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Abstract: - This paper deals with the two main shortcomings of explicit finite difference schemes: the use of a 
discretization grid with the same resolution over the entire problem space, and low level of precision and 
stability. We present a combination of two improvements. Their application is illustrated with the numerical 
simulation of the propagation of a light beam in a photonic lattice.  The discretization problem is avoided by 
using a multi-resolution grid. An algorithm for the grid creation is developed and that algorithm is optimized for 
software implementation and parallelization. The efficiency of the algorithm is increased by further improving 
the precision of the explicit method by use of a multidimensional generalization of the Runge-Kutta scheme. 
Due to the multidimensionality and nonlinearity of the considered problem, our improved explicit finite 
difference gave better results than Crank-Nicholson scheme. 
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1   Introduction 
Partial differential equations (PDE) are used a 
variety of different fields of research like physics 
[1,2], engineering [3], image processing [4], etc. 
There are methods for solving PDE analytically like 
Bäcklund transformation, characteristics, Green's 
function, integral transform, Lax pair, separation of 
variables [5], but in general, partial differential 
equations are difficult to solve analytically and in 
some cases even impossible. Due to the widespread 
of use of PDEs, a significant number of numerical 
methods has been developed for solving them. Most 
standard used methods belong to one of the 
following groups: finite difference (FD) [6, 7, 8], 
finite element (FEM) [9,10], using Fast Fourier 
Transform (FFT) [11], Monte Carlo methods [11], 
Lagrangian methods, and Wavelets [12]. The choice 
of which method will be used is very important 
because not all methods are adequate for some 
problems. Computers are an essential part of using 
these methods and because of this, their 
implementation as computer programs should be 
viewed as a separate problem.  
     FD method for the solution of partial differential 
equations is commonly used for a wide range of 
problems in physics and engineering, due to the 
simplicity of its implementation and parallelization 
on multiprocessor machines [13, 14]. One of the 
biggest drawbacks of the standard FD scheme is that 

it uses a discretization grid with the same resolution 
over the entire problem space. Usually, a high 
resolution is required only in a small fraction of the 
problem space, and the use of an uniform grid 
unnecessarily inflates the demand for computer 
resources and increases the time needed for 
calculations. One of the possible ways to solve this 
problem is to combine the finite difference with the 
finite element methods [15, 16]. However, in such 
case one loses the main advantage of the FD, which 
is its simplicity of implementation. 
     This paper presents a simple algorithm for 
creation of a multi-resolution grid, and its use with 
an explicit FD method. It is based on the 
improvement of the usual explicit FD, by using the 
analog of an one dimensional (1-D) Runge-Kutta 
procedure which greatly increases the precision. The 
second improvement is the creation of a multi-
resolution grid, which separates the calculation of 
the optimum grid resolution for the numerical 
calculations, from the grid corrections for the use in 
a particular program. As an example, the application 
of our algorithm is presented for the numerical 
simulation of the propagation of a light beam in a 
photonic lattice. This problem was usually treated 
by the use of the FFT [17, 18]. However, a 
significant drawback of the FFT is that it requires a 
grid of the 2 2k k×  size [19], which needs to be 
sufficiently large to hold all possible ’interesting’ 
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areas. The method represented in this article does 
not have such a strict rule for the grid size, which 
can be of any dimension . While the use 
of FFT is more efficient in the typical cases, for 
certain particular cases an FD with adaptive grid can 
give better results. 

2 2i im× n

     The idea of using FD with an adaptive grid is not 
new [20]. However, in earlier works, the creation of 
a multi-resolution grid was mostly dedicated to the 
numerical part of the problem, and not to the 
implementation as it is done in this paper. The 
proposed grid correction is aimed for the 
implementation, and it makes the program 
implementation and parallelization greatly simpler.  
     The paper is organized as follows. In Section 2 
the basic physical problem is described, and the 
corresponding analytical equations are presented, 
which belong to the class of nonlinear Schrödinger 
(NLS) equations. In Section 3 we apply the FD 
method to this equation, with a forward difference to 
get an explicit scheme. In the second part of Section 
3, an improvement similar to the one dimensional 
Runge-Kutta is presented. Section 4 shows the 
multi-resolution grid creation and its optimization 
for the use in computer programs. In the second part 
of Section 4 we present the analysis of some 
problems, with the use of this kind of grid, and 
introduce the necessary conversions of the basic 
equations from Section 2. In the first part of Section 
5 we analyze and compare the results of simulations 
implemented by the FD method, Crank-Nicholson 
method, FD with a simple predictor method 
improvement and FD with Runge-Kutta 
improvement. In the second part of this section we 
observe the affects of using the adaptive grid 
combined with FD with Runge-Kutta improvement. 
 
 
2   Physical Model 
It is well known that in linear optical media, the 
light beams have a tendency to spread as they 
propagate, due to the diffraction and the dispersion 
of incoherent light. Conversely, in a carefully 
designed nonlinear media and under certain 
conditions, the light waves may propagate without 
spreading or scattering. Instead, they keep their 
shape and intensity constant. These dynamically and 
structurally stable objects are called optical solitons 
[14, 21]. The stability of these objects results from 
the interplay of the dispersion and diffraction with 
the nonlinear effects, which tend to localize the 
wave. Stable objects, also known as solitons, 
emerge when effects of diffraction are completely 
compensated by nonlinear effects. Solitons can be 

viewed as waves that are restricted to the specific 
interval of time and region of space.  
     Photorefractive media are those in which the 
photorefractive effect takes place, i.e. those whose 
refractive index is altered in the transverse region 
that is occupied by the light beam. The interaction 
of a laser beam with a photorefractive crystal can be 
described by the paraxial wave equation. We can 
inspect the beams with copropagating (CO) 
geometries and with different input beam shapes 
(Gaussian, dipole, quadruple and vortex).  
     Optically induced photonic lattices are the 
realization of the photonic crystal concept [22]. 
Photonic crystals are the materials that posses a 
periodic structure in space, which enables them to 
control the propagation of light. Photonic crystals 
can be viewed as an optical analogue of 
semiconductors, in the sense that they modify the 
propagation characteristics of light just as an atomic 
lattice modifies the properties of electrons through a 
bandgap structure. If, for a certain frequency range, 
a photonic crystal reflects light of any polarization, 
incident at any angle, we say that the crystal has a 
complete photonic band gap (PBG). This can be 
regarded as the analogue of the bandgap structure in 
semiconductors. 
 
 
2.1 Mathematical Model 
The behavior of CO beams in photonic lattices is 
described by a time-independent model for the 
formation of self-trapped CO optical beams, based 
on the theory of photorefractive (PR) effect. The 
mathematical model consists of one wave equation 
in the paraxial approximation for the propagation of 
CO beams. The model equation has the standard 
form of a NLS equation with a nonlinearity that is a 
rational function of the beam intensity, and in the 
computational space it has the form [23]: 
 

2

21
g

z
g

F I
i F F F

F I
| | +

∂ = −Δ −Γ
+ | | +

 
      
(1) 

 
where F is the forward propagating beam envelope, 
Δ   is the transverse Laplacian, and Γ  is the 
dimensionless coupling constant. The quantity F| |  
is the laser light intensity, and it is constant over all 
iterations. The above dimensionless propagation 
equation is written under the scaling 

0 0 Dx x x y x y z L/ ←⎯ , / ←⎯ , / ←⎯ z , where 0x   
is the typical Full width at half maximum (FWHM) 
beam waist and DL  is the diffraction length. gI  is 
the transverse intensity distribution of the optically 
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induced lattice array, formed by positioning 
Gaussian beams at the sites of the lattice, which is a 
known function in Equation 1. Different geometries 
of the lattice can be considered, such as hexagonal, 
cylindrical and square. 
 
 
3   Application of Finite Differences 
For an explicit finite difference method, applied to 
the 3D function F, defined on a grid  0ix x i= + ∗h ,  

0iy y i h= + ∗ , and , we use the 
following approximations: 

0iz z i= + ∗dz
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                        0 0( )F z x y F, , = (3) 

  
In an explicit difference method, we proceed by 
using the approximations defined by Equation 2, 
which after the substitution in Equation 1 yield 
 

  1i nx= , y
y1j nx= ,  

(4 ) 

1

1 1 1
2

2

2

(( ) ( )

4
(

( )
)

1 ( )
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n i j gij
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1F F F F F
idz
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F x y I
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+
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(5) 

 

We use this approximated system for iterating our 
system over the variable z. The use of  Equations 4 
and 5 gave poor results due to the lack of precision, 
the accuracy over z is proportional to dz. The second 
problem was low stability of the method that   
mainly appears because of the use of an explicit FD 
scheme. 
     The first approach to solving this problem was 
using an implicit FD scheme like Crank-Nicholson.  

 
2

2( , , ) ( )
1

( , , )

g
z

g

F I
F x y z i F F

F I

G x y z

| | +
∂ = − −Δ −Γ

+ | | +

=

 (6) 

( )1
1 1

1
2

ijk ijk
ijk ijk

F F
G G

dz
+

+ +

−
= +  (7) 

 
The usual way of using Crank-Nicholson is creating 
the a set of algebraic equations and solving that 
system. When solving one dimensional partial 
differential equations the matrix of the system is 
three-diagonal and it is simple to solve. In a two 
dimensional case we get a five-diagonal system. 
Solving this system is much more time consuming, 
and with lower precision. This problem is avoided 
by using the alternative direction (ADI) method, that 
solves both of these problems.  In our case this did 
not give good results , due to the existence of the 
nonlinear term  2F| | . The method was stable but 
the precision much less than  the expected second 
level. 
 
 

3.1   4   Finite Differences Improvements 
Using the Euler integration for eq. (1), with the step 
dz, and calculating the nonlinear term   at  , 
we obtain  

2F| | nz

 
1 1

2

2

( )

( )
1

n n

n g
n n

n g

F F z x y

F I
F idz F

F I

+ += , ,

| | +
= + Δ +

+ | | +
.
 (8) 

 
These are the same equations that one would obtain 
by using the forward difference over z eq.(5). When 
we perform the Euler integration over z, the z  
component of the error is proportional to  dz. In a 
one dimensional case this part of the error can be 
reduced by using the a simple Predictor method to 

. If we use an analogue to this method we get 
the following equations: 

2dz
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2
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               1 1
1 ( )
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 (12) 

 

This part of the error can be reduced to   if we 
use the following analogue of the Runge-Kutta 
method, viz. 

4dz

 
1 ( 1nS Diff F= ,  (13) 

1
2

1( )
2 2n
SS Diff F= + ,  (14) 

2
3

1( )
2 2n
SS Diff F= + ,

),

 (15) 

4 3( 1nS Diff F S= +  (16) 

1 1 2 3
1 ( 2 2
6n nF F S S S S+ = + + + + 4 )  (17) 

 
The integration of the function F over z can be done 
either in the implicit or in the explicit way. We 
adopt an explicit procedure, because implicit 
methods, such as the alternative-direction, give a 
low level of accuracy in the case of 
multidimensional problems, due to the existence of 
the nonlinear term   [24]. The problem of 
stability of explicit methods is not easy to solve, but 
the use of an adaptive step for the Runge-Kutta 
procedure usually gives satisfactory results.  

2F| |

 
 
4   Adaptive Grid Implementation 
As we have mentioned before, one of the biggest 
problems with the FD method is that the grid has the 
same resolution over the entire problem space. 
However, in the simulation of CO beam 
propagation, the most of the beam intensity is 
usually located in a small part of the problem space, 
as it can be seen in Fig. 1.  
     We would like to calculate the function F more 
precisely in the high intensity areas, where the 
changes between neighboring grid points are much 

bigger than in the low intensity areas. In the latter 
case the changes are often so small that they can 
even be neglected. In the application of an adaptive 
grid to the problem defined by Equation 1, there are 
two main problems. First, it is necessary to create a 
grid that has a high resolution at the correct places, 
and which allows the easy translation of indices 
from the high to low resolution areas and vice versa, 
that is required in the program implementation. 
Second, one needs to implement the necessary 
corrections to Equation 9 for the grid blocks that 
have neighbors with different resolutions. 
 
 
4.1 Grid Creation 
When creating a multi-resolution grid we first have 
to define criteria for calculating block sizes at 
different positions in the grid. To achieve this we 
must define a function that will give an estimate of 
the expected resolution of the grid at each point. 
This is best done with an integer value that 
corresponds to some scale. To do this, let us define 
the function Mass, Scale:  
  

{1 }
{1 } {1 }

Scale ScaleMax
Mass n m Scale

: ⎯→ ,..,
: , × , ⎯→
R

 (18) 

 
1 1

1 1

( ) (

) )
ij ij i j ij i j

ij ij ij ij

Mass Mass i j Scale F F F F

F F F F
+ −

+ −

= , = | − | + | − |

+ | − | + | − |
 (19) 

   
Here Mass, represented as a matrix generated for 
some function  F, has the form  
 

3 3 3 3 2 3 3 1 3 3 3 3 2 2 1 1
3 3 3 3 2 2 3 3 3 3 3 3 2 2 1 1
3 3 3 3 3 2 2 3 3 3 3 3 2 2 2 2
3 3 3 3 3 2 2 3 3 3 3 3 2 2 2 2
3 3 3 3 1 2 2 3 2 2 2 2 1 1 1 1
3 3 3 3 2 2 1 3 2 2 2 2 1 1 1 1
3 3 3 3 2 2 1 3 2 2 2 2 2 2 1 1
3 3 3 3 3 3 3 3 2 2 2 2 2 2 1 1

Mass Mass

⎛ ⎞ ⎛
⎜ ⎟ ⎜
⎜ ⎟ ⎜
⎜ ⎟ ⎜
⎜ ⎟ ⎜
⎜ ⎟ ⎜= →⎜ ⎟ ⎜
⎜ ⎟ ⎜
⎜ ⎟ ⎜
⎜ ⎟ ⎜
⎜ ⎟ ⎜⎜ ⎟ ⎜
⎝ ⎠ ⎝

⎞
⎟
⎟
⎟
⎟
⎟=⎟
⎟
⎟
⎟
⎟⎟
⎠

                                                          (20) 
 
In this representation of  Mass, larger values 
represent the points in which larger grid blocks 
could be used, and smaller are used for the opposite.  
With some corrections Mass,   could be used to 
define a grid with different resolutions that can be 
efficiently used in computer programs. For this to be 
possible, the corrected  Mass  needs to have the 
following characteristics:  
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• grid blocks need to be squares of the size  
2 2k k× ,  

• for all the blocks of the level k  , the values 
of the indexes  i j,  corresponding to the top 
left corner of the block in the highest 
resolution are such that )2ki j mod  ,  0(, =

• for every  i j,   , ij ijMass Mass>=  

• the level difference between neighboring 
blocks cannot be bigger than  1.  

 

We wish to point out that Mass  could be used for 
multi-resolution grid definition even if not all   
mentioned criteria where followed. In that case, 
implementation would be significantly more 
difficult.  Equation 20 is the example of a matrix 
that has been corrected by using these rules. The 
creation of  Mass  can be explained the best by the 
following pseudo code  
 
for Level = 1,ScaleMax 
  begin  
    Step = 2**Level  

for ix = 0,n :Step  
  for iy = 0,m :Step 

        CalcMassBlock(ix,iy, Level)  
   end 
 
We pass through each level, starting from the 
lowest, and for each block of the size   

we call the function 
CalcMassBlock. CalcMassBlock  (GridStartX, 
GridStartY  ,CurrentLevet  ) is a function that 
corrects a matrix block of the size 

  and the neighboring blocks. 
It has the following pseudo code   

2 2CurrentLevel CurrentLevel×

2 2CurrentLevel CurrentLevel×

 
function CalcMassBlock 
         (GridStartX,GridStartY, 
          CurrentLevel)  
 
ActiveBlock = block that starts at 
GridStartX, GridStartY of size  
2**CurrentLevel X 2**CurrentLevel  
 
if((Mass(A) = CurrentLevel))  
 begin 
 
    Fill all grid points in  
  ActiveBlock with 
 
  min(CurrentLevel, 
         CurrentGridPointValue)  
 

Fill all grid points in 
blocks    neighboring 
ActiveBlock of 
 level(CurrentLevel+1) 
with 
min(Level+1,                          
,CurrentGridPointValue) 

     
  end   
 
The creation of this grid is illustrated below by 
creating a grid that was used for simulation of light 
propagation defined by  Equation 1. We show a case 
where the input light ray was of the quadruple type. 
The input ray is displayed in Fig. 1 
  

 
Fig. 1. Grid creation Example 

 
The quadruple with central beam , we used was 
created position 5 Gaussians  at appropriate 
positions. Each of them was  calculated using Eq.21   
 

2 2

22( , )
x y

F x y Ae σ
+

−
=  (21) 

 
The  grid was defined by XYMax = 100, NXY = 
256. The left image represents intensity distribution. 
The center image is the initial mass distribution 
generated using the scale defined by Table 19. The 
right image is the corrected mass distribution. The 
color scale used for mass distribution is blue for the 
value 1 (corresponding to the block size 1X1 ), 
green for 2(corresponding to block size 2X2 ), 
orange for 3(corresponding to block size  4X4), and 
grey for 4 (corresponding to block size  8X8). 
 
 
4.2 FDTD Equations for Adaptive Grid 
With an adaptive grid the same analogue of the 
Runge-Kutta method will be used to integrate over 
the variable  z. To do this, we must modify Equation 
9 in such a way that it can be used with the new 
grid. There are several parameters that need to be 
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analyzed for each block of level  k. Let h  be the grid 
spacing of the highest resolution. Then   changes 
to . 

2h
1 2(2 )k h−

gI is a precalculated value that repre-
sents the transverse intensity distribution of the 
optically induced lattice array. This parameter 
should be precalculated with blocks of sizes 

, in all necessary resolutions and for all 
possible levels. Let us denote each of these grids 
with 

1 )k h−

k

(2

Ig

1i jF − 1iF +

.  will stay the same, but instead 

of , ,  and , we will use the 
representatives for right, left, upper or lower grid 
block of the size . In this problem, an arithmetic 
average of block members is used as the 
representative of a block, but for different problems 
solved by the same method, one may adopt a 
different procedure to calculate the representatives. 
Now Equation 9 takes the form  

ijF

j F 1ij−

12k−

1ijF +

 

1 2

2

2

( )

4
(

(2 )
( )

)
1 ( )

right down ij up left
Level

Level
n i j g

Level
n i j g

DiffR F K
K i dz
F F F F F

h
F x y I

F x y I

−

, =
× ×

+ − + +

| , | +

+ | , | +

 (21) 

  
The original matrix that represents F is not equal at 
all grid points within a block of size 2 2k k×   
defined in Mass  , which is required for the use of 
Equation 21. A simple approach in creating   
would be to use the arithmetic average of the 
corresponding values in F. However, this is not 
correct, because  

F

  
2 2( ) ijx y

i j

2F F x y dxdy F
,

| | = | , | | |∑∑∫  (22) 

  
is constant in Equation 1. Because of this, we 
calculate the new value for a block of level  k, B   in 
F   as  

2
( )

12
iji j B

B k

F
F , ∈

−

| |
=
∑

 (23) 

 
 
4.3 Software Implementation 
When creating a software implementation of 
simulation of the propagation of light beams in 
photonic lattices, the problem defined by Equation 

1, the choice of input parameters is important. We 
have chosen  to use as physical input parameters Γ ; 
xymax, and  nxy  from which  h is calculated; nz  and  
zmax from which we calculate dz, type of lattice 
from which gI  is precalculated in the required 
resolutions, and the type of the input ray from which 
we calculate initial F. A different type of input 
parameter is   Scale that defines the creation of 
Mass, which is a table that represents the mass value 
depending on the sum of differences  
 

 
Scale 35 10−∗ 410−  610− 710−  

Mass 1 2 3 4  
(24)

 
During the simulation tests, the use of Equation 19 
for the calculation of  Mass gave poor results, and it 
was replaced by  
   

( )

)
ij i dj ij i dj

ij ij d ij ij d

DistNorm i j d F F F F

F F F F
+ −

+ −

, , =| − | + | − |

+ | − | + | − |  (25) 

( )

( (
1 ( 2)
2
1 ( 3)
4
1 ( 4))
8

ijMass Mass i j

Scale DistNorm i j

DistNorm i j

DistNorm i j

DistNorm i j

1)

= ,

= , ,

+ , ,

+ , ,

+ , ,

 

(26) 

 

Parameter Scale  proved to be of great importance 
for the simulation calculations, and to obtain the 
best results with respect to the relation between the 
precision and the performance, it was necessary to 
perform a series of tests, for each type of input 
parameters. When using the adaptive grid,  Mass 
and  F  should be calculated once in the beginning 
of the simulation, and again every N   (depends of 
the problem) iterations to reflect the changes on  F. 
In each iteration calculations are done just for the 
top left point of each block using the Runge-Kutta 
analog with difference defined by Equation 21, and 
the Mass grid is used to jump to the next point 
(representing a block) that needs calculation. 
     The software implementation for the iterative 
process defined for the problem modeled by 
Equation 1 handling of the border of the problem 
space must also be solved in detail. The physical 
problem that is modeled, light beam propagation, 
has the property that at low intensity points 
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nonlinear effects are very weak. In the experiments 
we conducted of beam propagation in photonic 
lattices the beam mostly stays localized, because of 
this  light intensity near the problem border is very 
low. When there are not any nonlinear effects light 
tends to spread, this gives justification to model the 
behavior at the border of problem space by 
extending the first derivative. In practical we wish 
that the model at the border has the same behavior 
as near the border. To attain this goal, and also keep 
the simplicity of implementation, the following 
adaptation must be applied to the basic algorithm. 
First grid points at the border cannot be calculated 
by Equation 17 due to non existing points. These 
points will be approximated in a way that preserves 
the first derivative. For a non adaptive grid this is 
achieved  by Equations 27, 28, 29, 30 and for an 
adaptive grid changes similar to ones presented in 
Section 4.2. are needed.  
 

0 1 1 2 1( ) 2j j j j j jF F F F F F= + − = − 2

2

−

 (27) 

( ) ( 1) ( 1) ( 2)

( 1) ( 2)

( )

2
nxy j nxy j nxy j nxy j

nxy j nxy j

F F F F

F F
− − −

− −

= + −

= −
 (28) 

0 1 1 2 1( ) 2i i i i i iF F F F F F= + − = −  (29) 

( ) ( 1) ( 1) ( 2)

( 1) ( 2)

( )

2
i nxy i nxy i nxy i nxy

i nxy i nxy

F F F F

F F
− −

− −

= + −

= −
 (30) 

 
 
5   Simulation results 
In the first part of this section we  analyze and 
compare the speed, precision and stability of simple 
FD scheme, the Crank-Nicholson method with ADI, 
Predictor improvement of FD, and Runge-Kutta 
improvement of FD. In the second part we compare 
results of Runge-Kutta improvement of FD with the 
same improvement with the use of an adaptive grid 
created by the method explained in Section 4. This 
will be done for grids of different sizes.  
     All tests have been performed on an Inter(R) 
Core(TM)2 6400 at 2.13 GHz with 4GB of memory. 
Simulations of beam propagation have been done 
for different propagation lengths zmax, and for 
different numbers of iterations zn. We used a 
photonic lattice grid defined by the following 
equation  
 

2( ) ( )cos cos

( , )g o

2x y xGF
d d

I x y I GF

π π+ +⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
=

y
 (31) 

 

In our comparison of methods represented, we adopt 
as criteria of precision of given solution after N  
iterations ( ) the preservation of the invariant of 
the system represented by Equation 22 as an 
absolute value. The final evaluation of the quality of 
the calculated solution is comparing it to a solution 
F created by the FFT method . We do this in two 
ways. First, we observe the general behavior 
through successive iterations and we use the 
following norm 

F̂

 
ˆ ˆ| | | ( , ) ( , ) |F F F x y F x y dxdy− = −∫∫  (32) 
 

to compare the FD approximated function and a 
FFT approximation at the final iteration. We also 
use as an aid for explaining some effects of these 
methods the behavior of these values between 
iterations and after all iterations have been 
completed.    
     In the simulations tested in Tables 1-4 we used a 
Gaussian type input ray and with the invariant |F| = 
14.12534533. 
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SFD 11 17.84628 0.9928 3.59 

C-N 240 173.9651 0.9880 3.76 

PIFD 9 15.7 0.9994 4.78 

RKIF
D 37 17.71 0.9973 13.84 

 

Table 1. XYMAX = 30, NXY= 256, ZMax=5,  NZ =240  
 
From Table 1 we see that the simple FD and FD 
with the predictor method improvement are very 
unstable after a low number of iterations. The 
Crank-Nicholson method is absolutely stable for the 
number of observed iterations. The behavior of the 
approximation with this method is very similar to 
the one of the correct solution, but the preservation 
of the invariant of the Equation 1 is not adequate 
because this value has been increased 12 times. FD 
with the Runge-Kutta improvement  stays stable for 
a much larger number of iterations that the two other 
FD methods, but it does not reach the needed 
number of iterations. During the stable period it has 
correct behavior and precision that is in needed 
boundaries. 
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SFD 32 15.1290284 0.9992 11.87 

C-N 720 27.0903 0.9990 10.83 

PIFD 103 14.8712844 0.9989 12.17 

RKIF
D 720 14.1276899 0.9999 23.75 

 

Table 2. XYMAX = 30, NXY= 256, ZMax=5,  NZ =720 
 
Table 2 represents the same simulation with a 
greater number of iterations, or in other words, a 
smaller step dz. In this case FD with the predictor 
method improvement gives us a better result, both in 
precision and in stability than simple FD, but the 
stability still lasts only for a few iterations. In this 
case the Runge-Kutta improvement is stable in the 
whole area of interest, and gives best results of all 
methods. 
     It should be noted that the predictor improvement 
now gives better results that Crank-Nicholson. 
These results are better in both cases, if viewed only 
for successive iterations and at the end of the stable 
period. This is interesting because both approxima-
tions have an error of  in a linear equation. This 
points out the problems of using Crank-Nicholson in 
a (2+1) dimensional problem with a non-linearity. 
When implementing Crank-Nicholson for a more 
then (1+1) dimensional problem  we use the ADI 
approach for getting a three diagonal matrix at each 
iteration for getting the solution. Combining it with 
a non linearity gives us very poor precision. One of 
the problems that appeared in the use of this method 
was that the error that appears between two 
successive iterations is similar to the one of the 
predictor improvement, but it accumulates in one 
direction and becomes great after a large number of 
iterations. This could probably be avoided by some 
correction to Crank-Nicholson implementation, but 
that is not the subject of this paper. 

2dz

     In Table 3 we use the same dz but the grid size is 
changed from 256 to 512. The larger grid greatly 
increases the instability of the FD methods. Due to 
this instability in some cases the time needed for 
calculations has been greatly increased since a large 
number of iterations has been done with numbers 
out of usual computer bounds. 
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SFD 14 17.84628 0.9854 257.62 

C-N 720 27.072 0.9989
0 93.65 

PIFD 10 14.163749 0.9989 845.06 

RKIF
D 11 14.1633052 0.9983 1853.68 

 

Table 3. XYMAX = 30, NXY= 512, ZMax=5,  NZ =720  
 
In Table 4 we have taken a smaller value for dz to 
get a sufficient level of stability for Runge-Kutta 
improvement. The precision is higher for a grid with 
higher resolution as expected. In a number of test 
we conducted it was shown that the stability of the 
method depends on the value of dz/h, in these case 
the value was 0.04. 
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SFD 35 14.61782 0.99990 889.42 

C-N 2000 17.519283 0.99987 257.57 

PIFD 57 14.541818 0.99270 292.87 

RKIF
D 2000 14.125345 1 501.48 

 

Table 4. XYMAX = 30, NXY=512, ZMax=5,  NZ =2000  
 
We use Tables 5 and 6 to analyze the effects of 
using an adaptive grid combined with the Runge-
Kutta improvement of FD. Table 5 represents  a 
simulation where  approximately 10% of the whole 
problem space is in high resolution , and Table 6 has 
approximately 20% in high resolution. In these two 
tables we compare the results for different 
resolutions. We use the same of number of iterations  
(N) and value for dz in all simulations. In the 
simulations we analyze one loop cycle presented in 
section 4.3. We can observe that the increase in 
speed is around 50%  in the lower resolution and up 
to almost 70%  in the high resolution case with little 
loss in precision. We can also notice that the 
precision in the higher resolution is worse than in 
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the lower one. The reason for this is that we used the 
same Scale table in both cases. We did this to 
illustrate the importance of this parameter, when 
using a different Scale the higher resolution gives 
better results as expected. 
 

Method Resolut. Invariant time 

RK 256 14.1253449 4.21 

RKAG 256 14.12534413 2.07  
+ 0.02 

RK 512 14.12534413 28.53 

RKAG 512 14.1250873 10.60 
+ 0.14 

 

Table 5.  Gaussian input ray, invariant value 
14.125345293. Approximately 10% of the adaptive grid  

is in the highest resolution. 
XYMAX = 50, NXY= 256, ZMax=1,  NZ =120 

 
 

Method Resolut. Invariant time 

RK 256 71.8911501 5.87 

RKAG 256 71.8911938 2.45  
+0.03 

RK 512 71.8911912 33.85 

RKAG 512 71.8908379 12.89 
+ 0.19 

 

Table 6. Quadruple input ray, invariant value 
71.8911965.  Approximately 20% of the adaptive grid  is 

in the highest resolution. 
XYMAX = 50, NXY= 256, ZMax=1,  NZ =120 

 
It should be understood that for solving Equation 1 
and similar equations, a higher level of precision 
and stability could be achieved by a greater level of 
analytical analysis, and using that information for 
adding some additional terms or even using a 
different iterative method like the Petviashvili’s 
method [25, 26]. We did not do this because we 
wanted to show the advantages of the Runge-Kutta 
improvement of FD, over Crank-Nicholson method 
in direct application to equations. 
 
 
6   Conclusion 
In this paper an algorithm is shown for the creation 
and implementation of an adaptive grid, as well as 
the implementation of the FD method with such 

algorithm. The basic steps of its implementation to 
(2+1) dimensional problems are illustrated by the 
application of FD with an adaptive grid to the 
simulation of the propagation of light beams in 
photonic lattices. The first step is the conversion of 
the starting equation to the approximation of 
derivatives with finite differences. It is shown that 
the integration over z  can be performed much more 
efficiently by using an analogue of Runge-Kutta, 
instead of directly using the finite differences. In the 
conducted numerical experiments, we have shown 
that in the case of our simulation this improvement 
gives better results than the standard Crank-
Nicholson scheme.  The necessary calculation time 
for the FD can be considerably reduced by using an 
adaptive grid. In our simulations, this time was 
reduced more than 50%, depending on the input 
parameters. An algorithm for the creation of multi-
resolution grids has been presented. It is divided in 
two parts, i.e. the creation of a mass grid that 
represents the level of detail that is needed at 
different grid points, and the conversion of the mass 
grid to one that could be used in computer 
programs. This approach is very convenient, 
because for the creation of grids for different 
problems, only the first part of the algorithm needs 
to be modified according to the characteristics of the 
problem. The use in a computer program of a grid 
created this way is simple and allows an easy 
parallelization on multiprocessor machines. A 
similar approach could be used also for (3+1) 
dimensional problems, with an even greater level of 
reduction of the calculation time, on which further 
research will be done. 
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