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Abstract: Cavitation  erosion prediction for the hydraulic machines is very important in the hydraulics research  
because that   cavitation erosion is a source of failure of pumps water turbine blade, pipelines and other 
hydraulic devices. In this paper new kinds of theoretical volume loss rate curve of erosion cavitation progress is 
proposed. The analytical  models describing this new kind of erosion curves give a new vision of the volume 
loss rate curve and  produce a good concordance between the experimental and theoretical data if there is a 
good choice of theoretical model. Instead of using a unique analytical (universal) model for all materials, we 
give the possibility of a good choice between the proposed models. There may also appear some open problem  
such  as optimally correlating this analytical cavitation erosion models with the properties of the implied 
materials. 
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1 Introduction 
The cavities are formed into a liquid when the 
static pressure of the liquid  is reduced below 
the vapour pressure of the liquid in current 
temperature. If the cavities are carried to 
higher-pressure region they implode violently 
and very high pressures can occur. 
The cavitation process is described  (Timo 
Koivula 2000) as follows : 
When the local pressure of a liquid is reduced 
sufficiently, the dissolved air in oil starts to 
come out of solution.  
In this process, air diffuses through cavity wall 
into the cavity.  
When pressure in the liquid is further reduced, 
evaporation pressure of the liquid is achieved. 
At this point the liquid starts to evaporate and 
cavities start to be filled with vapour.  
When this kind of a cavity is subjected to a 
pressure rise cavity growth is stopped and once 
the pressure gets higher, the cavities start to 
diminish.  
Cavities disappear due to dissolution of air and 
condensation of vapour.  
When a cavity is mostly vapour filled and 
subjected to a very rapid pressure rise it 

implodes violently and causes very high 
pressure peaks. Implosion is less violent if the 
gas quantity of a cavity is big.  
This requires relatively slow nucleation of a 
cavity. 
 
 

 
 

Figure 1. The cavitation process  
 [Timo Koivula (2000)] 
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On the cavitation process, the internal phenomena 
such as the diffusion of vapour, the thermal 
diffusion,  the mist formation due to the 
homogeneous condensation and the heat and mass 
transfer through bubble wall, have significant 
influence. The cavitation phenomenon may cause 
serious change in microstructure and intrinsic stress 
level of the material. Macroscopically, the change in 
hardness is often observed; microscopically, the slip 
bands and deformation twins appear, and the phase 
transformations may occur in unstable alloys. 
Cavitation erosion is a progressive loss of material 
from a solid, due to the impact action of the 
collapsing bubbles or cavities into liquid near the 
material surface. Cavitation erosion can be 
formed when cavity implosions are violent 
enough and they take place near enough to the 
solid material. So, mechanical degradation of a 
solid material caused by cavitation is called 
cavitation erosion. 
The  cavitation erosion  depends on the material 
properties (hardness, work hardening capability, 
and grain size, etc.). The degree of cavitation 
erosion is affected by stress state and the 
corrosion 
resistance of a material.  
An important effort of researchers in the field of 
cavitation is focused  on improving the techniques 
of prediction of cavitation erosion, classified into 
three main categories: Empirical correlations with 
material properties, Simulation techniques using 
special test devices  and Analytical methods.  
 
The objective of Analytical methods in cavitation 
erosion study is to predict cavitation erosion without 
model tests.  This method is still in development 
requiring extensive research efforts before 
becoming operational.  
 
Many existing models of cavitation erosion give 
special attention to the volume loss (or weight loss) 
and the volume loss rate curve (or weight loss rate 
curve).  
The volume loss is often preferred for comparison 
of materials with great differences between the 
specific masses.  
 
The volume loss curve ([11], [14])  usually  is 
described by the formula:  

),,...,,()( 21 tkkkUAtV m ℑ⋅=       (1) 

with: A - the eroded surface area; -measure of 
cavitations intensity; U- erosion progress function 

resulting out of applied phenomenological model; 
- a set of real parameters (usually 3 

parameters  are quite sufficient), determined by 
fitting the erosion curve to the experimental data; t- 
cumulative exposure duration. 

ℑ
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In the study of cavitation erosion Thiruwengadam 
[16] use the energy Ea absorbed by the volume of 
the material fractured:  where Ea is the 
energy absorbed by eroded material, V is the 
volume of the eroded material, and  Se stands for an 
erosion strength which represents the energy – 
absorbing capability of the material per volume unit 
under the action of the erosive forces. 

ea

The energy flux density J determined by implosion 
of cavitation micro bubbles may be calculated from 
the following formula:  
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where T – denotes duration of the pressure pulses 
sampling period; ρ – liquid density;s – sound 
velocity in liquid; N – number of pressure intervals; 
nk – number of pulses in a single interval; pk – value 
of pressure amplitude in the k-th interval. 

K. Steller [14] proposed a formula based on the 
cavitations resistance: 

VRP cavt =        (3)      
where P is  the power used to erode the material 
subject to cavitations impingement ,  
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      (4)             

χ  is a factor determining the ratio of ultimate and 
initial cavitations resistance and k is a parameter 
defining the speed of cavitations resistance. 

F.J Heymann [5] give a model according to which 
the erosion rate of material with unit surface area 
can be described  by the integral equation 

∫ −+=
1

0

)()()()( dTTYTtftftY     (5) 

assuming that the eroded material consists of 
subsequent layers of unit thickness, f(t)dt is the 
probability of removing an element of each layer in 
the time dt. 
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M. Szkodo [13] uses the probability of cumulative 
volume loss for elementary volume V0 the Weibull’s 

function: 
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Then, the cumulative probability of volume loss for 
arbitrary eroded volume  is 0nVV
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Taking into account that the volume loss of material 
is a product of initial volume and cumulative 
probability of volume loss P(V)  it follows that 
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where: A – surface area ( AhV =0 ); Wpl is a relative 
work of plastic deformation on the eroded surface; 
Kcd is the relative stress intensity factor under 
cavitation loading ; h is the depth of strain 
hardening or max. length of cracks on the end of 
incubation period. 

J. Noschevich and K. Steller ([11], [14]) , proposed 
models of erosion kinetics referring directly  to the 
erosion curve pattern. The volume loss curve is 
obtained by solving the ordinary differential 
equation with constant coefficients: 

Iv
dt
dv

dt
vd

=++ 2
2

2

2 βα                       (9) 

(with 
dt

dVv =  the volume loss rate, α and β  -

coefficients determining material properties, I –
cavitation intensity parameter) or the differential 
equation:    

PIv
dt
dv

Pdt
vd

P
γβα
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2 21
        (10) 

(with P- the power of flux energy delivered by the 
cavitation cloud to the eroded material, γ - the 
coefficient defined by equation (10)). 

In any cavitation (or droplet impact) erosion test, the 
damage rate is generally time dependent. For V  and 
v , there are proposed [M. Szkodo (2005)] the 
typical erosion curves for unity eroded surface area 
as in Fig. 2 and Fig. 3. 

 

Fig. 2. The volume loss curve 

 

Fig. 3.The volume loss rate curves  

The volume loss rate curve  (Fig. 3) can be divided 
into four typical periods: I -   Incubation period; A  -  
Acceleration period; D  -  Deceleration period;  S - 
Steady state erosion period. The signification of this 
period is clear.  

Incubation period I  is an initial period of damage in 
which volume  loss  of  material is nearly zero (non-
measurable). During the incubation period, 
“considerable plastic deformation occurs, without 
any apparent weight loss” [Leight (1959)]. In this 
time interval, the material accumulates energy. 
Leight concluded that the Incubation period 
depended linearly on the corrosion fatigue limit of 
the material. This does not appear to be generally 
valid today. Thiruvengadam [16] defined the 
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Incubation period as “that period during which the 
first permanent plastic dent is formed.” His 
definition assumed that cavitation pits (or craters) 
are due only to fatigue effects. This assumption is 
also not entirely valid because the incubation period 
is often characterized by single-blow craters before 
fatigue effects become significant. 

and the mass loss rate curve is:  

Acceleration period A. In this time interval, the 
intensification of damage is observed, distinguished 
by violent increase of volume loss rate of erosion 
and the volume loss rate reaches maximal value. 

Deceleration period D. In this time interval, volume 
loss rate decreases.  

Steady state erosion S, characterized by almost 
constant volume loss rate of erosion. 

In the paper [3] a “damped”   model is proposed 
according to which that the volume loss curve is 
given by the formula: 

     (11) )]([)( tftvAtV s −=

where vs is the ultimate value of the volume loss rate 
and  f(t) is  the solution of homogenous linear 
differential equations of the second order with 
constant coefficients: 

02 2
2

2

=++ y
dt
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dt
yd ββ              (12) 

describing the “damped” oscillations with “infinite 
period”. Solving the ODE  (11) it follows that the 
volume loss is given by formula: 

][)( t
s tetvAtV βλ −−=                               (13)          

and he volume loss rate curve is  given by formula:  

][)( tt
s teevAtv ββ λβλ −− +−=               (14) 

The real parameters vs , λ and β will be determined 
by fitting the erosion curve to the experimental data 
(using the least squares method  or another 
numerical method) 

Instead of the volume loss curve (13) and the 
volume loss rate curve (14),  may be used the mass 
loss curve:                

][)( ctbteatAtm −−=                   (15) 

][)( bctebeaA
dt

tq +−==
)( btbttdm −−         (16 ) 

which  

 of  Timisoara  
for OL370, the experimental data for  exposure 
durations T and  the loss mass M is : 

A- the eroded surface area ; 

a =ρ sv , b = ρλ , c =ρβ                   (17)  
and ρ - the density of material. The real parameters 
a , b and c will be determined by the formulas (16) 
or fitting the erosion curve  to the experimental data. 
By example using the experimental data given by 
Laboratories of  Politehnic University
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Using the least squares method,  the real parameters 
a , b and c determined by fitting the erosion curve to 
the experimental data for unity surface area, are: 

a 0.6571 10-3⋅:= b 0.6709 10-3⋅:= c 0.2551 10-1⋅:=  

The mass loss rate curve (continous line given by 
t1102551.033 −⋅−−−function ) 

and the exper
tettm 106709.0106571.0)( ⋅−⋅=

imental data  (box) is  plotted in  Fig. 4 
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Fig.4. The mass loss rate curve(m) and the 
experimental data (Mi )  for OL370 
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The mass loss rate is  plotted Fig. 5 
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Fig. 5. The mass loss rate (q) for OL370 

Taking  into account that the density of material is ρ 
=7.713, The volume loss and the volume loss rate 
are:  

713.7
)( tV =          )( tm

713.7
)(tv =     (18) )(tq

Then, the volume loss curve and the volume loss 
rate curve are plotted in Fig. 6 and Fig.7  
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Fig. 6. The volume loss curve for OL370 
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Fig. 7. The volume loss rate curve for OL370 

model of cavitation erosion.  

Like in paper [3] for v(t) we get  

 

2  A generalization of “damped” 

)]([))()( tdfvAtdtv −== , (
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V
s

but now, 
dt
df   must satisfy the  ODE: 
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where α  and β  are  real constants, depending on  
eroded material; 0,0 >≥ βα . The above equation 
(19) has a  physical interpretations like as the case 
of damped vibrations: Because the eroded material 
tested in Hydraulic Machinery Laboratory using a 
vibratory device with nickel tube,  the eroded 
material  is subject to a frictional force and an a 
damping 
have:  

force. With Newton’s Second Law we 
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linear differential quati  and i quation 
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The roots of the equations (21) are: 
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we have the volume loss curve:  
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and the volume loss rate curve is:  

][)( s teevAtv βλλ +−=          (23)        tt ββ −−

If (-ε,o) is the incubation period, the typical graphs 
of v as a function of t are shown in Fig. 8. 

 

  Fig.8.  The volume loss rate curve for case I and 
case I
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and the volume loss rate curve is:  
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Typical graphs of v as a function of t are shown in 
Figure 8.  

 

Fig. 9. The volume loss rate curve for case II. 

Remark. The graph of volume loss rate curve shown 
in the Figure 9. differ from the usually(by now) 
images of the erosion curves, but we explain in next 
section why it is possible this  kind of  curve.   

Case III. If  then, auxiliary equation 
(20) have distinct real roots . 

042 <− βα

21 ,rr

Then we have: 
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Since βα , , are positive, and αβα <− 42 , the 

roots   must both be negative and the 

conditions 

2

lim
1,rr

0)( =
∞→

tf
t

and 0)(lim =
∞→

t
dtt

df are 
Then, the volume loss curve is given by: 
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satisfies.  The condition  implies 0)0( =f

1
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Then, the volume loss curve is given by: 
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and the volume loss rate curve is: 
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r
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Typical graphs of v as a function of t are shown in 
Fig. 8. 

3   A cavitation erosion model based 
on the Bessel’s equations. 

We begin  with a remark: During the incubation 
period, The volume loss V (or the weight loss), and 

the volume loss rate 
dt

tdV )(t)( =

)(tv

v (or the weight 

loss rate) are nulls.   

At the end of the incubation period, the volume loss 
rate curve (or the weight loss rate curve ),  can 
have a point of discontinuity, because the volume 
rate curve, may be not smooth at the end point of the 
incubation period.  

Let  the end point of the incubation period. 
If

)0,( 0t
θ  is the angle between  the time axe and tangent 

to the volume loss curve at ( ,  and  tan)0,0t 0≠θ  
(Fig. 10), then we have an discontinuity point for 
the volume loss rate curve v ,  like as in Fig. 11.  )(t

 

          Figure 10. The volume loss curve with 
nonzero  right derivative in the final point of 
the incubation period. 

 

 

Fig. 11. The volume loss rate curves with a 
discontinuity in the final point of the incubation 

period. 

For example in the Figure + the slope of weight loss 
at  the end point of the incubation period of first 
experimentally given curve (▲)  is not null.  

 

Fig.12  Weight loss at various amplitudes for 
aluminum alloy 1100-O within the Iincubation 

period (open-beaker vibratory tests; room 
temperature): ▲,1  in; ■, 1  in; ●, 

 in; [Yu-Kang Zhou and F. G. Hammitt 
[1983]) 

31078. −× 31038. −×
3101 −×

]0,

During the incubation period, the volume loss, and 
the volume loss rate curves are nulls and  our study 
is superfluous. To simplify the calculus, we have 
chosen the time interval [ ε−

0=

as the incubation 
period, and we shall study   the volume loss, and the 
volume loss rate curves for ( t is the end 
point of the incubation period) 

0≥t 0
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The most accurately experimentally data for very 
long time, suggested  that  the volume loss rate 
curve  can look as in Fig. 13. (The incubation 
period was chosen the time interval [

)(tv
]0,ε− )   

 

Fig. 13. New model of the volume loss rate 
curves  

For example, the volume loss rate curve of S15C  
steel [ S.Hattori and E.Nakao (2001)] (Figure 1.) 
have an allure of  curve presented in Figure 5. 

 

 
Fig.14. Volume loss rate curve of S15C  steel 

 

Based on physical considerations and experimental 
data,  we have chosen that  the volume loss curve 

)()( t
dt

tv =
dV

       (32) 

is the solution of  the ordinary differential equation: 

)1()1( 2222
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2
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α  and β  - real constants, depending on the  eroded 
material; 

Setting  )()( ttv βϕα += ,          (34) 

first we find:  

0)()1()()( 22
2

2
22 =−++ ttt

dt
dtt

dt
dt βϕββϕββϕβ  

Replacing in the above equation tβ  by x, we obtain 
that , ϕ  is the solution of Bessel’s differential 
equation  

0)1()()( 2
2

2
2 =−++ yxx

dx
dyxx

dx
ydx        (35) 

Recall that, the general solution of Bessel’s  
equations (35) is    

)()()( 1211 xYCxJCxy +=        (36) 

where is  the Bessel function of the first kind,  
and  is the Bessel function of the second kind 
(also known as the Weber Function).  

)(1 xJ
)(1 xY

However, is divergent at )(1 xY 0=x , the 
associated coefficient  is forced to be zero to 
obtain a mechanically  meaningful result (there is no 
source or sink at 

2C

0=x ).  

So, we get )()( 11 xJCx =ϕ ,  and using (34) we 
find: 

 )()( 11 tJCtv βα += .               (37) 

Then,  ∫ =+=
t

dssJCtV
0
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t

t dssJCs
0
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Recall that if is  the Bessel function of the 
first kind, then for any integer  n, we have 

)(xJ n

)()]([ 1 xJxxJx
dx
d

n
n

n
n

−= ,                 (39) 

From formula (39), putting  n = 0, we have 

)()]([ 10 xJxJ
dx −=
d

              (40) 0,0 >≥ βα . 
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But , for any  integer  n:   

)()1()( xJxJ n
n

n −=−                (41) 

and in particular for n = 1 we have  

)()( 11 xJxJ −=−              (42) 

Then, formula (39) become:  

)()]([ 10 xJxJ
dx
d

−=                           (43) 

Using this result we get: 
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Thus, finally  we obtain:  

)(1)( 1 tJtv β
β
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)](1[1)( 0 tJttV β
β
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for unity eroded surface area. 

If A is the eroded surface area, we have the formula: 

))](1([)( 0 tJtAtV β
β

α −+=
1

                (47) 

Observation.   

We know that , and 0)(lim 1 =
∞→

xJ
x

0)(lim 1
0
0

=
>
→

xJ
x
x

 . 

So, we have:  

αβ
β

α =+=
∞→∞→

)](1[lim)(lim 1 tJtv
tt

.      (48) 

α=
>
→

)(lim
0
0

tv
t
t

               (49) 

From equalities (48) and (49) it follows that  the 
constant α  has two  physical meanings: α  is the 
ultimate value of the volume loss rate, and the right 
derivative of V(t) at the point t ( tan0 θ  ).  Thus, the 
ultimate value of the volume loss rate must be equal 
with tanθ . If  tan 0≠θ , then the volume loss rate 
curve is discontinuous at t . The constant β  is 
a scale factor. The real parameters 

0=0

α  and β  will be 
determined by fitting the erosion curve to the 
experimental data (using numerical methods). 

The new formulas (45) and (46), for the volume 
loss, and the volume loss rate curves  depending 
only on two real parameters α  and β , are based on 
the Bessel function of the first kind and integer 
order n, 1,0),( =nxJ n . The real parameters α  and 
β  (used in above formulas (45) and (46)),  can be 
determined by fitting the erosion curve to the 
experimental data; using for :  )(xJ n

Taylor series:  

nm

m

m

n
x

nmm
xJ

+∞

=
⎟
⎠
⎞

⎜
⎝
⎛

+
−

= ∑
2

0 2)!(!
)1()( ;   (50) 

Integral formulas:  

dttxntxJ n )sincos(1)(
0
∫ −=
π

π
;   (51) 

or their asymptotic forms:  

for small x , i.e., fixed n and, , 0→x
n

nn x
n

xJ
!2

)( ≈
1

    (52) 

and for large x , i.e., fixed n and, nx >> ,  

⎥⎦
⎤

⎢⎣
⎡ +−≈

4
)12(cos2)( π

π
nx

x
xJ n  (53) 
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4 Another  cavitation erosion models 
based on ODEs. 

First, we propose for the volume loss rate curve  (for 

the unity area of eroded material), 
dt

tv )( =
tVd ))(( , to 

be the solution of  the ordinary differential equation:  

02

2

=++ k
dt
dve

dt
vde tt ,      (54) 

where k is a coefficient determining the material 
properties. 

This  ODE  have a particular solution  

tt kteke −− + , and its general solution  is   

dt
tVd ))((  .       (55) ttt ktekeeCC −−− +++= 21

The initial speed of erosion is  

)2()( 12 kCktCteettV tt −−−+= −α        (56) 

The real parametersα , k,  ,  can be determined 
by fitting the erosion curve to the experimental data 
using numerical method. 

1C 2C

 The initial speed  of cavitation erosion is in this 
model  and the final speed  of cavitation 
erosion is  

21

1C
CC +

)(t

This result is like as the result obtained  in the paper 
[3], but most accurately due to a number of 
parameters which  are used.  

Second, we propose for the volume loss curve  (for 
the unity area of eroded material), V , (for t>0) to 
be the solution of  the ordinary differential equation:  

2
2

2

)()()( kV
dt
d

t
bekV

dt
d

t
aV

dt
d

a

bt

−−−= ,  (57) 

This equation has an immediate physical 

interpretation: If the volume loss rate  )(tV
dt

One of the solution , of equation (57),  has the 
derivative(the volume loss rate ) been given by: 

)(tV

1
)(

−
+= bt

a

e
tkV

dt
d

, the parameter  a, is a scale 

factor and the parameter b is a dumping factor. 

The volume loss ds
e

skttV
s

bs

a

∫ −
+=

0 1
)(     (54) 

In this case the characteristic curves of cavitation 
erosion can be found  by using Taylor series. 

 
5  Conclusion 
We have  presented some new theoretical models of 
typical cavitation erosion curves based on ODEs.                   
Instead of using a unique theoretical model of 
characteristic cavitation curves for all studied 
materials, we think that it is most advantageous to 
use personalized models for some categories of 
materials. The advantage using ODEs  for 
theoretical analytical erosion curves is that the 
parameters appear in a natural way in the solution of 
ODEs and is is often not necessary to decide 
aprioristic the number of these parameters. 

These parameters,  will be determined by fitting the 
erosion curve to the experimental data (using 
numerical methods) but in special situations we can 
reduce their number by using initial conditions.  

Depending on the  theoretical model used in our 
application, there is the possibility to make a 
classification of materials and obtain our special 
properties. For  example, in the case of materials 
which have an initial speed of erosion equal with the 
ultimate value of the volume loss rate, the study can 
be concentrated on one phase (initial or final), and 
the determination of parameters is simplified.  

This work is only a beginning. There are many 
problems that can be optimized and also there is the 
open problems such  as optimally correlating this 
analytical cavitation erosion models with the 
properties of the implied materials 
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