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Abstract: We study a quantum spin system acting on a single quantum bit. The evolution of this system is governed
by the Schrödinger equation which takes the form of a right-invariant system on the special unitary group SU(2)
with two control inputs. Using a suitable version of Pontryagin’s Principle which is tailor-made for control prob-
lems on Lie groups, the optimal controls are derived in two cases: the energy-optimal case (in which the control
effort is minimized for a specified end time) and the time-optimal case (in which the control duration is minimized
for given constraints on the size of the controls).
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1 Problem Formulation
The evolution of the spin system we want to consider
is given by the Schrödinger equation

U̇(t) = (c(t)A+ u(t)X + v(t)Y )U(t) (1)

where

A :=
[
i 0
0 −i

]
,

X :=
[

0 −1
1 0

]
,

Y :=
[

0 i
i 0

] (2)

and where c, u and v are functions of time describing
the temporal variations of the external field. In our
case we shall treat t 7→ u(t) and t 7→ v(t) as control
functions whereas c is a constant (so that cA is a drift
term in the system dynamics). Our goal will be to
steer the system state from a given value U(0) at time
t = 0 to a specified value U(τ) at time τ > 0 in such
a way that a cost functional of the form∫ τ

0
Φ(u(t), v(t))dt (3)

(depending only on the controls, not on the state) be-
comes minimal. In applications one is mainly inter-
ested in the time-optimal case (in which Φ(u, v) ≡ 1)

either under the constraints |u| ≤ 1 and |v| ≤ 1
or under the more severe constraint u2 + v2 ≤ 1.
However, we shall also discuss the case Φ(u, v) =
(1/2)(u2 + v2) (with no constraints on u and v), in
which the optimal controls can be found rather easily.
This case can then be compared to the time-optimal
case, as follows: Determine (analytically, if possible)
the optimal controls t 7→ u(t; τ) and t 7→ v(t; τ) in
dependence on the given duration τ and find the min-
imal τ which is compatible with the constraints im-
posed in the time-optimal case.

2 Lie-theoretic Structure
Equation (1) is a control system evolving on the group
SU(2) of all complex (2 × 2)-matrices U such that
U?U = 1 and det(U) = 1; equivalently,

SU(2) = {
[
a −c
c a

]
| a, c ∈ C, |a|2+|c|2 = 1}. (4)

Note that the system (1) is right-invariant in the sense
that if t 7→ U(t) is a trajectory of (1) then so is t 7→
U(t)B for any fixed B ∈ SU(2). (This, by the way,
ensures that we can always assume that U(0) = 1;
otherwise we can replace U by U(t)U(0)−1, which
satisfies the same equation as U .) The Lie alge-
bra su(2) of SU(2) consists of all traceless skew-
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Hermitian (2 × 2)-matrices; it is spanned by the ele-
mentsA,X and Y in (2), and these satisfy the bracket
relations

[A,X] = −2Y,
[A, Y ] = 2X,
[X,Y ] = −2A.

(5)

For later purposes, we give an explicit formula for the
exponential function of su(2). Given a matrix

M =
[
ic −z
z −ic

]
∈ su(2) (c ∈ R, z ∈ C) (6)

we let

S :=
[

z z
i(c−∆) i(c+∆)

]
(7)

where
∆ :=

√
c2 + |z|2 (8)

and observe that

S−1MS =
[
i∆ 0
0 −i∆

]
=: D (9)

so that M = SDS−1 and hence exp(tM) =
S exp(tD)S−1 for all t ∈ R. Explicitly, the last equa-
tion reads

exp(tM) = exp
(
t

[
ic −z
z −ic

])
= cos(t∆)

[
1 0
0 1

]
+ sin(t∆)

∆

[
ic −z
z −ic

]
= cos(t

√
det(M)) 1 + sin(t

√
det(M))√

det(M)
M

(10)

where 1 denotes the identity matrix. This formula
could also have been derived from the Hamilton-
Cayley Theorem M2 − (trM)M + (detM)1 = 0
which, because of tr(M) = 0, becomes M2 =
−det(M)1. Consequently, we find that M2k =
(−det(M))k1 and M2k+1 = (−det(M))kM for all
k ∈ N0; plugging these equations into the expansion
exp(tM) =

∑∞
r=0 t

rM r/r!, equation (10) follows.
We now exploit the Lie-theoretic structure inher-

ent in the problem by invoking a version of Pontrya-
gin’s Maximum Principle which is tailor-made for
right-invariant systems on Lie groups. This version
states that, if u und v are optimally chosen, then there
is an absolutely continuous function p : [0, τ ] →
su(2) satisfying the adjoint equation

ṗ(t) = −p(t) ◦ ad(cA+ u(t)X + v(t)Y ) (11)

and never becoming zero, which is such that u(t) and
v(t) minimize the Hamiltonian

H = χ·Φ(u, v)+c·p(t)A+u·p(t)X+v·p(t)Y (12)

(where χ ∈ {0, 1}) with respect to u and v almost
everywhere; moreover, the Hamiltonian is constant
along the optimal trajectory and control, the constant
being zero if the final time τ is not fixed beforehand.
(The abnormal case χ = 0 will not be of significance
in the problems at hand.) Applying (11) to A, X and
Y , respectively, and using the bracket relations (5) we
obtain the equations

ṗ(t)A = −p(t)(2u(t)Y − 2v(t)X),
ṗ(t)X = −p(t)(−2cY + 2v(t)A),
ṗ(t)Y = −p(t)( 2cX − 2u(t)A) .

(13)

Letting a(t) := p(t)A, x(t) := p(t)X and y(t) :=
p(t)Y this reads ȧẋ

ẏ

 =

−2uy + 2vx
2cy − 2va
−2cx+ 2ua


= 2

 0 v −u
−v 0 c
u −c 0

 ax
y

 (14)

which implies that a(t)2 + x(t)2 + y(t)2 ist constant.
Note that (14) holds irrespectively of the choice of the
penalty function Φ. This choice, however, determines
how the optimal controls u and v can be expressed in
terms of the functions a, x and y, as will be discussed
now.

3 Energy-Optimal Control
Let us choose Φ(u, v) := (1/2) · (u2 + v2). We want
to first rule out the abnormal case χ = 0. Assume
χ = 0; then the absence of constraints on the controls
u and v ensures that x ≡ 0 and y ≡ 0. Plugging
this into (14) yields ȧ = 0, 0 = −2va and 0 = 2ua.
Hence a is a constant; in fact a nonzero constant, be-
cause otherwise we would have p ≡ 0. But then u ≡ 0
and v ≡ 0, which yields a solution only if the uncon-
trolled system automatically reaches the desired state
at time τ , a trivial case which can be discarded. Hence
we may assume χ = 1 so that the Hamiltonian (12)
becomes

H =
u2+v2

2
+ c a(t) + ux(t) + v y(t) . (15)
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Minimization of (15) with respect to u and v results
in

u(t) = −x(t),
v(t) = −y(t).

(16)

Plugging this into (14) yields ȧ = 0 (so that a is a
constant) and then ẋ = 2(c + a)y and ẏ = −2(c +
a)x, which implies that there are a constant r and a
function ϕ such that x(t) = r cos(ϕ(t)) and y(t) =
r sin(ϕ(t)) and ϕ̇ = −2(c+a), i.e.,

u(t) = −r cos(ϕ(t)),
v(t) = −r sin(ϕ(t))

(17)

where
ϕ(t) = ϕ0 − 2(c+a)t . (18)

Hence the optimal trajectory satisfies U̇(t) =
Θ(t)U(t) where

Θ(t) : = cA+ r cos(ϕ(t))X + r sin(ϕ(t))Y

= c

[
i 0
0 −i

]
+ r

[
0 −e−iϕ
eiϕ 0

]
;

(19)

it remains to adjust the constants a, r and ϕ0 in such
a way that the desired change from U(0) = 1 to U(τ)
is effected. We now use a trick to convert the equa-
tion U̇ = ΘU (which is a linear differential equation
with time-varying coefficients) into a linear differen-
tial equation with constant coefficients by introducing
the function t 7→ T (t) ∈ SU(2) defined by

T :=
1√
2

[
eiϕ/2 −e−iϕ/2
eiϕ/2 e−iϕ/2

]
. (20)

We observe that both

T

[
i 0
0 −i

]
T−1 =

[
0 i
i 0

]
= Y (21)

and

T

[
0 −e−iϕ
eiϕ 0

]
T−1 =

[
0 −1
1 0

]
= X (22)

are constant in time, which is also true of

Ṫ T−1 =
ϕ̇

2

[
0 i
i 0

]
= −(c+ a) · Y. (23)

Thus the function

V (t) := T (t)U(t) (24)

satisfies

V̇ = ṪU + T U̇ = ṪU + TΘU
= (Ṫ T−1 + TΘT−1)TU
= (Ṫ T−1 + TΘT−1)V
= (−(c+a)Y + cY + rX)V
= (rX − aY )V,

(25)

which has constant coefficients; in fact, letting

z := r − ia (26)

this equation simply reads

V̇ (t) = AzV (t) where Az :=
[

0 −z
z 0

]
(27)

which can be explicitly solved, using U(0) = 1, to
yield

V (t) = exp(tAz)V (0)

=
1√
2

exp(tAz)
[
eiϕ0/2 −e−iϕ0/2

eiϕ0/2 e−iϕ0/2

]
.

(28)

Introducing the abbreviations

α := ϕ0/2 and
β := ϕ(τ)/2 = α− (c+a)τ

(29)

and using the fact that U(t) = T (t)−1V (t) =
T (t)?U(t), this yields

U(t) =
1
2

[
e−iβ e−iβ

−eiβ eiβ

]
exp(tAz)

[
eiα −e−iα
eiα e−iα

]
.

(30)
Using (10) with c = 0 at the final time t = τ , we find
that

exp(τAz) =
[
C −S
S C

]
(31)

where

C := cos(τ |z|) and S :=
z

|z|
sin(τ |z|); (32)

a subsequent evaluation of (30) then yields

U(τ) =
[
ei(α−β)(C+i=S) −e−i(α+β) · <S
ei(α+β) · <S ei(β−α)(C−i=S)

]
.

(33)
Denoting by Uij the entries of U(τ), we see from (33)
that ei(β−α)U11 = C + i · =S; thus if P is the polar
angle of U11 ∈ C (so that U11 = |U11|eiP ) we have

|U11|ei(β−α+P ) = C + i · =S. (34)
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Letting

θ := −aτ,
θ0 := cτ − P,
w := τ |z| = τ

√
r2+a2

(35)

(where θ0 is a known constant whereas θ and w are
unknowns because a and r are) we have θ − θ0 =
P − (c+a)τ = P + β−α; hence (34) takes the form

|U11| ·
[

cos(θ − θ0)
sin(θ − θ0)

]
=
[

cos(w)
θ · sin(w)/w

]
. (36)

Taking norms on both sides of (34) we find that
|U11|2 = cos(w)2 + θ2 sin(w)2/w2 and hence that

θ =
εw
√
|U11|2 − cos2w

sinw
(37)

where ε ∈ {±1}. Furthermore, (36) implies that
tan(θ − θ0) = θ tan(w)/w and hence that

tan
[
εw
√
|U11|2−cos2w

sinw − θ0

]
= ε

√
|U11|2−cos2w

cosw .

(38)

This equation has more than one solution, but since
the control effort is given by∫ τ

0
Φ(u, v) dt =

∫ τ

0

u2+v2

2
dt =

r2τ

2

=
τ

2

(
w2

τ2
− a2

)
=
w2−τ2a2

2τ

=
w2−θ2

2τ
=

1−|U11|2

2τ
w2

sin2w
,

(39)

we are looking, amongst all possible solutions, for the
one for which |w/ sin(w)| is minimal. Once (38) has
been solved for w, we plug the result into (37) to ob-
tain θ, then let a := −θ/τ and r :=

√
(w/τ)2 − a2

according to (35); finally, ϕ0 can be determined from

−U21

U12
= e2i(α+β) = e2i(ϕ0−cτ−aτ) . (40)

Once a, r and ϕ0 are found, the optimal controls are
given by

u(t) = −x(t) = −r · cos(ϕ0 − 2(c+a)t),
v(t) = −y(t) = −r · sin(ϕ0 − 2(c+a)t).

(41)

The special case U11 = 0 is particularly simple.
In this case necessarily |U21| = 1, say U21 = eiσ.
Equation (36) implies that cos(w) = 0 and θ = 0,
hence a = 0 and w = τr; the equation cos(w) = 0
thus yields τr = (π/2) + kπ with k ∈ Z. Finally,
equation (40) becomes e2iσ = e2i(ϕ0−cτ) so that ϕ0 ∈
σ+cτ+π·Z. (Note that ϕ0 enters the control law only
modulo 2π.) The value k has to be chosen to make |r|
as small as possible; since one of the choices k = 0
and k = −1 always gives a solution, we find that

u(t) = ε · (π/(2τ)) · cos(σ+cτ−2ct),
v(t) = ε · (π/(2τ)) · sin(σ+cτ−2ct),

(42)

where ε ∈ {±1} in (42) must be chosen in such a
way that the resulting trajectory t 7→ U(t) leads to the
desired state U(τ).

To see a numerical example, let us choose c := 1,
τ := π/2 and

U(τ) :=
1√
2

[
1 −1
1 1

]
.

Plotting the difference of the left-hand side and the
right-hand side of (38) yields the following diagram in
which the thick solid lines and the thick dashed lines
correspond to the cases ε = 1 and ε = −1, respec-
tively, whereas the thin dashed line is the graph of the
function t 7→ |w/ sin(w)|.

Figure 1: Determination of the parameter w.

The solution of (38) yielding the minimal value
of |w/ sin(w)| is w = 2.21928. Each of the two pos-
sibilities ε = ±1 yields θ, a und r uniquely and then
ϕ0 = (c+a)τ+kπ with a single ambiguity. Checking
the four possibilities shows that the sought solution is
given by ε = −1, r = 1.25348, a = 0.651835 and
ϕ0 = 2.5947. The four solutions obtained for the var-
ious choices all yield final states U(τ) ∈ SU(2) with
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|Uij | = 1/
√

2 for 1 ≤ i, j ≤ 2, but with the different
sign combinations[

− −
+ −

]
,

[
+ −
+ +

]
,

[
− +
− −

]
,

[
+ +
− +

]
.

4 Time-optimal Control: First Case
We now consider the question of time-optimal control
(i.e., with the cost function Φ(u, v) = 1) under the
constraint u2 + v2 ≤ 1. In this case minimization of
(12) yields

u =
−x√
x2 + y2

, v =
−y√
x2 + y2

. (43)

Plugging this into (14) results in ȧ = 0 (so that a is
constant) and the system

ẋ = 2cy + 2ay/
√
x2 + y2

ẏ = −2cx− 2ax/
√
x2 + y2

(44)

from which we conclude that xẋ + yẏ = 0, i.e., that
x2 + y2 is constant. Hence there exist a constant r
and a function ϕ such that x(t) = r cos(ϕ(t)) and
y(t) = r sin(ϕ(t)) which, when plugged back into
(44), yields ϕ̇ = −2(c+ (a/r)) and hence that

ϕ(t) = ϕ0 − 2
(
c+

a

r

)
t . (45)

This is a solution of the same form as the one found
in the energy-optimal case; we simply have to replace
a by a/r. (This shows that the time-optimal control
under the given constraint can be obtained by finding,
for a given τ > 0, the solution for the energy-optimal
problem and then selecting the smallest τ for which
the solution thus found is compatible with the con-
straint u2 + v2 ≤ 1.) However, since a and r enter the
control law only via the quotient a/r, we may assume
r = 1 without loss of generality; thus

u(t) = − cos(ϕ(t)),
v(t) = − sin(ϕ(t))

(46)

where
ϕ(t) = ϕ0 − 2(c+ a)t . (47)

The situation differs from the energy-optimal case in
that τ is now not a given constant, but an unknown
parameter to be determined. In order to identify the
constants a, ϕ0 and τ which yield the optimal control
law, we can proceed as in the previous section up to

equation (34). Using r = 1, this equation now takes
the form

|U11|
[

cos(P − (c+a)τ)
sin(P − (c+a)τ)

]
=

[
cos(τ

√
1+a2)

−a sin(τ
√

1+a2)/
√

1+a2

] (48)

which yields

tan(P − (c+a)τ) =
−a√
1+a2

tan(τ
√

1+a2) (49)

and, after taking norms, also shows that |U11|2 equals
cos2(τ

√
1+a2) + a2 sin2(τ

√
1+a2)/(1+ a2) so that

the equation

|U11|2 =
cos2(τ

√
1 + a2) + a2

1 + a2
(50)

holds. This last equation implies that

τ
√

1+a2 = arccos
(
±
√

(1+a2)|U11|2 − a2
)

+ kπ

(51)
for some k ∈ Z. Solving for τ and plugging the re-
sult into (49) yields an equation for a, and then ϕ0

can be obtained from (40) above (which is still valid
because, since r = 1, the function ϕ has the same
form as in the previous discussion). Amongst all pos-
sible solutions (a, τ, ϕ0) we must identify the one for
which τ is minimal. Again, the case U11 = 0 is partic-
ularly simple. In this case (50) implies that a = 0 and
τ = (π/2) + kπ where k ∈ N0. Writing U21 = eiσ,
we find again that ϕ0 ∈ σ + cτ + π · Z.

5 Time-optimal Control: Second
Case

We consider again the case Φ(u, v) = 1 (i.e., the case
of time-optimal control), but this time with the indi-
vidual control constraints |u| ≤ 1 and |v| ≤ 1 instead
of the more severe overall constraint u2 + v2 ≤ 1. In
this case minimization of (12) yields

u(t) = −sign(x(t)) and
v(t) = −sign(y(t))

(52)

unless there is an interval on which x ≡ 0 or y ≡
0 (in which case u or v could not be determined on
this interval from minimizing (12)). Let us show that
this is only possible if both u ≡ 0 and v ≡ 0, so
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that the only possible singular arcs are drift arcs (also
called coast arcs) during which no control whatsoever
is applied. (It will become clear from the subsequent
discussion that generically those arcs do not occur and
can be ignored as far as practical implementation of
an optimal control scheme is concerned.) Assume that
x ≡ 0 on some time interval. Then, according to (14),
on this time interval the following equations hold:[

ȧ
ẏ

]
= 2u

[
0 −1
1 0

] [
a
y

]
, va = cy. (53)

Denoting by U an antiderivative of u and letting
C(t) := cos(2U(t)) and S(t) := sin(2U(t)), we find
from the first equation in (53) that[

a(t)
y(t)

]
=
[
C(t) −S(t)
S(t) C(t)

] [
a0

y0

]
. (54)

Apart from the trivial cases a0 = y0 = 0 and U(t) =
const, this implies (because of the second equation in
(53)) that

v(t) = c · y(t)
a(t)

= c · a0S(t) + y0C(t)
a0C(t)− y0S(t)

(55)

is not constant on any part of the time interval consid-
ered unless y ≡ 0 on this interval. But then x ≡ 0
and y ≡ 0 on this interval, which (as we saw in the
discussion preceding (15)) implies u ≡ 0 and v ≡ 0.
Let us discuss the two trivial cases mentioned before.
If a0 = y0 = 0 then (54) implies y ≡ 0, and we
again obtain x = y = 0 and hence u = v = 0. If U
is constant, then u ≡ 0, hence a and y are also con-
stant. The Hamiltonian is then given byH = ca+vy.
The fact that the Hamiltonian is zero along an optimal
trajectory, together with the second equation in (53),
gives rise to the equation[

v −c
c v

] [
a
y

]
=
[

0
0

]
(56)

and hence that a = y = 0 and consequently u = v =
0 again. This confirms our claim that the only possible
singular arcs are coast arcs during which no controls
are applied.

Ignoring coast arcs for the time being, the time
interval [0, τ ] splits into intervals on which both u and
v are constant with values in {±1}. On each such
interval equation (14) becomes ȧẋ

ẏ

 = 2

 0 v −u
−v 0 c
u −c 0

 ax
y

 (57)

which is an equation with constant coefficients which
can be explicitly integrated as a(t)
x(t)
y(t)

 = exp

2(t−s)

 0 v −u
−v 0 c
u −c 0

 a(s)
x(s)
y(s)


(58)

where the exponential can be computed using the
Rodrigues formula which states that for any skew-
symmetric matrix

L(ω) =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (59)

where ω = (ω1, ω2, ω3)T ∈ R3 the exponential
exp(L(ω)) is given by

(cos ‖ω‖)1+
1−cos ‖ω‖
‖ω‖2

ω⊗ω+
sin ‖ω‖
‖ω‖

L(ω). (60)

Thus if [s, t] is a time interval during which u and
v are constant (with values in {±1}), we have ω =
−2(c, u, v)T ; hence (58) holds with the exponential
given by

cos(2(t−s)
√
c2+2)

 1 0 0
0 1 0
0 0 1


+ 1−cos(2(t−s)

√
c2+2)

c2 + 2

 c2 uc vc
uc 1 uv
vc uv 1


+ sin(2(t−s)

√
c2+2)√

c2+2

 0 v −u
−v 0 c
u −c 0

 .
(61)

Let us note that the motion of the vector (a, x, y)T
during the time interval [s, t] is a rotation with con-
stant angular velocity

√
c2 + 2 about the axes pointing

in the direction of (c, u, v)T ; hence

2(t− s)
√
c2 + 2 = 2Φt,s (62)

where Φt,s is the angle swept out by this vector.
Depending on the four possibilities (u, v) =

(±1,±1), there are four possible axes of rotation;
the larger |c|, the closer these axes are towards the
a-axis in the adjoint space. The diagram shows a
view from top (i.e., from the positive a-axis) onto the
xy-plane. The adjoint variables evolve on a sphere
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Figure 2: Evolution of adjoint variables.

a2 + x2 + y2 = R2; around each of the four axes
there is a circle which touches both the plane x = 0
and the plane y = 0. If (a0, x0, y0) lies in the interior
of any such circle, no switching can occur, because
then the trajectory t 7→ (a(t), x(t), y(t)) can never
leave the quadrant in which it starts. The exterior of
the union of these four circles is composed of two re-
gions; region I containing the point (R, 0, 0), region II
containing the point (0, 0, R). If c < 0 the positively
oriented rotation axes “stick out” of the diagram, so
that the motion along the circles is in the mathemati-
cally positive sense. Thus if (a0, x0, y0) is in region I,
we follow the switching pattern

u −1 −1 1 1
v −1 1 1 −1

(traversing the four quadrants of the xy-plane in
clockwise fashion), whereas if (a0, x0, y0) is in region
II, we follow the switching pattern

u −1 1 1 −1
v −1 −1 1 1

(traversing the four quadrants in counterclockwise
fashion). This motion in the adjoint space needs to
be strictly distinguished from the associated motion
in the state space SU(2) which is determined from the
switching pattern by the fact that on each time interval

on which u and v are constant the state equation (1)
becomes

U̇(t) =
[

ci −u+ iv
u+ iv −ci

]
U(t) (63)

which is also an equation with constant coefficients
and hence can be explicitly integrated via

U(t) = exp
(

(t−s)
[

ci −u+iv
u+iv −ci

])
U(s) (64)

where the exponential can be evaluated using (10).
The remaining step is to determine the control syn-
thesis (yielding for each desired target state the times
at which switchings in the optimal control functions
occur), which in particular requires deriving an upper
bound for the number of possible switchings. This
is not a trivial task and will be described in a subse-
quent paper. Possible approaches are the symplectic
techniques developed by Agrachev et al. (see [1], [2])
or Sussmann’s envelope method (see [5], [6]), but in
our problem a simpler approach is possible because
reduction to a two-dimensional problem is possible,
as follows. Consider the Hopf map, i.e., the mapping
Φ : SU(2)→ S2 given by[

B −C
C B

]
7→

 ξ1

ξ2

ξ3

 :=

 −2=(BC)
2<(BC)
|B|2 − |C|2

 . (65)

(This is really a mapping into S2 because ξ2
1 + ξ2

2 +
ξ2

3 = 4|BC|2 + (|B|2−|C|2)2 = (|B|2+|C|2)2 = 1.)
Note that the system dynamics (1) can be rewritten as

Ḃ = ciB − uC + viC

Ċ = −ciC + uB + viB
(66)

which, when plugged into (65), yields ξ̇3

ξ̇1

ξ̇2

 = 2

 0 v −u
−v 0 c
u −c 0

 ξ3

ξ1

ξ2

 , (67)

an equation which coincides with the adjoint equation
(14). Since (67) is a control system evolving on a
two-dimensional manifold, the techniques described
in [4] are applicable to determine an upper bound for
the number of switchings for the optimal controls in
(67). Now if t 7→ u(t) and t 7→ v(t) are controls
which optimally steer system (67) from ξ0 to ξ1 in
time τ and if t 7→ g(t) is any trajectory in SU(2) re-
sulting from these controls, then this latter trajectory
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is automatically an optimal trajectory joining the ini-
tial state g(0) to the final state g(τ). This simple ob-
servation can then be used to derive an upper bound
for the number of control switchings for system (1) in
terms of those for system (67); cf. [3] in which this
technique was applied to a system without drift.

A second approach is based on the application
of second-order conditions for optimality (in addi-
tion to the necessary first-order condition provided
by the Maximum Principle) in a way introduced by
Agrachev and Gamkrelidze; see [1]. Consider a con-
trol system on a Lie group G which has the form

ġ(t) = U(t)g(t) (68)

where U(t) =
∑

i ui(t)Ei with control functions ui
(subject to pointwise bounds) and Lie algebra genera-
tors Ei. (The system (1) we are interested in is of this
form. Note that the letter U is now used with a differ-
ent meaning than before.) We start with a reference
control t 7→ U?(t) (assumed to be time-optimal, with
minimal time T ) and the resulting reference trajectory
t 7→ g?(t) satisfying

ġ?(t) = U?(t)g?(t) . (69)

We now consider a reparametrization t 7→ θ(t) of time
which is small in the sense that θ̇(t) stays close to 1,
say θ̇(t) = 1 + w(t) where w is small. We introduce
the modified control system

ġ(t) = (1 + w(t))U?(t)g(t)
θ̇(t) = 1 + w(t)

(70)

with w as a single control variable; we claim that t 7→
g?(t) is time-optimal for the problem of steering (70)
from the initial state (g0, 0) to the target state (g1, T )
(where T is the minimum time required to steer (68)
from g0 to g1). To show this, assume that there is a
control steering the modified system to a state (g1, S)
with S < T . Define γ(τ) := g(θ−1(τ)) for 0 ≤ t ≤
θ(S). Taking derivatives on both sides of the equation
g(t) = γ(θ(t)), we find that

(1 + w)U?g = ġ = (γ̇ ◦ θ)θ̇
= (1 + w)(γ̇ ◦ θ) . (71)

Dividing by 1+w and writing τ = θ(t), this becomes

U?(θ−1(τ))γ(τ) = γ̇(τ) (72)

which shows that γ is a trajectory of the original sys-
tem (68). (Note that U? ◦ θ−1 is an admissible con-
trol since U? is.) Moreover, γ(0) = g(0) = g0

and γ(θ(S)) = g(S) = g1. Since θ strictly in-
creases, we have θ(S) < θ(T ) = T ; thus the control
Û(t) := U?(θ−1(t)) steers the original system from
g0 to g1 in a time smaller than T , contradicting our
hypothesis of T being the optimal time. Now let w
be a sufficently small control steering the system (70)
from (g(0), 0) to (g(T ), T ), let (gw, θw) be the result-
ing trajectory of (70) and let

xw(t) := g?(t)−1gw(t) (73)

be the deviation between gw and g?. Then, using the
first equation in (70), we find that

(1 + w)U?g?xw = (1 + w)U?gw
= ġw = (d/dt)(g?xw)
= ġ?xw + g?ẋw
= U?g?xw + g?ẋw.

(74)

Subtracting U?g?xw from both sides of (74), we find
that wU?g?xw = g?ẋw; i.e., letting

H(t) := g?(t)−1U?(t)g?(t), (75)

we see that t 7→ xw(t) is a solution of the differential
equation

ẋ(t) = w(t)H(t)x(t) . (76)

Consequently,

x(T ) = x(0) +
∫ T

0
ẋ(τ1) dτ1

= x(0) +
∫ T

0
w(τ1)H(τ1)x(τ1) dτ1 .

(77)

Plugging the first equation of (77) (with T replaced
by τ1) into the second we find that x(T ) equals

x(0)+

T∫
0

w(τ1)H(τ1)

x(0) +

τ1∫
0

ẋ(τ2) dτ2

dτ1 (78)

so that

x(T ) = x(0) +
∫ T

0
w(τ1)H(τ1)x(0) dτ1 +∫ T

0

∫ τ1

0
w(τ1)H(τ1)w(τ2)H(τ2)x(τ2) dτ2 dτ2 .

(79)

Continuing in this way, we see that the endpoint-map

E[w] := xw(T ) (80)
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which maps each admissible control w to the point of
the resulting trajectory of (70) at time T , is given by
the Volterra series

E = 1 +
∞∑
k=1

∫
∆k

k∏
i=1

w(τi)H(τi) d(τ1, . . . , τk) (81)

where ∆k := {(τ1, . . . , τk) ∈ Rk | 0 ≤ τ1 ≤ · · · ≤
τk ≤ T}. Now the control w = 0 is a critical point of
the endpoint map so that E′[0] has a nontrivial kernel.
Since

E′[0]w =
∫ T

0
w(τ)H(τ) dτ , (82)

this implies that there is a nonzero element p ∈ L(G)?
(where L(G) denotes the Lie algebra of G) such that

0 = p

[∫ T

0
w(t)H(t) dt

]
=

∫ T

0
w(t) p(H(t)) dt

(83)

for all w such that
∫ T

0 w(t) dt = 0. This clearly im-
plies that p(H(t)) is constant for 0 ≤ t ≤ T . (To wit:
using the constant function 1, the above condition can
be written as p ◦H ∈ (1⊥)⊥ = R · 1 with respect to
the inner product 〈f, g〉 =

∫ T
0 fg.) Now let

I1 :=
∫∫

0≤τ1≤τ2≤T

w(τ1)w(τ2)H(τ1)H(τ2) d(τ1, τ2) ,

I2 :=
∫∫

0≤τ1≤τ2≤T

w(τ1)w(τ2)H(τ2)H(τ1) d(τ1, τ2) .
(84)

Clearly

I2 =
∫∫

0≤τ2≤τ1≤T

w(τ2)w(τ1)H(τ1)H(τ2) d(τ1, τ2) (85)

so that

I1+I2 =
∫∫

0≤τ1,τ2≤T

w(τ1)w(τ2)H(τ1)H(τ2) d(τ1, τ2)

=
(∫ T

0
w(τ1)H(τ1) dτ1

)(∫ T

0
w(τ2)H(τ2) dτ2

)
=
(∫ T

0
w(τ)H(τ) dτ

)2

.

(86)

Now if w is in the kernel of E′[0], this last integral
vanishes, and we have I1 + I2 = 0 so that I2 = −I1.
But then I1−I2 = 2I1, so that I1 (i.e., the second term
in the above Volterra series) is given by (I1 − I2)/2.
Thus (since H1H2 −H2H1 = [H1, H2]) we find that

I1 =
1
2

∫∫
0≤τ1≤τ2≤T

w(τ1)w(τ2) [H(τ1), H(τ2)] d(τ1, τ2)

(87)
which is an element of the Lie algebra to which p can
be applied. Since w 7→ p(xw(T )) takes an extremum
at w = 0, this last expression must be a semidefinite
quadratic form of w.

We now specialize to the case that U? is a bang-
bang control and hence piecewise constant. Then
H(t) is constant between two switching times ti and
ti+1; in fact, for all t ∈ [ti, ti+1) we have U?(t) =
U?(ti), hence

g?(t) = exp((t− ti)U?(ti))g(ti) (88)

and consequently

H(t) = g?(t)−1U?(t)g?(t)
= g(ti)−1U?(ti)g(ti) = H(ti).

(89)

Figure 3: Decomposition of integration domain.

Letting

yi :=
∫ ti+1

ti

w(τ) dτ , (90)
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we find that

T∫
0

t∫
0

w(t)w(τ)p([H(t), H(τ)]) dτ dt

=
∑
i≤j

ti+1∫
ti

tj+1∫
tj

w(t)w(τ)p([H(tj), H(ti)]) dτ dt

=
∑
i<j

yiyj p([H(tj), H(ti)]) .

(91)
Thus one way to show that a bang-bang control ceases
to be optimal is to prove that the quadratic form given
by (91) is no longer semidefinite if another switch-
ing time is added. The calculations to do this for the
problem at hand are elaborate and will be presented
elsewhere.

6 Appendix
For those readers not acquainted with a coordinate-
free treatment of control systems on manifolds we
want to give a quick derivation of the version of Pon-
tryagin’s Principle used in this paper; this requires a
differential-geometric interpretation of the Hamilto-
nian equations. Assume that a control system on a
manifold is given and that a fixed control is chosen.
The resulting trajectory is then the solution of an ini-
tial value problem

ẋ(t) = f(x(t), t), x(s) = p. (92)

Let ϕts(p) = x(t; p, s) be the associated flow on M
(so that ϕts(p) is the state at time t for the trajetory
which at time s is in state p). This flow induces the
tangent flow

Φts(p, v) := (ϕts(p), ϕ′ts(p)v) (93)

on TM and, by dualization, the cotangent flow

Ψts(p, λ) := (ϕts(p), λ ◦ ϕ′ts(p)−1) (94)

on T ?M . These two flows are such that λt(vt) is con-
stant because

λt(vt) =
(
λs ◦ ϕ′ts(p)−1

) (
ϕ′ts(p)vs

)
= λs(vs); (95)

in fact, the condition that λt(vt) is constant character-
izes the cotangent flow. Now let us fix the initial time

s. Then the variational equations for ϕts(p) = x(t; p)
are given by

d
dt
ϕ′ts(p) =

d
dt

∂

∂p
x(t; p) =

∂

∂p

d
dt
x(t; p)

=
∂

∂p
ẋ(t; p) =

∂

∂p
f(x(t; p), t)

=
∂f

∂x
(x(t; p), t) · ∂x(t; p)

∂p

=
∂f

∂x
(ϕts(p), t) · ϕ′ts(p).

(96)

Since t 7→ λ(t)(ϕ′ts(p)v) is constant we find that

0 = λ̇(t)
(
ϕ′ts(p)v

)
+ λ(t)

(
d
dt
ϕ′ts(p)v

)
= λ̇(t)

(
ϕ′ts(p)v

)
+ λ(t)

(
∂f

∂x
(ϕts(p), t) · ϕ′ts(p)v

)
= λ̇(t)

(
ϕ′ts(p)v

)
+
∂H

∂x
(ϕts(p), t, λ(t))

(
ϕ′ts(p)v

)
(97)

because H(x, t, λ) = λ(f(x, t)) satisfies

∂H

∂x
(x, t, λ) • = λ

(
∂f

∂x
(x, t) •

)
. (98)

This shows that (xt, λt) is a solution of the Hamilto-
nian equations if and only if (xt, λt) is a cotangent
flow. The solution yielding the maximum condition is
obtained by choosing λT at the final time such that
the kernel of λT is a supporting hyperplane of the
reachable set at time T . In an optimal control prob-
lem ẋ(t) = f(x(t), u(t), t) with a cost functional∫ T
t0
ϕ(x(t), u(t), t) dt this observation is applied to the

augmented system

ẋ(t) = f(x(t), u(t), t)
ċ(t) = ϕ(x(t), u(t), t)

(99)

in which

c(t) :=
∫ t

t0

ϕ(x(τ), u(τ), τ) dτ (100)

is the running cost. For a system of the special form

ġ(t) = U(t)g(t), g(s) = g0 (101)

on a Lie group G the above derivation can be simpli-
fied. If we write the associated flow in the form

ϕts(g0) = g(t; g0) (102)
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the variational equations become

d
dt
ϕ′ts(g0) =

d
dt

∂

∂g0
g(t; g0) =

∂

∂g0

d
dt
g(t; g0)

=
∂

∂g0
ġ(t; g0) =

∂

∂g0
U(t)g(t; g0)

= U(t)
∂

∂g0
g(t; g0) = U(t)ϕ′ts(g0)

(103)
Defining p(t) ∈ L(G)? by

p(t)(Y ) := λ(t)(Y g(t)) (104)

for all elements Y ∈ L(G) in the Lie algebra ofG and
introducing, for any fixed X ∈ L(G), the function

ξ(t) := ϕ′ts(g0)Xg(t)−1, (105)

we see that

t 7→ λ(t)
(
ϕ′ts(g0)X

)
= p(t) (ξ(t)) (106)

is constant. Now the derivative ξ̇(t) is given by(
d
dt
ϕ′ts(g0)

)
Xg(t)−1 + ϕ′ts(g0)X

(
d
dt
g(t)−1

)
(107)

which, since

d
dt
ϕ′ts(g0) = U(t)ξ(t) (108)

and

d
dt
g(t)−1 = −g(t)−1ġ(t)g(t)−1, (109)

means that

ξ̇(t) = U(t)ξ(t)−ξ(t)U(t) = [U(t), ξ(t)] . (110)

Since t 7→ p(t)(ξ(t)) is constant, this implies that 0 =
ṗ(ξ) + p(ξ̇) = ṗ(ξ) + p([U, ξ]) for all ξ of the above
form and thus 0 = ṗ+ p ◦ ad(U), i.e.,

ṗ(t) = −p(t) ◦ ad(U(t)) . (111)
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