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Abstract: A new metric that quantifies the predictability of financial time series is proposed. Time 

series predictability provides a measure of how well a time series can be modeled by a particular method, or 
how well a prediction can be made. This new time series predictability metric is developed based on the 
Kaboudan η –metric. The new metrics, based on Genetic Programming (GP) and Artificial Neural Networks 
(ANN) overcomes the stationarity problem presented in the pure η -metric and provides a new feature, which 
shows how the predictability changes over different subsequences in a time series. Timing detection and 
portfolio balancing should be based on trading strategies that evolved to optimize buy/sell decisions. The 
interest is to explore new trading rules based on an automated security trading decision support system 
triggered by both quantitative and qualitative factors. The focus is to develop quantitative metrics that 
characterize time series according to their ability to be modeled by a particular method, such as the 
predictability of a time series using the GP approach or an ANN.  
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1. Introduction in the 

predictability of financial time series 
Time series predictability is a measure of how well 
future values yt can be forecasted and indicates to 
what extent the past can be used to determine the 
future. A time series generated by a deterministic 
linear process has high predictability, and its future 
values can be forecasted very well; if it is generated 
by an uncorrelated process it has a low 
predictability. 
In real world, time series are represented by a mix 
between deterministic and stochastic components. 
Predictability can be viewed as the signal strength 
of the deterministic component and can be 
estimated by using modeling methods.  
Measuring the predictability tell whether a time 
series can be predicted under a particular model. 
Prediction of a time series with low predictability (a 
random walk time series) can be avoided. In this 
case, past observations are of little use in predicting 
future values, and the future values are determined 
randomly/ unknown factors. 
Time series analysis builds models that describe the 

underlying system that generates a time series: 
ARIMA, Box-Jenkins time series analysis, artificial 
neural networks (ANN), genetic programming 
(GP). The focus is to develop quantitative metrics 
that characterize time series according to their 
ability to be modeled by a particular method, such 
as the predictability of a time series using the GP 
and ANN approaches.  
Emerging stock exchange applications (portfolio/ 
winners selection, investment timing) provides 
good examples for the use of this time series 
predictability metric. The objective is to identify 
stocks that are more predictable for a given 
modeling method by evaluating the predictability 
value for each member of a set of financial time 
series, and ranking them according to their 
predictability value. Trading on higher ranked 
(higher predictability value) financial time series is 
expected to have better return/risk performance 
since the predictions made on these time series are 
on average more accurate.  
A new time series predictability metric for use with 
nonlinear time series modeling techniques is 
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presented. The use of this new metric in 
conjunction with a time series modeling method in 
financial modeling applications will show 
significant performance improvement in 
comparison to using the time series modeling 
method alone.  
 
 

2. Basic unified view of soft 
computing concepts applications in 
financial series 
Kosaka (1991) demonstrated the effectiveness of 
applying FL/ NNs to buy/sell timing detection and 
portfolio selection. Wilson (1994) proposed a fully 
automatic stock trading system based on a five step 
procedure. Frick (1996) investigated price-based 
heuristic trading rules by using a heuristic charting 
method with buy/ sell signals based on price 
changes and reversals. Based on a binary 
representation of those charts, they used GAs to 
generate trade strategies from the classification of 
different price formations. Kassicieh (1997) 
examined the performance of GAs in formulating 
market-timing trading rules. The goal was to 
develop a strategy for deciding whether to be fully 
invested in a stock portfolio, or a riskless 
investment. Inspired from Bauer (1994), their 
inputs were differenced time series of 10 economic 
indicators and the GA used the best three of these 
series to make the timing/ switching decision. 
Allen, Karjalainen (1999) used a GA to learn 
technical trading rules for an index. The rules were 
able to identify periods to be in the index when 
daily returns were positive and volatility was low 
and out of the index when the reverse was true, but 
these latter results could largely be explained by 
low-order serial correlation in stock index returns. 
Fernandez, Rodriguez (1999) investigated the 
profitability of a simple technical trading rule 
based on NNs. In the absence of trading costs, the 
technical trading rule is always superior to a buy-
and-hold strategy for both "bear" and "stable" 
markets but that the reverse holds during a "bull" 
market. Baba (2000) integrated NNs and GAs in an 
intelligent decision support system (IDSS) capable 
to optimize decisions and based on the average 
projected value and the then-current value.   
Lowe (1994) demonstrated the efficiency of the use 
of NNs in effective portfolio optimization and 
short-term prediction of multiple equities. Wendt 
(1995) builded a portfolio efficient frontier by using 
GA technique. Guo, Huang (1996) proposed a 
method for optimizing asset allocation by using 
Zimmermann’s fuzzy programming method. This 
algorithm permitted maximal flexibility for decision 
makers to effectively balance the portfolio's return 
and risk. Jackson (1997) applied a GA to the 

problem of asset allocation, first using the 
traditional mean variance approach and then using a 
direct utility maximization method for a step utility 
function. He compared the performance of GAs 
with the classical method of optimization and 
demonstrated the robustness to discontinuities in 
the search space, and sensitive to the starting 
values. 
Fogel [3] added noise to data generated by the 
Lorenz system and the logistic system. Using GP 
and Akaike's information criterion (AIC) [9], it was 
demonstrated that signals with no noise are more 
predictable (measured by average prediction error) 
than noisy ones. Their results suggest the potential 
for evolving models of chaotic data, even in 
background noise. Evolutionary programming can 
be used to optimize parameter estimates associated 
with models of chaotic time series in light of 
observed data. Kaboudan [4] applied GP to 
estimate the predictability of stock price time series. 
He tried to find the best-fit model for a time series 
using GP by minimizing the sum of squared errors 
(SSE). His predictability metric was defined based 
on comparing the SSE between the original time 
series and its reshuffled version.  
 
 

3. Time series analysis, data 
mining and time series predictability 
Time series modeling selection may be application 
dependent. According to the No Free Lunch (NFL) 
theorems [6], there is no search algorithm that can 
outperform all other search algorithms over all 
possible search problems. Kaboudan reported that 
genetic programming (GP) showed an equivalent or 
better performance in predicting stock price time 
series than other methods. Artificial neural 
networks (ANN) are also recognized to be effective 
in the problem of financial market forecasting [7].  
By design, the computed metric should approach 
zero for a complex signal that is badly distorted by 
noise. Alternatively, the computed metric should 
approach one for a time series with low complexity 
and strongly deterministic signal. Kaboudan's η- 
metric measures the level of GP-predictability of a 
time series.  
The goal is to investigate new time series 
predictability metrics with better behavior than 
Kaboudan's, which represents an original 
contribution in the field of time series analysis and 
data mining. This provides an explicit measure of 
time series predictability.  

 
3.1. Autoregressive Integrated Moving 

Average (ARIMA)  
ARIMA model of order (p, P, q, Q), expressed by  

( ) ( ) ( ) t
L

Qt
L

Pp aBzBB θδφφ += , is limited by 
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the requirement of stationarity; additionally, the 
residuals, the differences between the time series 
and the ARIMA model, are independent and 
normally distributed. 
Here  

( ) ( )p
p

2
21p BBB1B φφφφ −−−−= L  

represents the nonseasonal autoregressive operator 
of order p; 

( ) ( )PL
LP

L
L

L
L

L
P BBBB ,

2
,2,11 φφφφ −−−−= L

is the seasonal autoregressive operator of order P; 
( ) ( )q

qq BBBB θθθθ −−−−= L2
211 represents 

the nonseasonal moving average operator of order 
q; 

( ) ( )LQ
LQ

L
L

L
L

L
Q BBBB ,

,
2

,2,1 ...1 θθθθ −−−=  the 
seasonal moving average operator of order Q; 

( ) ( )L
pp BB φµφδ =  is a constant term, where µ  

is the true mean of the stationary time series being 
modeled; 

LQLLp

LPLLp

,,2,121

,2121

,,,;,,,

;,,,;,,,

θθθθθθ

φφφφφφ

KK

KK
  

and δ  are unknown parameters that must be 
estimated from sample data; 

K,a,a 1tt −  are random shocks that are assumed to 
be statistically independent of each other; each is 
assumed to have been randomly selected from a 
normal distribution that has mean zero and a 
variance that is the same for each and every time 
period t. 
The backshift operator B shifts the subscript of a 
time series observation backward in time. That is, 

1−= tt yBy  and . ktt
k yyB −=

To identify the particular form of the ARIMA 
model, we follow the Bowerman algorithm:  
1. Whether the constant term δ should be 
included in the model.  
2.   Which of the operators φp (B), φP (BL), θq (B) 
and θQ(BL) should be included in the model. 
3.    The order of each operator that is included in 
the model. Assuming that all observations in the 
time series are normally distributed, the δ should be 
included if:  

2
N ZZ

z >
σ

µ
, 

where µZ is the mean of the time series, σZ is the 
standard deviation of the time series, and NZ is the 
number of time series observations. Two statistical 
functions, the sample autocorrelation function 
(SAC) and sample partial autocorrelation function 
(SPAC), are used in step 2 and 3.  
 

 

3.2 Genetic Programming 
Genetic algorithms (GA) adapt some concepts 
(reproduction, recombination, mutation, survival of 
the fittest, and populations) from evolutionary 
biology to fields of engineering, optimization, and 
machine learning. Such algorithms evolve 
populations of candidate solutions to a problem 
with the goal of finding near optimal candidates. 
Koza [8] extended this genetic approach and 
introduced the concept of genetic programming 
(GP). Each candidate solution in the search space is 
represented by a genetic program. GP maintains a 
population of solutions and evolves it by using 
transformation operators (crossover, mutation) to 
change candidate solutions into new candidate 
solutions. A user-defined fitness function is used to 
select and keep better candidate solutions in the 
population. GP is now widely recognized as an 
effective search paradigm in artificial intelligence, 
databases, classification, robotics and many other 
areas. The major difference between GP and GA is 
that genetic program structures are not encoded as 
linear genomes, but as terms or simple symbolic 
expressions. The units being mutated and 
recombined do not consist of characters or 
command sequences but of functional modules, 
which can be represented as tree-structured 
chromosomes. The advantages of GP include its 
ability to evolve arbitrarily complex equations 
without requiring a model with an a priori structure, 
and the flexibility in selecting the terminal set and 
function set to fit different kind of problems.  
The flowchart of a basic evolutionary algorithm is 
presented in Fig.1. 

 
 

Generation of initial solutions  

 
 
 
 
 
 
 
 
 
 
 
 

1. Generate initial population. 
2. Evaluate fitness for each individual in the 
population. 
3. Selection 
4. If solution is sufficient, end the process; present 
the best individual in the population as the output 
from the algorithm. 
5. Do variations by mutation, crossover/ other 
genetic operators on the selected individuals. 

Evaluation  

Selection  

Selection 
sufficiently 

good?  

End  

Yes 

Generation of 
variants by 

mutation and 
crossover  
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6. Form the new population using the result of the 
genetic operations. 
7. Go to step 2. 
The terminal set is comprised of the inputs to the 
GP program, the variable and constants supplied to 
the GP program. The function set is composed of the 
statements, operators, and functions available to the 
GP system.  

The tree structure is the most frequently used 
representation in GP. The nodes of the tree are 
selected from the function set while the leaves are 
from the terminal set. Each GP tree represents a 
single individual (genotype) in the population  

Crossover: combines the genetic material of 
two parents by swapping a part of one parent with a 
part of the other.  

Mutation: select a point in the tree randomly 
and replaces the existing sub-tree at that point with 
a new randomly generated subtree. 

Selection: decide whether to apply genetic 
operators to a particular individual and whether to 
keep it in the population or allow it to be replaced, 
based on the fitness of that individual.  

Fitness: is the measure used by GP during 
simulated evolution of how well an individual 
program has learned to predict the output from the 
input. 

 
         3.3. Fast Evolutionary Programming 
(FEP). Reduced Parameter Bilinear (RPBL) 
Rao, Chellapilla [10], [12] proposed an alternative 
modeling approach called fast evolutionary 
programming (FEP) to optimize the parameters of a 
reduced parameter bilinear model (RPBL). The 
RPBL approach [13] is capable of effectively 
modeling nonlinear time series with fewer 
parameters than a conventional bilinear model. 
FEP evolves RPBL models with lower normalized 
mean squared error (NMSE) and also lower model 
order than evolved with conventional evolutionary 
programming.  

3.3.1. Fast Evolutionary Programming  
FEP is implemented by using an ( )λµ +  
evolution strategy: 
1. Generate the initial population of µ  randomly 
selected individuals, and set the generation 
number, k to one. Each individual is taken as a pair 
of real-valued vectors ( ) µη ,,1i,,x ii K= , where xi 
includes the values of the solution vector elements 
and ηi includes the mutation parameter values. 
Typically the elements f xi is selected randomly 
following a uniform distribution over the search 
space. 
2. Evaluate the error score for each individual, in 

terms of the objective function, . ( )ixf
3. Mutate each parent ( ii ,x )η  to create a single 

offspring ( )'
i

'
i ,x η  by  

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )[ ]1,01,0'exp

1,0
'

'

jii

iii

NNjj

Cjjxjx

ττηη

η

+=

+=
 

for j = l , - - - , n ,  where xi(j), x’′(j), ηi(j) and 
ηi′(j) denote the j-th component of the vectors xi, 
x’i, ηi and η′i, respectively. N(0,1) is a normally 
distributed one-dimensional random variable with 
mean zero and standard deviation one. C(0,1) is a 
random variable satisfying the standard Cauchy 
distribution. The probability density function for 

( )stC ,  i s  ( )
( )( )( )21
1

stxs
xf

−+
=

π
 where t is 

the median of the distribution. The mean and the 
standard deviation of the Cauchy distribution are 
undefined. Nj(0,1) indicates that the random 
variable is generated for each value of j. The 
factors τ and 'τ are commonly set to be 

1

n2
−

⎟
⎠
⎞⎜

⎝
⎛  and ( ) 1

n2
−

. 

4. Calculate the fitness of each offspring. 
5. Conduct pair wise comparison over the union 
of parents and offspring. For each individual, q 
opponents are chosen randomly from all the parents 
and offspring with equal probability. For each 
comparison, if the individual's error is no greater 
than the opponent's, the individual receives a 
"win". 
6. Select the µ individuals that have the most wins 
to be parents of the next generation. 
7. Stop if the halting criterion is satisfied; 
otherwise, increment the generation number and go 
to Step 3. 

 
3.3.2. Reduced Parameter Bilinear Model  

RPBL [13] is defined as: 
( ) ( ) ( )[ ] ( )[ ]tktmtqtp aBzBaBzB ζξθφ +=  

where {zt} is the sequence of time series 
observations, {at} is a sequence of independent 
random variables having a N(0,1) distribution, 

( ) p
p

2
21p BBB1B φφφφ −−−−= L , 

( ) q
q

2
21q BBB1B θθθθ −−−−= L , 

( ) m
m

2
2m BBBB ξθξ −−−= L , and 

( ) k
k

2
21k BBBB ζζζζ −−−= L  

The backshift operator B shifts the subscript of a 
time series observation backward in time, that is, 
Bkyt= yt−k. As can be seen, ARMA model is a 
special case of the bilinear model where ξi and ζi = 
0 for all i. 
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The RPBL model is evolved by FEP using the 
following configuration. The individual vectors of 
the population used in FEP consist of the model 
orders followed by the model parameters, as given 
by xi =[p,q,m,k, {φj}, {θj}, {ξj}, {ζ j}]. In the initial 
population, p, q, m, and k parameters are randomly 
selected and the model coefficients were selected 
uniformly from [-1,1].  

 3.3.3. The Identification for FEP  
The identification consists of determining the 
orders p, q, m and k of the model and estimating 
the corresponding parameters. The model order is 
determined as the order that minimizes the 
Minimum Description Length (MDL) criterion 

defined as: ( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛+−

2
1logN 2

eσγ  (number of 

independent parameters) ( )γ−Nlog  where N is 
the number of observations of the time-series, 

( )k,m,q,pmax=γ  and  

( )∑
+=

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
N

yt
tte zz

N 1

22 ˆ1
γ

σ .  

The predicted output  at time t is obtained tẑ
using the model with order (p, q, m, k). This 
criterion tries to minimize both model order and 
squared error at the same time. Using FEP, the 
model order is estimated following Rao, 
Chellapilla's method. Each individual in the 
population is a vector of the model order followed 
by the model parameters. In each generation, the 
model orders and model parameters are perturbed 
with continuous Cauchy random numbers. The 
model orders are then rounded to the nearest 
integer to obtain the new model orders. The model 
orders and parameters are selected according to the 
MDL fitness criterion. The best vector in the final 
generation contains the desired model order and the 
model parameters.  

3.4. Time Series Data Mining (TSDM)  
This framework adapts data mining concepts 

to time series applications. It creates a set of 
methods that reveal hidden temporal patterns that 
are characteristic and predictive of time series 
events. TSDM is focused on characterizing and 
predicting events, and therefore overcome the 
limitations of requiring stationarity of the time 
series and normality and independence of the 
residuals.  

3.4.1. Introduction in TDSM  
An event is defined as an important occurrence in 
time. The associated event characterization 
function g(t), represents the value of future 

occurrences  for the current time index. 
Defined as a vector of length Q or equivalently as a 
point in a Q-dimensional space, a temporal pattern 
in the series is a hidden structure that is 
characteristic and predictive of events. 
The objective function represents a value of fitness 
of a temporal pattern cluster or a collection of 
temporal pattern clusters. Finding optimal temporal 
pattern clusters that characterize and predict events 
is the key of the TSDM framework. 

 
3.4.2 Time Series Data Mining Method  

The first step in applying the TSDM method is to 
find hidden temporal patterns, characteristic of time 
series events. The steps in TSDM are: 

I. Training Stage  
1) Frame the TSDM goal in terms of the event 
characterization function, objective function, and 
optimization formulation. 

a..  Define the event characterization function g. 
b.   Define the objective function f 
c. Define the optimization formulation, 

including the independent variables over which the 
value of the objective function will be optimized 
and the constraints on the objective function. 
2) Determine Q, i.e., the dimension of the phase 
space and the length of the temporal pattern.  
3) Transform the observed time series into the 
phase space using the time-delayed embedding 
process.  
4) Associate with each time index in the phase 
space an eventness represented by the event 
characterization function. Form the augmented 
phase space. 
5) In the augmented phase space, search for the 
optimal temporal pattern cluster, which best 
characterizes the events.  
6) Evaluate training stage results. Repeat 
training stage as necessary.  

II. Testing Stage 
1) Embed the testing time series into the phase 
space. 
2) Use the optimal temporal pattern cluster for 
predicting events. 
3) Evaluate testing stage results. 

 
3.4.3. The Optimization. An adapted GA  

Adaptations include an initial random search and 
hashing of fitness values. 

I. Create an elite population  
1) Randomly generate a large population (n times 
normal population size)  
2) Calculate fitness 
3) Select the top 1/n of t he population to continue 

II.  While all fitness have not converged  
1) Selection  
2) Crossover  
3) Mutation 
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4) Reinsertion  
Initializing the GA with the results of a Monte 
Carlo search contribute to the optimization's rate of 
convergence and in finding a good optimum. The 
hashing modification reduces the computation time 
of the genetic algorithm by 50%.  

 
 
3.5. Existing Time Series Predictability 

metrics ( η-metric) in the literature 
 Kaboudan η -metric measures the probability that 
a time series is GP-predictable. By design, the 
computed metric should approach zero for a 
complex signal that is badly distorted by noise. 
Alternatively, the computed metric should 
approach one for a time series with low complexity 
and strongly deterministic signal. 
This metric is based on comparing two outcomes: 
the best fit model generated from a single data set 
before shuffling with the best fit model from the 
same set after shuffling. The shuffling process is 
done by randomly re-sequencing an observed data 
set using Efron's bootstrap method.  

 
4. A new η-metric based on GP and FEP 

There are two main problems with Kaboudan's η-
metric: the value of the metric largely depends on 
the length of the time series; for a long-term stock 
series, the value of the η -metric will be distributed 
in a very narrow range; hence, the resolution of the 
metric is limited. The interest is to propose a new 
time series predictability metric and its method for 
estimating it. 

4.1. An innovative η-metric 
For a long-term time series: 

{ }N,,2,1t,yY t K== , 
the η -metric is calculated on the first Q points, that 
is, a sample series: 
{ }Q,,2,1t,yt K= , (Q<N) 
Then, the sample series is shifted by τ, and the η-
metric is calculated again on the new sample  

{ }τττ +++= Q,,2,1t,yt K . 
Continuing this process, a series of η 's is 
generated, which are the local predictability 
estimations of the subsequences of the time series. 
Generally,  is defined as the Η-metric over the Q

sη
sample: 

{ s,1s,,2Qs,1Qst,yt −+−+−= K }. 
Thus, the η -series is represented by 

{ }KK ,,,,, 2
Q

mQ
Q
Q

Q
Q

Q
Q τττ ηηηη +++ . 

Since all the η' s are estimated over same sample 
size Q, they are comparable, and by selecting 

appropriate values of window length Q, they can be 
made to distributed in a reasonable range. This 
completely solves the first problem (η depends on 
the length of time series) and partially solves the 
second problem (badly scaled and low resolution). 
Additionally, by examining the resulting η-series, 
the variation of the predictability over time can be 
observed, and the overall predictability of a specific 
time series can be estimated by calculating the 
average Η over all windows. 
To completely address the second problem, 
Kaboudan's definition of η is analyzed:  

S

Y

SSE
SSE1−=η , 

Because it uses squared error, it makes the ratio of 
the prediction error between the original time series 
Y and the reshuffled version S fall into a narrow 
range. Since the original metric compared squared 
error, apply the square root operator to the error is a 
better approach.  

 
4.2. An innovative mixture between η-

metric and GP/ FEP 
GP and FEP approaches are considered for use as 
modeling methods. GP has a better search ability 
than FEP, especially when dealing with more 
predictable time series but FEP performs better 
when applied to noisier time series. For real world 
time series such as sunspot series and stock price 
series, its accuracy performance is similar to GP, 
but with much less computational effort. 
The forecasting model is a regressive expression 
that takes the past values in a time series as the 
input and future values as the output. For example, 
Kaboudan concluded that stock prices pt are mostly 
explained by only ten variables: 

2112121321 ,,,,,,,,, −−−−−−−−−− tttttttttt djidjivollplphphpppp
where p is the daily close price, hp and lp are the 
daily highest and lowest stock prices, respectively, 
vol is the daily traded volume of that stock, dji is 
the value of the index. 
Following this suggestion, these ten variables are 
used for GP to evolve the forecasting model using a 
simple 1-step predicting equation: 

( )2t1t1t2t1t2t1t3t2t1tt dji,dji,vol,lp,lp,hp,hp,p,p,pfp −−−−−−−−−−=
GP searches for an optimal function f that gives 
the minimum prediction error over the training 
data. The function set provides all the 
mathematical operators used in that combine those 
terminals. The R in the terminal set represents a 
random constant, which can form random floating 
point numbers between -1 and 1 in the function f.  

In most cases, the resulting GP equations are 
very complex and almost impossible to translate 
into humanly understandable relations between 
variables. 
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4.3. The use of Artificial Neural Network 
(ANN) in η-metric 

 
The same inputs and output are used in the 

neural network model as in the GP model:  

),,,

,,,,,(

2111

,121321

−−−−

−−−−−−=

tttt

ttttttt

djidjivollp

lphphppppNNp
 .  

The function NN represents the neural 
network system. It takes ten past variables as the 
inputs and gives one single output as the prediction. 

The feed-forward BP NN is created by using 
the MATLAB function "newff". For example, the 
following MABLAB code returns a two-hidden-
layer feed-forward backpropagation NN (BkPNN). 
The first parameter PR is a R × 2 matrix of min and 
max values for R input elements. The second 
parameter [3, 3, 1] indicates that both hidden-layers 
contain 3 neurons, and the output layer contains a 
single neuron which gives a single output. The 
third parameter specifies the transfer functions (or 
output functions or activation functions) for each 
layer, respectively.  
     So, the architecture of BkPNN can be illustrated 
in the following schema  
     Sx, Sh1, Sh2, So where  
     Sx is the input layer,  
     Sh1, Sh2 are the hidden layer 1 and 2 respectively  
     So is the output layer.  
The transfer functions are denoted by  
     f1, f2, f3 for Sh1;  
     g1, g2, g3 for Sh2;  
     h for So.  
     The transfer functions are at user’s disposal. All 
these functions could have different forms or could 
be the same functions. The transfer function must be 
a differentiable function. Generally BkPNN uses two 
types of  transfer functions: identical  function or a 
sigmoid function, respectively  

     ; ssf =)( ase
sf

−+
=

1
1)( ,  real sa ,0>

variable  
     The sigmoid function has the main property that 
its derivative can be expressed by using f(s), i.e.  
     .  )](1)[()( sfsafsf −=
This result is very important in BkP algorithms 
based on sigmoid functions.  
     Usually, in applications all the transfer functions 
have the same form.  
     Conversely: The sigmoid function f(s) could be 
obtained by solving the Cauchy problem  

     
2
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     Let us suppose that by the BkP algorithm we 
have to obtain the mapping  .  Mn RR →
     A BkP algorithm uses three types of errors:  

  a. individual error of neuron (processing element 
PE) k , denoted , ;  )(tek NtMk ,1;,1 ==
  b. So layer error at time t  
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The main problem of BkP algorithm is to minimize 
the total error E. The algorithm is based on the 
steepest descent gradient. The gradient is denoted by 
[10]  
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5. Applications in Investment Timing in 

Emerging Markets  
Three different modeling methods, GP, ANN, 

and TSDM are used to test the effectiveness of the 
new metric.  

 
5.1. Financial Applications Using 

Predictability Metric and GP  
Kaboudan [4] proposed the following ten variables 
to explain stock prices pt dynamics: 

2t1t1t2t1t2t1t3t2t1t dji,dji,vol,lp,lp,hp,hp,p,p,p −−−−−−−−−−  
which can be used for GP to evolve the forecasting 
model: 

( )2t1t1t2t1t2t1t3t2t1tt dji,dji,vol,lp,lp,hp,hp,p,p,pfp −−−−−−−−−−= .
The training period for the GP to predict the next 
day's price is the past 50 days. The predictability 
metric ηn, defined below, for a particular day n is 
estimated using a window size Q (Q=20) and shift 
step Τ = 1: 

{ }KK ,,,,, 20
n

20
22

20
21

20
20 ηηηη . 

The new metric is defined as: 
( ) 4/20

30n
20

20n
20

10n
20
nn −−− +++= ηηηηη . 

Thus, it is reasonable to use the predictability metric 
as an indicator of whether a prediction is reliable or 
not. The behavior of the η-metric is obtained by 
comparing the performances of different trading 
strategies: buy and hold, trading based on the 
prediction of GP only, and trading based on both 
the GP prediction and the predictability metric 
(GP/η).The third strategy (GP/η) trades on those 
days in which the stock has a high predictability 
(η>0.6), and does not trade on the other days. This 
idea is link to the fact that a high predictability 
means a high confidence in the accuracy of the 
prediction; therefore only trading on these days can 
potentially reduce the risk and improve the return. 
(GP/η) strategy has fewer trades than the second 
one and gives a much lower variance (and risk). 
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The idea of the new timing strategy is also to look 
at the market portfolio. Many stocks may have low 
predictabilities, but there is a good chance that 
several stocks with fairly high predictabilities can 
be found. Investors can put their money in those 
stocks with the highest predictabilities. Thus, the 
number of trading times increases while the 
advantage of the high average returns per trade 
shown in the previous strategy still being hold. 
Based on this consideration, a new improved 
trading strategy is proposed. 

Choose a set of stocks to be traded on. 
1. For each stock, calculate its Η -metric. 
2. Select N trading stocks that have the highest Η. 
3. Invest equally on the N stocks. Use GP's 
prediction to decide whether to go long/ short for 
each stock with high predictability for the current 
trading day. 

Ideally, if the metric is a perfect 
predictability measure, this figure should show a 
set of monotonically decreasing bars, and only to 
trade on the most predictable stock (N=1) should 
give the highest return. But in practice this is not 
realistic, since stock time series are so complex that 
GP could not capture all the information underlying 
these time series. Statistical errors also distort the 
structure of the figure. On the whole, selecting high 
predictable stocks based on our predictability metric 
to trade gives higher return than trading on all 
stocks. For example, trading on the top 10 high 
predictable stocks gives more than twice the return 
than trading on all the 30 stocks. 

 
5.2. ANN and the Predictability Metric  

For ANN the problem is simpler because even a 
short training set is effectively because η -metric is 
not sensitive to stationary string of data and there is 
no need to divide past data into smaller set. 
Kaboudan's original Η -metric is good enough in 
this particular problem. A feed-forward BP- NN 
containing two hidden layers, each consisting of 3 
neurons, and a output layer that has a single output 
neuron is trained. The trading strategies buy and 
hold, ANN only, and ANN/ η, are used to conduct 
the experiments in the following algorithm:  
1. Choose a set of stocks to be traded on. 
2. For each stock, calculate its Η -metric. 
3. Select N stocks that have the highest Η to trade. 
4. Invest equally on the N stocks. Use GP's 
prediction to decide whether to go long or to go 
short for each stock with high predictability for the 
current trading day. 
Conclusions can be drawn from the plot that 
selecting high predictable stocks based on the new 
predictability metric to trade gives higher return 
than trading on all stocks. ANN gives higher return 
than GP on average and the shape of the ANN plot 
is also closer to the ideal case. ANN has better 

search ability than GP in the application of stock 
market predicting.  

 
6. Other nonlinear time series 

modeling approaches  
6.1. Fast Evolutionary Programming  

FEP was proposed by Rao, Chellapilla to optimize 
the parameters of a reduced parameter bilinear 
model (RPBL). The RPBL model [21] is capable of 
effectively representing nonlinear models with the 
additional advantage of using fewer parameters 
than a conventional bilinear model. FEP, which can 
be used to determine RPBL model structure, is 
shown here in this section to have reasonable 
optimization performance. In comparison with 
conventional evolutionary programming, FEP 
evolves RPBL models with lower normalized mean 
squared error (NMSE) and also lower model order. 
This approach will be shown to have less 
computational cost and less model complexity when 
compared with GP. However, FEP prediction 
accuracy is lower than GP. 
The time series used in the following experiments 
are scaled to lie between -1 and 1 before modeling. 
The mean square errors (MSEs) and times are all 
averaged over 10 runs, and Σ is the standard 
deviation. 

a) The Mackey-Glass Time Series  
The first time series considered in this study is 
generated by the Mackey-Glass equation. The 
equation for the discretized Mackey-Glass map is: 

( ) ( ) ( )
( )

( )tax
tx

tbxtxtx c −
−+

−
+=+

τ
τ

1
1  

where a=0.1, b=0.2, c=10, and τ=16. The Mackey-
Glass map is seeded with 17 pseudo-random 
numbers, creating a 1200 point series. The first 
1000 points are discarded to remove the initial 
transients. The next 100 points are used as the 
training set and the last 100 points are used as the 
test set. 
Test MSE of FEP shows that FEP is badly over-
trained in this case. Since the Mackey-Glass series 
is a totally deterministic time series, this result may 
imply that GP is more suitable for modeling those 
series with strong signals and weak noise than FEP. 
Even though GP takes about four times longer time, 
it would be the preferred method due to its better 
accuracy.  

b) The Sunspot Time Series 
The second experiment was conducted on the 
yearly sunspot series. Once again, the first 100 data 
points are used as training set and the next 100 
points are used for testing. The results are given in 
Table 6.2. 
In modeling the sunspot time series, the accuracy 
performance between the two methods is similar. 
The GP gives slightly better accuracy, but again, it 
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takes three times as long to compute as the FEP 
method. 

 
Table 6.1 – Results for the sunspot time series 

 
 GP FEP 
Training 
MSE 

2.409×10-

2
4.019×10-

2

Trainσ  6.11×10-3 1.34×10-3

Test 
MSE 

4.582×10-

2
5.765×10-

2

Testσ  1.582×10-

2
4.23×10-3

Time 
(sec) 

205.1 70.1 

Timeσ  28.1 4.4 

 
c) Stock Prices Time Series 
The results from two arbitrarily selected 

stock time series are similar to the sunspot results. 
The two methods give similar error in both training 
and testing, but the GP is more time consuming. It 
was noticed that the results generated by FEP in 
each trial are consistent, but this is not the case for 
GP. There are larger variances in both GP's MSE 
and time. One interesting observation in the 
experiments is that as the generations increases, the 
models evolved by FEP tend to become simpler 
while those evolved by GP always become more 
complex (measured by the total number of nodes in 
the GP tree). This explains why GP is not as 
consistent as FEP. As the GP runs the learned 
model becomes more complex. This means that 
more of the solution space is being explored. Note 
the space of functions explored by the GP is much 
larger than the function space searched by the FEP. 
Thus as the GP runs it will encounter more local 
minimum in each generation. In the experiments, 
the best solution is always found by GP. This also 
suggests that GPs have relatively stronger search 
ability. 

In these two stock time series, FEP shows 
better performance in both accuracy and 
computation time than GP. But as mentioned 
previously, the solutions found by GP have a fairly 
large variance compared with FEP. This is because 
that GP is more likely to fall into a local minimum 
and generate poor solutions. The results of GP 
could be improved further with throwing away 
these bad solutions. To demonstrate this, the 50% 
solutions that have low training MSE are kept for 
testing, and the remaining 50% of the high error 
solutions are discarded. The results after this 
process are shown below in Table 6.5. It can be 
seen that GP has better accuracy performance that 
FEP. 

In conclusion, the GP has been shown to have 

better search ability than FEP, especially when 
dealing with more predictable time series. FEP 
performs better when applied to noisier time series. 
For real world time series such as sunspot time 
series and stock price time series, its accuracy 
performance is similar to GP, but with less 
computational effort. 

However, in the financial applications, the 
accuracy performance is much more important than 
computational performance. Therefore, GP is 
considered to be a better modeling approach in this 
particular application. FEP may be more useful in 
some other applications where the computation 
time is more important.  

 
6.2. Time Series Data Mining (TSDM) 
TSDM adapts and innovates data mining 

concepts to time series analysis. The focus is on 
characterizing and predicting events. It does not 
require the time series to be stationary and it 
overcomes the limitations of traditional methods of 
requiring normality and independence of the 
residuals in the time series. 

In literature is shown that TSDM is effective 
in recognizing patterns contained in stock price 
time series; the patterns found in the training time 
series also exist in the test time series, but TSDM 
could also find patterns in a pure noise time series 
in the training stage. This fact leads to the result 
that the TSDM method found events in the 
reshuffled time series no worse than in the original 
time series. The η –metric is not applicable to 
TSDM because it can hardly tell the differences 
between the original time series and the reshuffled 
one. Another attempt is to use the probability value 
α as a possible predictability metric, where α is the 
probability to reject the test hypothesis that the set 
of eventnesses associated with the temporal pattern 
cluster is different from the set of eventnesses not 
associated with the temporal pattern cluster [5]. 
The TSDM method takes advantage of some kind 
of predictability information of a time series, and 
thus the attempt of trying to build predictability 
metric on top of it could not do any better. 

 
 
 

7. Conclusions 
This paper makes an original contribution to the 
field of time series analysis and forecasting by 
developing a new time series predictability metric 
and studying its applications in financial time series 
forecasting. This new time series predictability 
metric was developed based on the Kaboudan η –
metric but overcomes the main disadvantages of 
the pure η -metric method. It also provides a new 
feature, which shows how the predictability changes 
over different subsequences in a time series. 
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The new metric can be built on top of many time 
series modeling methods and improves their 
performance in time series forecasting. Successful 
attempts have been made with GP and ANN in the 
application of stock time series prediction. 
It was demonstrated that the new metric has 
successfully determined the difference between 
different kinds of time series including 
deterministic time series, white noise time series, 
deterministic plus noise time series, random walk 
time series and stock price time series. This feature 
is used to develop a new stock trading strategy, 
which evaluates the predictability metric for a set of 
stocks, and trades on those stocks with relatively 
high predictability. The results showed that 
combining the predictability metric and time series 
modeling technique generate better return than 
without using the predictability metric. 
Besides GP and ANN, two other modeling 
techniques, Fast Evolutionary Programming (FEP) 
and Time Series Data Mining (TSDM), were 
considered as modeling methods. FEP has worse 
accuracy performance than GP, is not and there is 
no good way to combine TSDM with the 
predictability metric. Therefore, these two 
techniques were not used in the trading 
experiments. 
Possible future work of this research includes more 
robust statistical analysis of the results, study of the 
Η -metric for other time series modeling techniques, 
further empirical studies, and theoretical evaluation 
of the metric. By doing these researches, the current 
predictability metric may be generalized so that it 
does not only apply for one specific modeling 
method. 
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