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Abstract: - Carbon dioxide diffusion into n-decane inside cylindrical and square glass capillary tubes has been 
modeled [1,2], with two different models for each tube and the convective model for the square tube depended 
on the results of the cylindrical one.  For those models, the liquid phase density was always considered constant 
and its value was adjusted from the experimental data of gas-liquid interface position. This approach was done 
using the diffusivities obtained by correlations which modify the infinite dilution diffusion coefficient using a 
thermodynamical factor. Now, the liquid phase density is considered variable on time with perfect mixing inside 
the phase and an effective diffusivity can be determined. This effective diffusivity involves the molecular and 
convective contributions to the global mass transfer. Both interface displacements (inside cilyndrical and square 
tubes) can be modeled using the same model without dependency between their results. The terms inside the 
finite difference matrix for the liquid phase are not constant, because they depend on the solute concentration 
and on the liquid density then an iterative calculation for the matrix coefficients must be done in each timestep. 
A partially implicit model considers this iterative calculation keeping the liquid density value for the previous 
time (j). A fully implicit model considers this iterative calculation keeping the liquid density value for the 
present time (j+1).  It was showed that the model results, adjusted to the experimental interface position values,  
predicted effective diffusivities which are variable on time. The simulation time (76 min)  for the fully implict 
numerical model is higher than  the simulation time (62 min)  for the partially implicit numerical model. It was 
found that the type of numerical solution scheme affects the results (up to 5% deviation) for the square capillary 
model  but it doesn´t change the cilindrical capillary model results. 
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1   Introduction 
Numerical modeling is an useful tool for representing 
heat and  mass transfer processes. In many cases, 
numerical solution of a differential equation is used 
together with an experiment in order to determine 
fluid properties. For example, to obtain mass 
diffusivities by experimental methods usually 
involves mathematical simplification, like constant 
phase density and no convective effects [3-5]. 
Estimation of mass diffusivities is always a major 
concern for mass transfer processes, because 
correlations are not applicable in all the systems or 
process conditions. On the other hand, fluid 
displacement inside polygonal capillary tubes or cells 
has been studied trying to understand fluid-solid 
interactions in porous media [6-13]. The corners of 
capillary tubes promote fluid movement by a liquid 
filament which rises along the crevice and this 
behavior avoided that displacement experiments in 
polygonal capillary tubes could be used to determine 
molecular diffusivity because a simplified mass 

transfer model deviates considerably from the 
experimental behavior. In this work, experiments 
with carbon dioxide diffusing into liquid n-decane 
were done, with both fluids contained in square and 
cylindrical glass capillary tubes. Experimental gas-
liquid interface positions at the center of the tube 
were observed and it was found that the interface 
moves faster inside the square capillary tube. A 
moving boundary mass transfer model of this 
miscible displacement is necessary, to determine the 
contribution of the corner presence to an improved 
mass transfer process like the miscible CO2 injection 
in hydrocarbons. Such contribution is determined by 
adjustment of an effective diffusivity which counts 
for molecular and convective mass transfer.  
 
 
2   Problem Formulation 
 
2.1 Mathematical Model 
 

WSEAS TRANSACTIONS on MATHEMATICS 
DAMELYS ZABALA ,AURA 
L. LÓPEZ DE RAMOS

ISSN: 1109-2769 539 Issue 8, Volume 7, August 2008



For a component “i”, the one-dimension continuity 
equations for liquid and gas phases are: [14-16]   

, , 0 , 0 ( )i L i Ln z s t
t z

ρ∂ ∂
+ = ≤ ≤

∂ ∂
    (1)  

                               
, , 0 , ( )i G i Gn s t z L

t z
ρ∂ ∂

+ = ≤ ≤
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  (2) 

 
For the liquid phase, the global mass balance is 
shown in eq.(3) and the total flux n can be related to 
the diffusive flux j. [15] 
 

( )L
L s T

d V
U A

dt
ρ

ρ= −   (3) 

 
ref

iii U nj ρ+ =   (4) 
 
The reference velocity for the phase (Uref) can be 
defined in different ways. One of them, is the average 
mass velocity, and for a binary mixture “i,j” can be 
expressed by: 
 

j j i jmass U n n nU
ρ
ρ ρ ρ
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= =∑ =
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Equation (5) is replaced in equation(4), and defining 
an effective diffusivity, the total flux can be related to 
concentration gradient by the Fick law, eq.(7). The 
thermodynamical factor Q depends on the solute 
concentration. 
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For carbon dioxide, one-dimension continuity 
equations for liquid and gas phases are: [14-16]   
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Equations (8) and (9) are for mass transfer process 
without chemical reaction. Equation (8) includes 
convective effects through the effective diffusivity 
Def and the liquid phase is calculated, using equation 
(3). The CO2 mass concentration ρC, can be related to 
mass fraction wC using equation (10).  
   CC wρ ρ=    (10) 
 

The initial and boundary conditions are in Table 1. 
Making a mass balance for carbon dioxide across the 
moving interface, its position can be determined by 
solving the ordinary differential equation (11). 
[14,17, 18] 
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Following the methodology developed by Illingworth 
and Golosnoy[14], the moving boundaries are 
transformed in fixed ones, by definition of new 
spatial variables u and v. The mass fractions are 
defined by new dependant variables p and q. 
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Table 1. Initial and border conditions 
Gas phase Liquid phase 

0, ini
C Ct y y= = 0, ini L Lt ρ ρ= =

0, ini
C Ct w w= =

s( ), at
C Cz s t y y= = ( ), sat

C Cz s t w w= =
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CCz L y y= =  0, 0Cwz

z
∂
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The transformed equations inside the phases are (12) 
and (13), and their respective transformed initial and 
boundary conditions are in Table 2.  
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Table 2. Transformed initial and border conditions 

Gas phase Liquid phase 
0, ini

Ct q y= =  0, ini
Ct p w= =  

0, sat
Cv q y= =  1, sat

Cu p w= =  

1, ini
Cv q y= =  0, 0pu

u
∂

= =
∂

 

 
The transformed interface equation (14) is converted 
to an expression, eq.(15), which conserves solute 
[14]. 
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For discretisation, the liquid phase equation is written 
in a divergent form, eq.(16) , and it is integrated, eq. 
(17), between the indicated u and t intervals, defined 
according equation (18).  
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 After the first integration equation (17) is 
transformed in eq. (19). For the second integration, 
these are the considerations. For the left side of 
eq.(19), p is considered constant for the u integration 
interval.  
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For the right side of eq.(19), p and other time 
functions are considered constant for the t integration 

interval defining the parameter σ (0≤σ≤1). This 
constant value is defined according eq. (20). 
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Equation (21)  is the general finite difference scheme 
for the mass fraction in the liquid phase, except for 
the border points. This scheme will be fully implicit 
when σ=1. It will be partially implicit when  σ=1 for 
all the terms except for ρL, where σ=0. For the liquid 
phase density, equation (3)  is discretised and the 
finite difference scheme is shown in eq. (24). For the 
gas phase, the general finite difference scheme is the 
same developed by Illingworth and Golosnoy [14]. 
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This mathematical model in one dimension does not 
consider the real shape of the interface, with a 
meniscus (both tubes) and the filaments in the corners 
of the square tube.(Fig.1). 
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Fig. 1. Meniscus and filament (square capillary tube) 
 
 
2.2 Experimental Equipment 
A visualization cell was built with two plexiglass 
caps (2 cm thickness) and four common glass walls 
(5 cm thickness), the joints are sealed with silicon. A 
scale for interface displacement measurement is 
marked on the capillary tube surface, before the tube 
is put inside the cell. The space between marks is 5 
mm. The capillary tube is fixed to brass connectors in 
upper and lower extremes of the cell using epoxy 
glue (Fig. 2). The space between the capillary and the 
cell walls is filled with glycerol (99.5%) which has 
the same refractive index than the glass, to avoid 
distortion by light diffraction. The cell is joined to a 
metallic base by, at least, two long screws passed 
through to aligned holes in both plexiglass caps. The 
screws are supported to the caps by washers and nuts. 
The distance from the lowest mark and the lower 
extreme of the tube is recorded as well as the 
capillary tube length. The cell assembly is on a 
pneumatic vibration isolated table to minimize 
movement in the system. In the capillary lower 
extreme, a membrane is put between the tube and the 
brass connector to seal this side during the test. 
Before the test, system leaks are checked, flowing 
carbon dioxide at the test pressure for at least five 
minutes. If there are no leaks, system returns to 
atmospheric pressure and then the hydrocarbon (n-
C10: n-Decane) is injected by the lower extreme, 
passing a syringe through a small hole in the 
connector and penetrating the membrane. The carbon 
dioxide is injected through the upper side at 23.5 ºC 
and 1480 kPa (abs) and the recording process begins. 
The camcorder is a Sony mini DV, model DCR-
HC42 with a 12X macro lens, positioned in a way 
that the meniscus can be observed between the marks 
on the capillary (Fig. 3). The space between marks is 
5 mm, so it is possible to have the calibration 
pixel/mm direct from the test images. Capillary tube 
data are shown in table 3.  
 

  
 

Liquid 
filament
Liquid 
filament

 
 
 
 
 
 
 
 
 
   
 

 
Fig.2. Joint capillary tube/brass conector 

 

 
Fig.3. Visualization cell 

 
Table 3. Capillary tube data 

Capillary Cylindrical Square 
L[mm] 194 210 
ID 
[mm] 

Diameter 
2  

Side 
2 

Material Borosilicate Quartz 
 
 
3   Problem Solution 
3.1 Mathematical Model Results 
Diffusion coefficients are considered variable in 
liquid phase and constant in gas phase. For DL 
estimation, eq.(25), the thermodynamic factor Q, eq. 
(26), is calculated using activity coefficient estimated 
by Margules with two subscripts and the A parameter 
for this model was determined for a previous model 
[2]. 
 

   L efD D Q=      (25) 
 

( )21 1AQ p
RT

p= − −    (26) 
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DG is calculated by Wilke and Lee correlation [19]. 
CG is approximated to pure CO2 molar density which 
it is calculated by Pitzer and Sterner equation of state 
[20]. Calculated and experimental data are shown in 
Table 4.  
The partial derivative equation system (12), (13) and 
(15) is discretised and numerically solved by finite 
difference method. The algorithms used are of first 
order accuracy [14]. The space discretisation is done 
with a fixed mesh for gas phase and with three 
different step sizes for liquid phase, the smallest one 
near the interface (Table 5). The time discretisation is 
done with four different time step sizes, because very 
small time step improves the solution stability but 
increases the simulation time as it was found when 
the no convective model was solved [22]. Two finite 
difference solution schemes are used: partially 
implicit and fully implicit. The algorithms for each 
case are explained in the next paragraphs.  

  
Table 4. Data at P=1480 kPa, T=23.5 ºC 
sat
Cy  

0.998 
[21] 

DG  
[m2/s] 

5.9.10-7

ini
Cy  

1 A  
[kJ/kmol] 

7900 
[2] 

sat
Cw 0.067 

[21] 
ρG  
[kg/m3] 

28.7 

ini
Cw ini

L 
0 ρ (nC10 pure)  

[kg/m3] 

680.92 

 
Table 5 .Time and space step sizes 
Variable range Step size 
0≤v≤1 Δv=0.05 
0≤u≤0.7 Δu=0.14 
0.7<u ≤0.9 Δu=0.05 
0.9<u≤1 Δu=0.1/135 
t< 2 s Δt=10-2 s 
2≤t<60 s Δt=2.10-2 s 
60≤t≤90 s Δt=5.10-2 s 
t>90 s Δt=10-1 s 

 
 

 Partially-implicit model 
 
The algorithm for this case is shown in Fig.4.  
The finite difference solution scheme is partially  
implicit, because the concentration terms present in 
the liquid phase for DL are evaluated in the present 
time (σ=1). Then, the finite difference matrix has 
variable coefficients and for that reason an iterative 
calculation process must be done for each time step in 
order to obtain the solution for the liquid 
concentration profile.  However, the liquid density is 

evaluated in the previous time (σ =0) and for this 
reason the algorithm is considered partially implicit. 
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Fig.4. Algorithm- partially implicit model 

 
 

 Fully implicit model  
 
The algorithm for this case is shown in Fig.5. 
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      Fig.5. Algorithm- fully implicit model 
 
The finite difference solution scheme is fully  
implicit, because the concentration terms present in 
the liquid phase for DL are evaluated in the present 
time (σ=1). In this case, also, the finite difference 
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matrix has variable coefficients and the iterative 
calculation also must be done in this case.  
Additionally in this case, the liquid density is also 
evaluated in the present time (σ=1) and it is 
recalculated inside the iterative process together with 
the interface position and concentration profiles. For 
this reason the algorithm is considered fully implicit. 
This additional iterative calculation is shown in Fig. 

.  

interface positions are shown in figures 
 and 7.  

 

a)t=0 b)t=60 min 
 

Fig.6. Displacement inside cylindrical capillary 
 

Fig.7. Displacement inside square capillary 

reported by other authors, in experiments done at 

5
 
 
3.2 Experimental Results 
Images of cylindrical and square capillary 
experimental 
6

a)t=0 b)t=60 min  

 
The experimental results for interface displacement, 
s(t), relative to its initial position, s(0), are compared 
with the results predicted by the partially implicit 
numerical model as it is shown in Fig.8. 
Experimental interface displacement for the square 
capillaries is larger than the displacement for 
cylindrical ones. This behavior is similar to the 

different temperature and pressure and with other 
saturated hydrocarbons [3,5,6]. 
Fig. 9 shows the partially implicit model results for 
the interface displacement inside cylindrical capillary 
tube. Fig. 10 shows the partially implicit model 
results for the interface displacement inside square 
capillary tube. Simulation time is 62 min in both 
cases, which is considerably higher than the 
simulation time for the previous models [1,2]. 
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Fig.8. Experimental results comparison 

 
For the cylindrical capillary tubes, a small deviation 
is observed from the experimental curve (fig. 9). The 
average relative error for the cylindrical model is 
9.3%. For the square capillary tubes, there is no 
significaticative deviation from the experimental data 
(fig. 10). The average relative error for the square 
model is 3.1%. These deviations are similar to the 
deviations in previous simple models [1,2] but for the 
case of square capillary model, the deviation is 
considerably smaller than the one found in the 
models proposed by Garrido (60%) and De Freitas 
(32%) [5,6], where analitycal solutions were used. 
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Fig.9. Interface displacement-Cylindrical 
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The other results for both capillary tube shapes can be 
observed in the figures 11 and 12. Those results are 
also for the partially implicit model. 
In Fig. 11, a reduction in the liquid density is 
observed inside both capillary tubes, being more 
drastic for the square capillary. It can be explained by 
the presence of the liquid filaments in the corners of 
the square capillary tube, which improves the mixing 
in the liquid phase. A similar trend is observed in the 
reduction of the liquid effective diffusivity  (Fig.12). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.10. Interface displacement-square 

 
 
 
 
 
 
 
 
 
 
 
 
Fig.11. Liquid density - model result comparison 
 
However, the effective diffusivity in the square 
capillary tube is considerably  higher than the 
diffusivity for diluted solution, estimated by Scheibel 
correlation [23], used in previous models [1,2] for the 
diffusivity estimation. Only at the end of the 
experiment, both diffusivities are similar for the 
square capillary tube. This behavior can be explained 
because the driven force is reduced by the dissolved 
CO2 into the hydrocarbon at this moment. The 
improved mixing induced by the liquid filaments, 
may be is also responsible for the higher effective 

diffusivity in the square capillary tubes. In cylindrical 
capillary tubes, the average Def is similar to the 
diluted solution diffusivity, which can be explained 
because inside the cylindrical capillary tube, the 
convective contribution to the effective diffusivity is 
small in comparison with the molecular one, due to 
the absence of  corners with the liquid filaments. 
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Fig.12. Effective diffusivity- model result comparison 
 
 

 Fully implicit vs partially implicit model 
 
The fully implicit model increases the simulation 
time up to 76 min in comparison with the partilly 
implicit model (62 min). The additional time can be 
consequence of the modified algorithm, where the  
recalculation of the liquid phase density is done 
together with the interface position (Fig. 5). 
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model-square In order to determine if the numerical solution 
scheme affects the model results and if the extra 
calculation time is necessary, a comparison between 
both solutions is done for the cilindrical and square 
capillary tubes. The resuts are shown in figures 13 to 
16. 
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Fig.13. Displacement –  different models (cylindrical) 
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The results for cylindrical capillary tube are shown in 
figures 13 and 14. Fig. 13 shows the interface 
displacement results. It is observed that there is no 
difference between the predicted results by both 
numerical solution schemes for the interface 
displacement inside cilindrical capillary tubes. Fig. 
14 shows the liquid density results. It is observed the 
same behavior that for the interface displacement: 
there is no difference between the predicted results by 
both models. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.14.Liquid density–  different models (cylindrical) 
 
The results for square capillary tube are shown in 
figures 15 and 16. In this case,  there is a difference 
between the predicted results for the liquid density 
and the interface displacement, depending on the 
numerical solution scheme. For the interface 
displacement (Fig. 15), the average deviation 
between both models is 5.3%. For the liquid density 
(Fig. 16), the average deviation between both models 
is 0.11%. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.15. Displacement –  different models (square) 
 
These results suggest that the mass transfer process 
inside the cylindrical capillary tube is slower than 

inside the square tube and because of that, the density 
and composition changes in the liquid phase are not 
affected for the type of numerical solution. 
On the other hand, inside the square capillary tube, 
the mixing speed in the liquid phase can be increased 
by a convective effect induced by the liquid 
filaments, rising along the corners of the capillary 
tube. This improved mixing makes that the liquid 
density and composition changes in the liquid phase 
are more affected for the numerical solution scheme. 
As a consequence of this, the calculation of interface 
position is also affected. 
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Fig.16. Liquid density–  different models (square) 
 
 
 
4   Conclusion 
This more complex mass transfer model, which 
considers both variable liquid diffusion coefficient 
and liquid density, is better to represent interface 
displament in a CO2 diffusion process in liquid n-
C10, inside capillary tubes, having the advantage of  
that square capillary tube model is not dependent on 
the results of the cylindrical one. The capillary tube 
shape effects can be observed in the variation in the 
liquid effective diffusivity and in the liquid density.  
The disadvantage against previous simplified models 
[1,2] is the increase in the simulation time. The 
diffusion model  for cylindrical capillary tubes can be 
numerical  solved with a partially implicit solution 
scheme, because the results are not affected by this 
factor. For the diffusion model  in square capillary 
tubes, is better to use the fully implicit model, 
because the results change according the choosen 
solution scheme. This behavior is explained because 
the improved mas transfer inside square capillary 
tube produces faster changes in density and 
composition which are affected by the type of the 
numerical solution. 
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List of Symbols 
 
AT= mass transfer area, [m2] 
Def= Effective CO2 diffusion coefficient in liquid 
phase, [m2/s]. 
j= Mass diffusive flux, [kg/(m2 s)] 
L= capillary tube lenght, [m]. 
n= Mass total flux, [kg/(m2 s)] 
P= absolute pressure, [kPa] 
Q= thermodynamical factor [-] 
R= 8.3144 kJ/kmol K 
s=s(t)= interface position, relative to capillary tube 
bottom [m]. 
US= interface velocity,[m/s]. 
V= Liquid phase volume, [m3] 
T= temperature, [K] 
wC=  CO2 mass fraction in liquid phase, [-]. 
yC=  CO2 mass fraction in gas phase, [-]. 
 
Greek letters 
ρk= mass density of “k” phase, [kg/m3]. 
 

Subscripts Superscripts 
L= liquid phase ini= initial 
G= gas phase sat= saturation 
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