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Abstract: - In the present paper there is presented a solution with linear boundary elements of lagrangean type 
for the singular boundary integral equation obtained by an indirect technique with vortex distribution for the 
bidimensional compressible fluid flow around bodies. The singular boundary integral equation the problem is 
reduced at is formulated in terms of primary variables-the components of the velocity on the boundary.  

Numerical solutions for the components of the velocity and the local pressure coefficient are obtained, for 
different types of obstacles, with some computer codes made in MATHCAD, based on the method exposed. 
For some particular cases, when analytical solutions exist a comparison study between the numerical solutions 
and the exact ones is also done. It can be seen, from the graphics obtained, that the numerical solutions are in 
good agreement with the exact solutions of the problem.  

The paper is also focused on a comparison study between the numerical solutions obtained when the indirect 
method with sources distribution is used and the numerical solution presented in this paper when boundary 
elements of same type are used for solving both singular boundary integral equations.  
 
Key-Words: - Compressible fluid flow, boundary element method, vortex distribution, linear boundary 
elements 
 
 
1. INTRODUCTION 
For solving boundary values problems for systems 
of partial differential equations different numerical 
methods can be used. Most of them are able to find 
the solutions by using the differential equations as 
they are given, without any further mathematical 
manipulation. They approximate the differential 
operators in the equations by simpler ones valid at a 
series of nodes within the region, like the finite 
difference method, or they represent the region itself 
by finite elements which are assembled to provide 
an approximation of the system involved, like the 
finite element methods. 

The Boundary Element Method (BEM), also 
known as the Boundary Integral Method, is a 
modern numerical technique which can be included, 
together with the Finite Element Method, in the 
large class of Galerkin methods. These are a class of 
methods for converting a continuous operator 
problem to a discrete problem. In principle, this is 

done by converting the equation to a 
. 

weak 
formulation

There exist two principal techniques of applying 
BEM method:  

• the direct BEM  method;  
• the indirect BEM method.  

Both of these methods offer the principal 
advantage of the BEM over other numerical 
methods - the ability to reduce the problem 
dimension by one. This property is advantageous as 
it reduces the size of the system the problem is 
equivalent with, and so improves computational 
efficiency.  

When solving a problem with this method two 
important steps have to be made: first, we must 
obtain an equivalent boundary formulation for the 
problem involved, in fact a boundary integral 
equation or a system of boundary integral equations, 
and then, this boundary integral equation which 
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usually is a singular one must be solved.  
For solving the boundary integral equation many 

types of boundary elements can be used: constant, 
linear quadratic or higher order boundary elements.  

The Boundary Element Method reduces the 
problem to a system of linear equations (see [1], [2], 
[3]), and further the problem can be solved with a 
computer. 

The aim of the paper is to solve the problem of 
the compressible fluid flow around an obstacle  
using a boundary element approach based on the 
indirect method with a vortex distribution, and to 
solve the singular boundary equation that results 
with linear isoparametric boundary elements of 
Lagrangean type.  

 
 

2. Advantages brought by applying 
BEM with vortex distribution 
The problem has been studied by many authors, 
with different kinds of techniques. There have been 
made different assumptions for simplifying the 
mathematical model of the problem. Some early 
techniques deal with the case of the incompressible 
fluid flow and use linear equations, linear boundary 
conditions and sometimes the boundary condition 
was satisfied not on the boundary but on the chord 
of the profile.  

By applying the BEM to solve this problem only 
the first assumption is still use. So the BEM uses the 
nonlinear boundary condition which is satisfied on 
the obstacle’s boundary, not on its chord.  

The BEM was first applied only for the 
incompressible case and the boundary integral 
formulation was obtained in terms of potential 
function or stream function. The measures of 
interest for the problem, like the velocity for 
example, were obtained after evaluating the 
derivatives of the unknowns of the problem, and so, 
new errors were introduced at this stage.  

The BEM with vortex distribution, presented in 
this paper, besides the advantages brought by the 
BEM, offers also the advantage that deals with the 
compressible case and leads to a boundary 
formulation of the problem in terms of primary 
variables-the components of the velocity field –
eliminating so the errors that could appear by 
evaluating the derivatives, and bringing so more 
accuracy to the numerical solution.  

We first present the problem to solve: a uniform, 

steady, potential motion of an ideal inviscid fluid of 
subsonic velocity i∞ ∞p ∞U , pressure and density ρ  
is perturbed by the presence of a fixed body of a 
known boundary, noted C, assumed to be smooth 
and closed. We want to find out the perturbed 
motion, and the fluid action over the body.  

Denoting by v  the perturbation velocity (u, v its 
components along the axes) and using 
dimensionless variables we have the following 
mathematical model:  
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with the boundary condition:  
 

    on C,              (2) 

 
where n  is the normal unit vector outward the 

fluid, 21 M−=ββ  has the usual signification, , 
and M the Mach number for the unperturbed 
motion. 

It is also required that the perturbation velocity 
vanishes at infinity:  

                       0lim =
∞

v .   

 
               

 3. The boundary integral equation - 
vortex distribution 
The fundamental solution of vortex type is the 
solution of the following system (see [6] ): 
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Its name comes from the fact that the perturbation 

produced by the presence of δ appears in the second 
equation of (1), equation which expresses the fact 
that the perturbed motion is irrotational, and it has 
the following expression (see[6]): 
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Approximating the boundary with a continuous 

distribution of such fundamental solutions, having 
the unknown intensity ( )xg , the components of the 
perturbation velocity for a point situated in the fliud 
domain are first found. They are given by the 
formulas: 
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For obtaining the components of the perturbation 

velocity we must take the limit of the above 
integrals for 0x→ξ , a regular point on the 
boundary. As it can be observed, the above integrals 
are singular for such points.  

It is necessary to use the concept of the Cauchy 
Principal Value of an integral for dealing with the 
singular integrals see for example [10].  

This concept is defined in many books and its 
definition is very simple and natural.  

 

     
Fig.1. 

For evaluate the limit of an integral that has in 

0x a singularity we have to isolate this point with a 
circle of a very small radius, noted ε , that intersect 

the considered boundary along the arc, noted c . 
 So we have: ∫∫ ∫= + . 

− cC cC

0→ε , the integral If, for ∫
−cC

tends to a finite 

limit, then the limit is called the CPV of the integral. 
Noting with the prim sign the CPV of an integral, 
we have the relation:  
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Assuming that g is a function on C, in 
[6] is obtained an integral formulation for the 
problem. the components of the perturbation 
velocity for a regular point on the boundary are 
found. They are given by the following expressions: 
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where are the components of the normal unit 

vector outward the fluid evaluated at Cx ∈0 . 
Using the boundary condition the singular 

boundary equation is deduced and has the following 
form:  
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 with the same notations as before.  

The goal of this paper is to solve the singular 
boundary integral (4) using boundary elements that 
offer a global continuity for the unknown of the 
problem, so for the unknown intensity g. 

For solving integral equations method of 
successive approximation,  orthogonal polynomials, 
or Krylov subspaces can be used for example. In 
case of solving singular boundary integral equations 
or more general, singular boundary integro-
differential equations, approximate solutions can be 
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obtained by using the collocation method as in 
[4]and [5]. 

For the singular boundary integral equation (4) in 
[8] a collocation method is used and good numerical 
results are obtained. 
 
4. Linear boundary elements for 
solving the singular boundary inegral 
equation 
In this paper, in order to solve the singular boundary 
integral equation (4) we  use linear isoparametric 
boundary elements of Lagrangean type (see [1], [2], 
[3]).  

We choose N nodes on the boundary, so on C, and 
we approximate the boundary with a polygonal line 
having the segments , i=1,N and the 

extremes:
iL

( )11, ii yx  and  ( )22 , ii yx  in a local 
numbering system.  

We have relations:  
                ( ) ( ) 11,,, 1

1
1

1
22 −≤≤= ++ Niyxyx iiii  

and  
         ( ) =22 , NN yx ( )1

1
1
1 , yx ,  

contour C being closed.  
 
 
 

 
 

 
Fig.2. 

 
 
An isoparametric boundary element uses the same 

shape functions for local describeing theunknown 
and the geometry of the element.  

For describeing the geometry of a boundary 
element we use a local system of coordinates which 
has the origin in the first node of an element , and so 
we have the relations: 
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where 21,ϕϕ  are the shape functions given by: 
 
                 ( ) ( tttt =−= 21 ,1 ϕϕ ) .          (6) 
 

Using isoparametric boundary elements we have, 
for the unknown g, the local representation: 

 
              ,             (7)   2211 ϕϕ ii ggg +=
 

where  are the nodal values of the unknown, 
it means the values of g at the extremes of the 
boundary element , in the local numbering.  

21, ii gg

iL
These values satisfy the relations: 
 , and  . 11,1

1
2 −≤≤= + Nigg ii

1
1

2 gg N =
For simplifying the writing we shall not use the 

prim sign to specify that an integral must be 
understand in its Cauchy sense. For 

Njxx j ,1,1
0 =∀=  in equation (4) we obtain an 

algebraic system of N equations each of them of the 
following form:   
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5. Coefficients evaluation 
With the notations: 
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we get the following equivalent form for (8): 
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After doing some calculous we get the following 

relations for the above coefficients: 
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With  we have  noted the following 

integrals: 
2,1,0, =kIk
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For the components of the the normal unit vector 

we use the relations:  
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A computer code can be use to evalute these 

integrals but, for limitting the errors that appare 
because of the numerical approach, the nonsingular 
integrals are computed analitycally and for the 
singular ones the definition of the Cauchy Principal 
Value is used.  

a) The nonsingular case 

For 1−≠ ji  when Nj ,2=  and Ni ≠  when 
1=j , we get the following expressions: 
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b) The singular case 

For 1−= ji ( )Nj ,2=  and for Ni =  
when 1=j , so for the singular integrals that appear 
we get: 

 210
1
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Achieving this stage we can observe an important 

aspect: all the coefficients in (10) can be analytically 
evaluated and they depend only on the coordinates 
of the nodes chosen for the boundary discretization. 

Returning to the global system of notation, so 
considring that: 

1,11
1

1
2 −=== ++ Niforggg iii , , 1

1
1

2 gggN ==
and noting: 
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we deduce the following equivalent expression for 
system (10): 
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For evaluating the singular integrals that appeare 
when solving second order elliptic equation of 
Poisson type, for the three dimensional case, with 
Boundary Element Method, an approximate 
technique based on the auto solid angle evaluation 
can be used as in [11]. 

6. Evaluating the nodal values of the 
velocity’s components and of the local 
pressure coefficient on the boundary 

After solving this system and finding the nodal 
values for the unknown function, in fact the nodal 
values of the vortex intensities, noted Nigi ,1, = ,  
the components of the velocity on the boundary (for 
the node 1

jx , Nj ,1= ) can be evaluated starting 
from formulas (3). 

With the same notations as before we get the 
following expressions: 
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We can compute the fluid velocity for different 

poi.nts of the fluid domain too using the 
discretizated expressions of (3) .  

Regarding the fluid action over the body, we can 
evaluate the local pressure coefficient, noted , 

using the relation: 
pc

 
uvuc p 222 −−−= .                (20) 

 
This coefficient is one of great importance for 

the problem because it is used to obtain the lift 
force. It is known that for profiles with smooth 
boundary the lift force doesn’t appear because of the 
same values of the local pressure coefficient on the 
intra and extrados of the profile.  

It is important to specify that all the coefficients 
in system (17) have analytical expressions and 
therefore no errors are introduced for their 
evaluations. All these coefficients depend only on 
the coordinates of the nodes used for the boundary 
discretization, and so, it can be use a computer code 
to solve the problem.  

7. Numerical results and conclusions 
For solving system (17) and for evaluating the 

fluid velocity and the local pressure coefficients 
there is developed a computer code in MATHCAD 
that uses relations (18), (19), (20). These numerical 
solutions are compared with the exact solutions that 
exist for the particular case of a circular obstacle and 
an incompressible fluid (M=0).  

In [7] the bidimensional problem of the 
incompressible fluid flow around a circular obstacle 
is exactly solved. The expressions of the 
components of the perturbed fluid velocity are 
obtained and they are given by the following 
relations:  

            θθ 2sin,2cos ∞∞ −=′−=′ UvUu  
For the dimensionless components we get:  
            θθ 2sin,2cos −=−= vu ,    (21)   

and further, for the local pressure coefficient, the 
following expression: 
 

             θ2cos21+−=cp .                (22) 
 
Another computer code gives us the solution for 

this case. Both programs can be run for different 
number of nodes used for the boundary 
discretization.  
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For the case when we use 20 nodes for the 
discretization the solutions obtained are represented 
in the following graphics.  

In Fig. 3. there are represented the values 
obtained for the velocity component along the Ox 
axis. In Fig. 4. there are represented the values 
obtained for the velocity component along the Oy 
axis. 

The pressure coefficient is represented in Fig. 5. 
The numerical solution is in good agreement with 
the exact one.  

We can verify with this graphic a well known 
result too: the circular obstacle is a non-lifting 
profile because of the local pressure coefficient 
symmetry. For corresponding nodes on the upper 
and the lower boundary it takes the same value. As 
we know this is a consequence of the fact that the 
analyzed profile has a smooth boundary.  
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Fig. 3. The velocity along the Ox axis: case of 

vortex distribution with linear boundary elements 
and the exact solution. 
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Fig. 4. The velocity along the Oy axis: case of 

vortex distribution with linear boundary elements 
and the exact solution. 
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Fig. 5. The local pressure coefficient for the case 

of vortex distribution with linear boundary 
elements, and the exact solution. 

 
As we can see from the graphics the numerical 

solutions are in good agreement with the exact 
solution, and a small number of elements (20) is 
sufficient for obtaining satisfactory results.  

As it is natural the numerical solution is 
influenced by the number of nodes chosen for the 
boundary discretization. We can observe this from 
the following graphics where the nodal values of the 
local pressure coefficient are performed for different 
number of nodes on the boundary. There were 
considered 10, 15, 25, and 30 nodes for the 
boundary discretization. 
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 Fig. 6. The local pressure coefficient for the case of 
10 nodes: numerical solution and exact solution. 
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Fig. 7. The local pressure coefficient for the case 

of 15 nodes: numerical solution and exact solution. 
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Fig. 8. The local pressure coefficient for the case 

of 25 nodes: numerical solution and exact solution. 
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Fig. 7. The local pressure coefficient for the case 

of 30 nodes: numerical solution and exact solution. 
 
As expected, better results are obtained when 

using more nodes on the boundary, but the results 
are very good when using 20, 25 and 30 nodes. For 
better observing the numerical solution 
improvement brought by the growth number of 
nodes we consider in Fig. 8 the maximum values for 

the errors that appear in each of the above cases. We 
notice that these values decrease with the growth of 
the nodes number. 
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 Fig. 8. The maximum errors for 10, 15, 20, 25 and 
30 nodes on the boundary. 

 
We can also see from the graphic that a number of 
nodes bigger than 20 for the boundary discretization 
does not lead to a substantial improvement so much 
that to justify the computational effort. 

It appears reasonable to expect better results by 
using higher order boundary elements for solving 
the singular boundary  integral equation because 
they allow a better approximation of the geometry,  

In paper [9] the boundary integral equation, 
obtained as an equivalent form for the involved 
problem, by applying the indirect method with 
sources distribution of unknown intensities, is 
solved with linear isoparametric boundary elements 
of Lagrangean type.   

In the same paper the numerical solution is 
compared to the exact one for the same particular 
case: the circular obstacle and the incompressible 
fluid, and there were obtained good results. For the 
boundary discretization there were also used 20 
nodes.  

In the following paragraphs the numerical 
solution obtained in this paper is compared to the 
exact one, and to the one obtained in case of sources  
distribution, for the  mentioned particular case-the 
circular obstacle. The comparison study is made 
through the local pressure coefficient, cp . 

In the following graphics we perform the exact 
nodal values of cp and the numerical ones obtained  
with  sources distribution and vortex distribution 
and the errors that appear in each case in order to 
see which of the two numerical solutions offers a 
better result. 
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Fig. 9. The local pressure coefficient: exact 

solution, sources distribution and vortex 
distribution. 

 
The errors that appear are represented in the 

following graph. Because of the symmetry of the 
profile the numerical solution is also symmetrical 
and so the errors are.  
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Fig. 10. The errors between the exact nodal values 

of the local pressure coefficient and the numerical 
ones obtained: with vortex distribution (error v) and 
sources distribution (error s). 

 
As we can see the errors obtained when the 

obstacle’s boundary is assimilated with a vortex 
distribution are smaller than the errors obtained in 
case of the sources distribution for many nodes (12 
from 20 nodes) and also there is a big difference 
between the two maximum errors values obtained in 
these cases. This can be better notice from the 
following figure. 
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Fig. 11. The maximum errors for the case of 

vortex and sources distribution. 
 
The numerical results presented in the above 

paragraphs show that the indirect boundary element 
method with vortex distribution and linear boundary 
elements offers for the problem of the compressible 
fluid flow around an obstacle a better solution than 
the one that uses a sources distribution and linear 
boundary elements, and very good results for a quite 
small number of discretization nodes. 

With the same computer code based on the 
method presented in this paper, numerical solutions 
can be obtained for any kind of compressible fluid 
flows, for different values of Mach number, not only 
for the incompressible case, and for other kinds of 
obstacles with smooth boundaries too.   
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