then(2) is oscillatory.

In 2004, Wong [7] generalize Huang’s results in
another direction and obtained the following
results:

Theorem 3. Let A>1. If for some 7, >¢. >0
and every neN,

n+l

) a
gt < —
L fo (A-DA"e,
where a <k,(1)= (\/I ~1)%. Then (2) is
non-oscillatory.
Suppose A >1. If for some ¢, > ¢, and every

nenN,

n+l

(i —_
Aty S (A-DA"
where a >k (A)= (\/I —~1)>. Then (2) is

oscillatory.

In this paper, by using a similar method in [1], we
generalize Elbert’s results to equation (1) and
obtained the following theorem:

Theorem 4. Assume

to<t, <t <t,<---<t,<---,t, —>o0. Letf, be
given by Theorem 12 and

Qz(ﬂn/ﬂml)p, n=0,:--
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Assume 0< p<1 and ¢(¢) satisfies the
following inequalities:
_ P Tyl <
(=1’ [ gt <are).
0<a,<l, n=0]1,,---,

o0

and there exists a sequence of numbers {z,}
satisfying the following relations:

zo=1,
Z’ —
n+l— r( - )Zn an , N= 031923' Tty
r(tn+1 )0n+r(tn )(Zn _an)
with 0<z, <1, n=L12,---. Then (1) is

non-oscillatory.
Assume p >1landg(¢) satisfies the following

inequalities:

tn+1
(tn+1 - tn)pJ; Q(Z)dt 2 anl"(fn )9

a,>0, n=0,L2,---,
and the recurrence relation
u(): O,

“)

r(ty)y _ ()
an+1‘9n(1+ﬁ_rr(zn)1—lun aﬂ) n=0,1,-,
has no solution such that 0 <u, <1 forall ne N,

Then (1) is oscillatory.
Corollary 5. let 7(¢)=1 and 0< p <1,

a,=ae(0,]), 8 =0¢e(0,1) such that

\/§+\/5£1.

Then (1) is non-oscillatory.
Let r(f)=1 and p2>1, a,=a>0,

0, =0 <(0,1) such that

VO +ad>1.

Then (1) is oscillatory.
Remark 6. Let r(¢)=1, p=1, then Theorem 4

reduces to Theorem 2. Let A>1, ¢, =A¢,, then

6 =1/4€(0,1), then it is not difficult to verify

that Corollary 5 implies Theorem 3. Therefore,
Theorem 4 generalizes the results of Huang, Elbert
and Wong.

2. Proofs

Lemma 7. Assume
r')=0, qt)=0, telty),®). If x(t)=>0,
x'(t)>0, telt,,t,][ty,©), then
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¢, (x'(1)) is non-increasing on [¢,,t,]. Especially, if
x'(t)=20, telt,,t,],then x'(¢)is non-increasing
on [7,,t,].

Proof. Forany ¢, <t,suchthat [¢,¢,]C[¢,,t,],
assume x(¢)>0, r'(#)=0, q(¢)=0 on [¢,t,],
integrating (1) on [¢,,,], we get

r(t)g ,(x'(1,)) = r(t)$ ,(x'(t,))

5 P
- j g(O)(x(1)) di >0
which yields
b3 (1,) < (<>)¢( (1) <, (3 (1),

Since ¢, >, is arbitrary on [¢,,7,], we see that

¢ (x'(1)) is non-increasing on [7,,7,].

Lemma 8. Let x(r) be anonzero solution of (1). If
x(?) x(a)=0, x'(r)=0 ,
t, <a<rt,then

r(a)<(r —a)? jrq(s)ds ;
if x(¢) satisfies x'(a)=0, x(r)=0,then

r(@)<(@-a)" [ gt

Proof. We prove the first inequality only, the
second inequality can be treated similarly. Since if
x is a solution of (1), by uniqueness result [2], we
have x'(a)#0. Since if x(¢) is a solution of (1),

satisfies where

—x(t) is also a solution of (1). We can assume
without loss of generality that x'(a)>0 . Let

=inf{t>a,xX()=0y<z , then Xx'(#)>0,
tela,z,), by Lemma 7, x'(¢) is non-increasing on

[a,7,]. Integrating (1) from a to 7 to obtain
0 < H@) (@) = [ q(O)x@)"dt < [ q(O)(x(z,))" d

< (@) (7~ )" [ g0y,
which implies that
ra) <, ~a)" [ gt < (r-a)" [ gy

Lemma 9. if 4>0, B>0, O0<p<l1,
A? +B? >2(A+B)? ; if p=21
A? + B? <(A+ B)”.

Proof. Simple calculation yields above results.

then
then

Proof of the first part of Theorem 4.
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Since it is proved in[4,5] that (1) can not has
non-oscillatory and nonzero oscillatory solutions
at the same time, we need only to prove that (1) has
a non-oscillatory solution. Therefore we need only
to prove that the solution x(¢) of (1) satisfying

x(t,)=0,x'(¢,)>0

. By the existence and

initial condition
satisfies x(¢) >0, V>t
uniqueness result proved in [2], we see that the

solution x(¢) is unique and exists on
I=[t,,o).
In fact, it follows from (3) that
(tl—zO)PJ'" q(s)ds < ayr(t,) <r(t,) and Lemma 8
ty
implies that x'(¢)>0, te[t,,t,] . We get

therefore x(t)>0, t<([t,,t;] and by Lemma 7,
x'(t)>0 s [45,1,]
Moreover, by integrating (1) from ¢, to #, to get

(1) (1) =r() @) = [ a0 (s

non-increasing on

(' (t0)t ~10)” [ glor

<Sagr(te)(x'(ty))”,
which yields

r)(x' ()" 2 (xX'(t)) 7 r(tg) —agr(ty (x'(,))” (6)
27(t)1—ay)(x'(ty))" >0

Claim 10. x(¢) >0, V¢elt,,t,]. Otherwise, let
r=inf{te[t,t,]x(t)=0} , then by Rolle’s
Theorem, there exists ¢=a€[f,r) such that
x'(a)=0. As a€lt,,r)c[t,t,],
from Lemma 8 that

H(t)ay = (6 =1)" [ glo

it follows

> (r—a)!’j q()dt > r(r) = r(t,)
which contradicts the assumption ¢; <1. Claim 10
is thus proved and we have
x()>0, telt,t,]. (7)

Next we show the following inequalities by using
mathematical induction.

(Zﬂx(t ))p

oy ]
;l, (Zﬂix'(ti)J
i=0

n

®)

('x (tll

}'l

()X (1,00))"

21, [(X'(tn )P -
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x(@)>0, telt,, t,n],
where z,

The case n=0 follows from (6) and (7).
Assume (8)-(10) hold for 0,1,---,n. We show that

(8)-(10) holds also for n+1. As z ., >0, it
follows from (8) and (9) that

r(t, )X (1,,))" 2 = )(;p a)(Zﬂ Xt )j

9, for O<p<l,

A=Y BX(t) B=p,.,x(t,,),we get
(Bl + oy (' (7,.,))"

> (O B ) + Bl (X ()

> (OB ()

or equivalently,

(10)

is defined in Theorem 4.

n+l

From Lemma let

n+l

P
(CH (D) L [Z,B x'(t; )J >0
n+1

i=0

(11

By (1), (10) and (11), Lemma 7 implies that
¢ ,(x'(t)) is non-increasing on te€lt,,,t,.,],
hence x'(t)<|x'(1)|<x'(t,,) for t€[t,,.t,.,],
which yields for t €[¢,,,,¢,.,],
xX(1) = x(t,,) +x'(z, )t~ 1,.,)
<x(t,,)+ X', )0 —1,.,)

< x(tn+l) + x’(tm—l )(tn+2 - tn+l )9
where 7, e(z,,,,1)-

Integrating (1) over [?,,,,¢,.,], we obtain
' ' rl
P ) ) =) () | ¥ (00)

= [ g 0) i

p
< ‘x(tn+l)+x’(tn+l )(tn+2 n+1 )‘ I

By the Lagrange mean theorem and the deﬁmtlon of
B,, 6, wehave

q(tdt.

Xtyy) = D [x(t) =Xt = D (i — X' (E])
i=0 i=0

< Z(tm —t)X'(t;) =t — 1 )Z:Bix'(ti)a
i=0 i=0

where t,<t, <t i=01---n

i+1°

Hence
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P(t )X () =Pt W )| X ()

<1 (0 [ gtey

o]

< an+1 i’(l‘n+1

W

n+l

That is,

p-1
r(tn+2 )|x’(tn+2 )| ’(tn+2 )

2 I/'(tn+1 )(x’(tn+1 ))p

_ n+1”(1n+1)(zl G ))”

(12)
(x’(tn+l ))
= r(tn+1) a )ﬂ
n+ (tn+) n+l !
_# izoﬁix ()
Since z,,, >0 implies z,,, >¢a,,, and by (11),
we get
' n+2 )‘ P—lx'(ter)
n+l p (13)
z,
> Zrl Tl [N B (e,
n+l i=0
which implies x'(¢,,,) > 0. Lemma 7 and the
inequality
(tn+3 _tn+2 )J.t’: q(S)dS S an+2r(tn+2) < r(tn+2)
implies that x(¢) >0, telt,,,,t,,;] , which,

together with (11)-(13), completes the induction
step. We have showed that x(z) >0 and x'(¢)>0

holds for all #>¢,, hence x(¢) is a positive and

hence a non-oscillatory solution of (1). This
completes the proof of the first part of Theorem 4.

Proof of the second part of Theorem 4.
If the results of the second part of Theorem 4 is
false, then we can assume without loss of
generality that there exists a solution x(z) of (1)

such that for all #>¢,, x(t)>0 and it is not
difficult to verify that x'(#)>0,V¢>¢,. By

Lemma 7, x'(¢) is non-increasing for all ¢ > 7.
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By using the Lagrange mean value theorem

again and by the definition of £, and 6,, we

obtain, by noticing x(z,) >0, that
x(t,) = x(te) + Y [x(t,) = x(4,,)]
> z; @t~ )x'(tj)
> (4 — tO)Z;ﬁi—lx’(ti)a
where ¢, <t <t i=12,---,n andby (4),

i+1°
we get

r(tn )(x’(tn ))p - r(tn+1 )(x,(tn+l ))p
= [ qow? e > [ g0 (2, )

:1:1 ﬂi—lx’(ti))p (t, —ty)"

(14)
.J‘th (t)dl
p q
(tp=t)P [ g0t (xn ,
—Tq o Biax'(@; ))p
> A (L B @)
which implies the following two inequalities:
P
ummpﬂ(Zﬂm«ﬂ (15)
and
P, (X (t,50))"
(16)
<r@,)(x'@,))" - i X' (t:)"]
For ne N, we have therefore
ﬂ)%MMV—f B,
i=1 (17)
p i= IIB lx (t )) <(x’(tn))p3
which yields
n P
;{zﬂHj<L ()
Let u,,u;, -+ be given by Theorem 4, we are

going to prove the following claim.

Claim 11. For p>1 and n=12,---
u, (x'(t,))"

P
m[Zﬁlxaﬂ <@,

, we have

(19)

and

O<u, <I. (20)
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We prove Claim 11 by induction method. By using
(15) and (18), it is easy to see that (19)-(20) hold for
n=1. Assume (19)-(20) hold for »n, we show next
that they hold also for n+1.

We get from (19)

(x'(t,)" = Q1)

<(U=u, )(x'(2,))"
It follows from (16), (19) and (21) that

r(tn+1 )(x’(tn-ﬁ—l ))P < r(tn )(1_un)(x,(tn ))P
_ r(tn)(l_un)un (x!(tn))p

n

r(tn )(l_un)an n ' ’
< Hw) (S g )

I (ZIB X't )j

that is,

U B (t)

n p
' X )
r(tn )(1 _ un )an (X (tn+l ))P < {; ﬂl—lx (tl )J ( )
Adding B?(x'(,,,))” to both sides of (22) and by

using Lemma 8 for p>1, we get
r(t, ) -u,)a,

pr [1 +
n+l P
< (Z Biax'(t )J
i=1

Multiplying both sides of (23) by «,,,, / S, and by

using the definition of u,,, in Theorem 4, we

unr(tn+1 )

](X'(t )’
(23)

obtain by using (17) for n+1,
un+1(x,(tn+1))p

aﬂﬂe [ unr(tn+1)
(1—14 ) ( ) n
[24

<Znd ”ﬂwaﬁ<ummv
n+l

Hence Claim 11 is proved.
Now it follows from (24) and definition of u,,,

j(X’(th))" 4

that 0 <u,,; <I.This completes the induction step

shows that (19)-(20) hold for any n e N . But this
contradicts the assumption of Theorem 4. The
second part of Theorem 4 is thus proved.

Proof of Corollary 5.
Assume &, 8 € (0,1) and \/; + \/5 <1, we can
define a function f: [0{,1]—) [0, 1)

xX—a
a<x<l.

fx)=——,

b
Y O+x—a

Issue 11, Volume 7, November 2008
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It is easy to see that

, 0
S = e
Let x, <x, be the two fixed points of [, then
2x,=1-0+a—-JA<2x, =1-0+a++A
where

A=(1-0+a)’ —da

2

= (1+48) ~ )1+ )
(1-a -/6)>0

Then by 6e(0,1), it is easy to verify that

a<x;<x,<1l and x <f()<1

f'(x) €[0,1],Vx € (a,1], we obtain
f[xl,l] - [xl, JS(D]c (xl, 1),

which implies that

a<x <z,=f(z,)<f()<], neN.

Hence (1) is non-oscillatory by the first part of
Theorem 4.

a<x<l.

b

Since

Assume now «a >0, €(0,1) and
JO +ab >1 Define a  function
g:[0,1) = (6a, ) by
g(x)ze(mij, 0<x<l.
l—x
Then
g'(x)=——=5>0, 0<x<l.
(1-x)*
We shall prove the value {u,} defined by
U :0’ Upi :g(un )’ (25)

can not stay in [0,1) for all neN. Since
u, =guy)=g0)=0c. If Oax>1, we are done.

We consider only the case fa <1 . Since the
function g is strictly increasing, we see that

0:u0<u1<u2<"'<un<"'.
If u,e€[0l) for all n>=0 , then the limit

. * . .
noeo U, exists and u is a fixed point of

u =lim

g in [0,1), which means that u  is a positive

solution of the quadratic equation
x'—(1-0+ad)x+al=0.

But this equation has no real root since its

discriminant ¢ is negative:
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A=(1-6+ab)* -4a0
= (1+v0 +Jad)(1+6 —Jab)
o (1+Jab —\0)1-0 —Jab)

<0.
Because it is easy to see that the first three factors of
A are positive and the last one is negative if
JO+vJad >1 and d<(0,).
Let r(r)=1 in (1), then the following example
shows that there exists p>1, ¢(¢)>0 satisfying

the conditions of the first part of Theorem 4, but
Theorem 4 does not hold.

Example 1. Let r(r)=1, q(t)=cp/t""". Thenitis

well known that (1) is oscillatory if ¢>—?" _ and

(p+1yP*!

pI’

T for

(1) is non-oscillatory if ¢< (see,

example, [2])
Let ¢, =2",
B,=2", ,=0=2"" and

ls 1
(s =" [ gls)ds = k(l - z—pj.

n=0,,---, then ¢,,, —t, =2",

n

Hence
a, :a:ktl—ij<l, n=12,---.
2P

In this case, we shall show that there exists p* > 1,

and ak >0 such that if p>p°, then (1) is
non-oscillatory by the first part of Theorem 4. That
is, we look for p“>1 such that if p > p", then for

k such that

pP

> 1
(p+D)F*

JO +4o =27 + Jk(1-277) <1.

The above inequalities implies that & satisfies

P

and

P

piﬂ <k<—

(p+D” 27 41
Define a function f':[l,00)— R as

W2 -1 &

f(.X)= X N x+l -’

2)" +1  (x+1)
Then it is to see that f(1)<0, f(2)>0 and
f'(x)>0, Vx>1. This means that there exists a

x €(1,2) suchthat f(x" )=0 and f(x)>0 if

(26)
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x>x . Let p ' =x", then for p>p" and k
satisfies (26), we see that (1) is oscillatory. But by
the first part of Theorem 4, (1) is non-oscillatory.
Hence Theorem 4 may be incorrect if p >1.

rit)=1, 0<P<l,
q(t) = cp/tP*!, where ¢ satisfies
(\2)? —1)27
— < C
(2)? +1

Example 2. Assume

(27)
. 27 r
< min , P ;
27 =1 (p+1)"
Since the left side of (27) approaches zero when
p— 0", and the right side of (27) approaches 1

when p — 0%, we can choose 0< p<<1 such that

¢ satisfies (27). In this case, (1) is non-oscillatory
by the choose of ¢ . But if we choose

a:c(zp _1J<1. Then

t,=2",0,=0=2", ¢ =
27

it is easy to verify that VO +6c >1. Hence the
condition of Corollary 5 holds, but at the same time
(4) and 0<z,<1, n=12,---,hold. Which shows
that the second part of Theorem 4 may be incorrect
for some p € (0,1).

In addition, by using the methods in paper [8-10],
we can also obtain the numerical solutions of (1).

3. Special case
In this section, we will consider the equation

(p@)x')'+ f(t,x)=0 (28)
where p e C'((0,27),(0,40)) is 27 -periodicC]
feC(R*R) is 27 -periodic in ¢.

Let p =1 in equation (1), it is easy to see that
the first part of (28) is same as (1) when p=1,
but only the nonlinear part f(¢,x) of (28) is
more complex than ¢(¢)x of equation (1) when
p =1. So we can consider the equation (28) as the

special case of the equation (1).

Landsman-Lazer type conditions play an
important role in the study of the existence of and
uniqueness of periodic solutions for second order
nonlinear differential equations. There has been
many results on the existence and uniqueness of
periodic solution for the following scalar equation
(28) or for the following vector Newton equation

x"+ gradG(x) = h(t) (29)
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See, for example, [11,13-17] and the references
therein. Recently, Cong[12] considers equation (28),
by using bilinear form theorem combined with the
well-known Leary-Schauder degree principle, he
proved the following theorem.

Theorem 12. Assume ( Al) feC'(R?*,R) is

27 -periodic with respect to the first variable, and
p € PC(R) -the space of all 27 -periodic functions

in C'(R), satisfies 0<M, < p(t)<M, on R
for some constants A and M, [

(A2) the exist two positive constants a and b
such that
a< f.<b on RxR

and there exists a nonnegative integer 7 satisfying
the condition

m*M, <a<b<(m+1)>M,.

Then equation (28) has a unique 27 -periodic
solution.

However, the results of [12] is not sharp. In this
paper, by using comparison principle combined
with Leray-Schauder degree method, we obtain
the fowling results.

Theorem 13. Assume f(¢,x) e C((0,27]x R,R)
can be written as

f(t,x)=g(t,x)x+ h(t,x), (30)
where g,h are conditions functions and are

27 -periodic in ¢ with A satisfying

lim 22>

[xoe x

=0, Vte[0.2r], (31

and there exists a nonnegative integer 7 such that
n*M, < l‘im inf g(z,x)

| x| o0
(32)
< lim sup g(t,x) < (n+1)* M,
Nt

where
0<M,= min p(t)< max p(t)=M, <.

1€[0,27] 1€[0,27]
If at least one of the following conditions holds: (i)

the function p(¢) that
M, <M, (ii) the first and last two inequalities
in (32) are strict in some subsets of [0,27] of

positive measure, then (28) has at least one
27 -periodic solution. Moreover, if

f eC'(R*,R) and satisfies

is not constant, is,
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n*M, <liminf f(t x)

xeR
, f 2
<limsup—(,x)<(n+1)"M,
xXeR ax

(33)

and the first and last two strict inequalities hold on
subsets of [0,27]x R of positive measure. Then

(28) has a unique 27 -periodic solution.
Proof of Theorem

Lemma 14. Consider the homogeneous equation

(p()X") +q()x=0 (34)
Assume p(t) € PC(R) satisfies the assumptions
in Theorem 13, ¢(f) € L'[0,277] is 27 -periodic
and satisfies forall 1 € R,

n*M, <q(t)<(n+1)*M, (35)
where 7 is a nonnegative integer. If either the
function p(¢) is not constant or the two inequalities
in (35) are strict in some subsets of [0,27] of
positive measure, then (34) has only the trivial
27 -periodic solution x(¢) =0 .

Proof. We only prove the case n>1, the case
n =0 canbe proved similarly. Define a generalized
polar coordinates transformation 7] :(r,6) with
r>0,0eR as

T,:x=rsin@, p(t)x'=crcosé (36)
where ¢; = (n+1)M, then it is easy to see that the
periodic condition
x(0)=x(2x), x'(0)=x'2x)
for a nontrivial solution x(¢) of (34) is equivalent
to
r(0)=r2x) >0,
0(2r)=6(0)+2krx
Taking derivatives of (36) and substituting them into

(34), we obtain the following generalized polar
coordinates system:

forsome ke Z.

r'=r(n+ ){ M, 9(t) }sin Hcosd,

«) M [(n+1)?

(37
=(n+ 1){ cos? 0 + M}
p(t) M, (n+1)?
The first equation of (37) implies that
r(t) =r(0)exp j;ﬂ(s)ds , where
1 q(?) .

n() = {P(t) M (n s D) }sm&(r)cos@(t),
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which implies that 7(¢) >0 whenever 7(0) >0,

te€R. Now the inequality M, < p(¢)
inequalities (35) implies that the second equation of
(37) satisfies @'<n+1 and the strict inequality
holds on a sunset of [0,27] of positive measure if

the assumptions of Lemma 14 are satisfied. We get
therefore

and

0Q27)—-0(0)<2(n+1)r. (38)
Similarly, we define transformation 7, as
T, :x=psinf, p(t)x'=d pcosl,
where d;,=nM, and p=k,r  with
k, = M Comparing 7, with 7}, we see
nM ,

that only the variable 7 is replaced by p=k,r
and the variable € is unchanged in 7,. Under the

transformation 7, , we obtain

p = pn{%— Aj(n) }sm@cos@
(39)
0 =l M2 os20 4 M
p() M,n®
The first equation of (39) implies that
(1) = r(0)exp J.(if(s)ds , where
&) = n[%— qin) }sm 0(t)cos O(t),

the second equation of (38) and (35) implies that
@' > n and the strict inequality holds on a subset of
[0,277] of positive measure, which implies that

2nm < 60(27)—6(0). (40)
Combining (38) and (40), we see that x(¢) can not
be a 27 -periodic solution of (36). A contraction.

Hence (34) has only the trivial 27 -periodic
solutionx = 0.

Proof of Theorem 13
||x|| be the usual C!

x € PC(R) 5
||X|| = maXte[O,Z/r]|x(t)| + maxte[0,27z]|x'(t)| .
any constant u € (}12M2 ,(n+ 1)2M1 ), Lemma
14. implies that the equation
(p()x") + px =0
has only the trivial solution x =0.

norm for
1.e.,

For
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First, we show the existence part. Introduce an
auxiliary equation

(p(O)x") + (A=A px + A1 (1,x) = 0
Aelo,]

We claim that there exists a constant M, >0 such

, (4D

that if x,(¢) is a 27 periodic solution of (14),
then

4| < M, (42)
Suppose (42) is false, then there would exist
sequences {x ﬂi} of 27rp periodic solutions of (41)

and {1,} < [0,1] such that Hxﬂi H —> 00 as [ — 0.

x5, (1) .
Denote w;(f)=-——— , then w;(¢) satisfies
|
equation
(I=A)u+
(p(Ow; (1) + w; (1)
Lg(t,x, (1)
43
N0 N
s
Since g(¢,x) satisfies (33), by passing to

subsequence, Arzela-Ascoli theorem implies that
A =A.eol] w; =»w, € PC(R)
gt,x, () > go(t) e L'[0,27] as i—>o0 . By
h(t,x)

X‘—)OO X

b

assumption, lim‘ =0, we see that from

(43) that w,(?) is a 27 -periodic solution of the
equation

(p(OW) +4q(Ow =0 (44)
with [[wy|| =1, where g(t) = (1= 2+ A,go ().
On the hand, as g(¢,x) satisfies (32) and by the
choice of 7, we see that g(¢) satisfies (35). Lemma
14 implies that (44) has only trivial solution W=0
This is a contraction. Hence (42) holds. The
Leacy-Schauder principle implies that (28) has at
least one 27 -periodic solution.

Next we prove the uniqueness
Let f(¢,x) = xg(t,x)+ f(¢,0), where.

part.

2(t,x) = j;%(t,ex)de

Since f satisfies (33), g must satisfies (32).

Theorem 13 implies that (28) has at least one
27 -periodic solution. Assume there exist two

27 -periodic solutions x, (), x,(¢) of (28), then
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x(t) =x,(t)—x,(t) is a 27 -periodic solution of
the following equation:

(r(H)x") +xg(t,x)=0, (45)

where

g(t,x) = j;%(t,xz (1) + 6(1))d6 .

By assumption (33), é(t, x) satisfies (32) with g

replaced by é Now Lemma 14 implies that (45)
has only the

hence x, (¢) = x, (1) .
Let p(¢) =1 in(28), the equation is linear. Because

it is the special case of (28), so we can get easily the
corresponding theorem with Theorem 13 for

p)=1.

trivial  solution x=0

4. Conclusion

In this paper, we consider the solutions of equation
(1) and (28). The oscillation and non-oscillation
criteria are obtained by studying the quasi-linear
equation (1) and while considering the special case ,
that is, equation (28) which is linear when p(¢) =1,
we can get the periodic and uniqueness criteria. This
shows that we maybe obtain the wilder conclusion
when the simpler problem is studied.
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