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Abstract: The symmetry analysis of differential equations in the context of Lie point and 

nonlocal symmetries is rich in the literature. In this paper we present the computation of 

the exact symmetry transformations of dynamical systems from their reduced systems in three 

dimensions, using the Kepler problem as vehicle. We also note that this computational technique 

is applicable to systems that can be reduced to couple oscillator(s) and a conservation law. 
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1.  Introduction 

It is well known that symmetries in 

general and in particular Lie point symmetry 

analysis are formidable tools for finding 

solution to differential equations (ordinary or 

partial differential equations)[1,2,34,5]. Since 

Lie’s theory and more recent works/researches 

[2,4,6,7,8,9,10] in the subject, emphases are 

placed on the infinitesimal generators of the 

symmetries of these differential equations. 

These may be due to the consequences 

associated with the actual computational efforts 

and complicities that are involved in obtaining 

the Lie symmetry transformations (Flows) of the 

dynamical systems involved, given the fact that 

some symmetry transformations  of these 

dynamical systems are nonlocal in their 

representations.[11,10,9,8] More so, the 

determinations of the symmetries of most 

Physical dynamical systems actually posed 

significant challenges in the literature [10,11,12] 

as in the content of understanding  their Physical 

properties, visa vise their constants of the 

motion, first integrals, linearization and orbit 

equations. Lie’s theory actually involved the 

usage of one-parameter group of 

transformations which map solutions of 

differential equations to solutions and that such 

groups of transformations are invariants. The 

use of infinitesimal generators with their 

prolongations are vital to the Lie algorithm for 

finding the infinitesimal generators of the 

symmetries, however the prolongation formulae 

are very complicated [1,2,3,4] for differential 

equations of order greater than two and with n-

dimensional ( 2>n ) dependent and independent 

variables. The Lie method involves the action of 

the prolongation of the infinitesimal symmetry 

generators on the differential equations (nth 

prolonged infinitesimal generator acts on nth-

order differential equation) which leave the 

differential equation invariant. Then this action 

of the prolonged infinitesimal generator on the 

differential equation resolved into systems of 

partial differential equations with the 

infinitesimals as dependent variables, which are 

easily solved for the infinitesimals by the 

method of superposition.    Noether theory is 

significant in the literature in the aspect of 

variational symmetries as it provided a 

straightforward link between symmetries and 

their constants of the motion (first 

integrals).[1,2,3] It is also well known that in 

the case of the Kepler problem the Neother 

symmetries (could only account for five 

variational symmetries) are subset of the Lie 

symmetries obtained in the literature (by Krause 

(1994), Nucci (1996)).  The events that followed 

the analysis of complete symmetry groups of 

differential equations brought to the fore the 
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reduction of order of dynamical systems to 

system of oscillator(s) and conservation law(s) 

which are easily solvable for Lie point 

symmetries of the reduced system using the Lie 

algorithm and subsequent backward 

transformations to symmetries in the original 

variables, most of which are nonlocal 

symmetries are well known in the 

literature.[10,11,13,21,22] The reduction 

technique revolutionized the entire symmetry 

analysis although it did not amount to deviation 

from the original idea of Lie’s but it explicitly 

exposed the importance of nonlocal symmetries 

as the bases for the actual integrability of 

differential equations as there exists at least one 

known differential equation without a single Lie 

point symmetry but which is completely 

integrable.[7,11,12] The reduction of order 

algorithm reduced dynamical systems to 

systems of oscillator(s) and conservation laws, 

which admits Lie algorithm for determination of 

their symmetry generators. The applicability of 

the reduction of order algorithm is formidable 

for determining the Lie symmetry group of 

dynamical systems [6, 9, 10, 11,13]. We note 

here that the literature refers to the vector fields 

of the infinitesimal generators as symmetries. 

We have recently reported [14,26,27] that the 

exact symmetries of dynamical systems which 

are different from vector fields of the 

infinitesimal generators of dynamical systems 

could be accurately computed from the Lie 

symmetry generators of their reduced systems 

obtained by the reduction of order algorithm. 

We had also shown that one could use 

analogous (Quasi-Ermanno-Bernoulli) constants 

obtained from the Hamilton vector of dynamical 

systems instead of the Ermanno-Bernoulli 

constants to reduce dynamical systems to 

systems that admit Lie algorithm.[14,26] In this 

paper we present the actual computations of the 

exact symmetry transformations of the Kepler 

problem. We shall only note that the same is 

true for generalized Kepler problem and the 

Kepler related problems such as MICZ for 

instance. In section 2, we present basic 

definitions that are crucial to the understanding 

of the existing method of Lie, which also stand   

as the base for our discussions. In section 3 we 

shall give the computation of the exact 

symmetry transformations of the Kepler 

problem in two-dimensions while in section 4 

we treated three-dimensional case of the Kepler 

problem. In section 5 we presented concluding 

remarks. 

 

2.  Basic definitions and concepts  

Let XXT →: be a one-to-one, and 

onto mapping (transformation) defined on a sub-

manifold MX ⊂ . The totality of such 

transformations )(Mτ form a group where the 

composition of mappings plays the part of a 

group operation and the identity transformation 

is designated MI . The point ),( tx to point 

),( tx transformation defined symmetry 

transformation in general conceptualization. If 

the point transformation depends on a group 

parameter iα  such that the point );,( αtx is 

transformed to the point );,( αtx  where 

)...,,( 21 nααα=α , we have a parameter-

dependent symmetry transformation. By this we 

mean the following symbolic transformations 

               );,( αtxtt = , );,( αtxxx = ; 

               );,();,( αα txxtxxx == ,          (1) 

and for some ),( αααα = , the identity 0α =  

ensured that ttxt =)0;,(  and xtxx =)0;,(  hold 

for the continuous group parameter α . Lie 

theory is centered on one parameter 

transformations which are flows 

         λλλλλ +=),( .  

 

 

2.1 Flows (Lie group of symmetry 

transformations) 

A flow or one parameter group of 

symmetry transformations of a space 

MX ⊂ onto itself is a set of functions 

XXf →:λ  such that the following 

composition and identity maps are respectively 

defined on the space X , 
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           (i)  µλµλ fff o=+  ; 

           (ii) idf =0 on X . 

Theorem1. The map XXf →:λ is a flow if 

and only if there is a vector function V on 

X such that )(xx λf= is a solution of the 

equation  

           )(x
x

V
d

d
=

λ
, xx = when 0=λ . 

Proof: let XXf →:λ be a flow, 

then )]([)( xx µλµλ fff =+ . On differentiating 

this with respect to µ  we have the following 

relation 

)]([)()( xxx λ
µ

µλµλ µλµ
f

d

df
f

d

d
f

d

d
=≡ ++ .     (4) 

Setting 0=µ  in (4) we obtain )(x
x

V
d

d
=

λ
 

where )(xx λf= , 
0

)()(
=

=
µµµ

xx f
d

d
V . 

Conversely, if 

  )(x
x

V
d

d
=

λ
, xx = when 0=λ                    (5) 

then ∫ ′+== ′

λ
λλ λ

0
)]([)( dfVf xxxx ,          (6) 

and        )(0 xx f= . 

But the function )()( xx µλλ += fg is also a 

solution of (5) which satisfies )()(0 xx µfg = . 

Thus    ( ))()( 0 xx gfg λλ = , 

        i.e.          )]([)( xx µλµλ fff =+ . ■ 

If ℜ→XF : is a function then by Taylor’s 

Theorem we have that 

    
0

0 !
)(

==
∑=

λλ
λ

n

nk

n d

Fd

n
F

n

x                              (7) 

But                   ∑ ∑
=

∂
∂

=
∂
∂

=
i i i

i

i

i

x

F
v

x

F

d

xd

d

Fd

0λ
λλ

 

                               WF
x

F
v

i i

i =
∂
∂

=∑            (8) 

So (7) implies  

   ∑
=

==
k

n

Wn
n

xFeFW
n

F
0

)(
!

)( λ
λ

x ,                 (9) 

 and ∑ ∂= iivW  where ),...,,( 21 nvvvV = is 

called the vector field generating the flow λf  

(commonly referred to as the symmetry 

generator). 

 

2.2.1 Illustrative Examples 

(1).    The flow generated by the vector field 

xtV ∂= on },|),{( RtxtxRR ∈=× is given by 

the solution to the equations 

            t
d

xd
=

λ
,  0=

λd
td

 

where ),(),( txtx = when 0=λ , 

i.e. tt = , txx λ+= . So the flow is given by 

 ),(),(),( ttxtxftx λλ +== .                       (10) 

Conversely given the flow λf , the vector field 

generating it is given by 

              xtx tttxf
d

d
∂=∂+∂=∂⋅

=

0),(
0µ

µµ
. 

(2).   The vector field tx txtV ∂+∂= 2  generates 

the flow λf given by the solution of the 

equations tx
d

xd
=

λ
, 2t

d

td
=

λ
. The equations 

respectively give the solutions 

               
t

x
x

λ−
=
1

  and  
t

t
t

λ−
=
1

. 

Thus 

        ),()1(),(),( 1 txttxftx −−== λλ .         (11)   

Conversely, calculating 

      tx txttxf
d

d
∂+∂=∂⋅

=

2

0

),(
µ

µµ
, 

which is the vector field generating the flow. 

 

2.3 Lie groups and Lie algebras  

 

We present some examples of Lie 

groups and Lie algebras for easy appreciation of 

the concepts. 

1). The group of rotations in two-dimensions is 

defined by 

                   }1det,|{)2( 22 === × AIAAASO T .        

(12) The Lie algebra )2(so of )2(SO  is  
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         }0|{)2( 22 =+= × LLLso T .            (13) 

Now let ϕa
a

a
L =









−
=

0

0
 

 ⇒  








−
=

01

10
ϕ , we have the following 

relations 

        I−=2ϕ , ϕϕ −=3 , I−== 24 ϕϕ  etc. If 

)2(SOA∈ then we have that 

 ...4
!4
13

!3
12

!2
1 ++++== LLLLIeA L  

     ...
!4
143

!3

32
!2
1 +−−+= IIaaI aa ϕϕ  

     
ϕ...}{             

...}1{

5
!5
13

!3
1

!4
142

!2
1

−+−+

−−−=

aaa

Ia a

 

                      ϕaaI sincos +=  

                      










−
+








=

0sin

sin0

cos0

0cos

a

a

a

a
 

                  








−
=

aa

aa
A

cossin

sincos
                 (14) 

2). The group of rotations in three-dimensions is 

defined by 

  }1det,|{)3( 33 === × AIAAASO T .            (15) 

     While the algebra )3(so of )3(SO  is defined 

by 

        }0|{)3( 33 =+= × LLLso T .                  (16) 

3). The group defined by 

                         

}1det,            
,|{)1,1( 2

1
2
2

2
1

2
222

==
−=−= ×

AAx
xxxxxASO
.        (17) 

While the algebra is given by 

       )}1,1(|{)1,1( 22 SOeLso L ∈= ×
λ .             (18) 

 

2.4 Lie point symmetry and nonlocal 

symmetry 
The Lie theory of symmetry analysis of 

differential equations is anchored on the shore 

of extended (prolongation) vector fields. 

[4,1,2,3] For a vector field given by the relation 

    xt txtxV ∂+∂= ),(),( ηξ ,                        (19) 

the prolongation of V to the nth order is defined 

by the relation 

 )(
)()( ... nx

n
xxt

nV ∂++∂′+∂+∂= ′ ηηηξ ,     (20) 

where ξξηη )1()( )( ++′−= n

n

n
n xx

dx

d
 ,         (21)   

and )(nη is not the nth derivative of η . The 

invariance of the differential equation under the 

action of the prolonged vector field is well 

known. The general equation of order k denoted 

by 

                  0),...,,( =kxxxtE & ,                     (22) 

and is invariant under the action of the kth 

prolonged vector field )(kV if and only if 

       0),...,,(
0),...,,,(

)( =
=kxxxtE

kk xxxtEV
&

& .        (23) 

The system (23) separates into systems of 

partial differential equations in terms of 

),( txξ and ),( txη  that can be solved by the 

method of superposition of linearly independent 

basis solutions ),( txiξ and ),( txiη so that  

                     xitii txtxV ∂+∂= ),(),( ηξ ,      (24) 

become the infinitesimal generator of the Lie 

point symmetries of (22). It is well known in the 

literature that the totality (dimension) of (24) 

defined the group dimensionality of the Lie 

point symmetry group of (22). When (22) is of 

order one, the totality of (24) is infinite and 

there is no known algorithm of obtaining them, 

while the dimension is less or equal eight if it is 

of order two or more equation. 

 

2.4.1 Definitions 

If the functions ),( txiξ , ),( tyiη  in (24) 

contains integral(s) of the dependent variable, 

the resulting infinitesimal generator is called 

nonlocal symmetry.[11,12.13] One type of the 

nonlocal symmetries is given by 

        xtdtY ∂+∂= ∫ ηξ }{ .                              (25) 

We note also that there are exponential nonlocal 

symmetries if the infinitesimal contained 

exponent of integral(s).[12,15] If the 

infinitesimals ),( txiξ and ),( txiη  in (24) are 

dependent on the derivative of x say 

),,( txx &ξ and ),,( txx &η the resulting infinitesimal 

generator is called contact symmetry.  Note that 
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contact symmetries are also regarded as Lie 

point symmetries. 

   

2.5 Complete symmetry groups 
The concept of complete symmetry 

groups was generally accepted to mean the 

group of symmetries of differential equations 

which completely specify them on till recently. 

In this view Lie identified the symmetry groups 

of second-order differential equations to have 

not more than eight Lie point symmetries that 

specify them completely (any linearizable 

second-order differential equation has the 

maximum eight Lie point symmetry 

group).[16,17,18,19] The literature in this issue 

is very rich, the work of Noether on the Kepler 

problem could only identified five variational 

symmetries ( also found by Lie analysis) [1,2,3] 

which could not specify the Kepler equation of 

motion. So there was a gap of not been able to 

obtain the complete symmetry groups for the 

Kepler problem in the sense of Lie. More 

recently, it was shown [7,20]
 
that complete 

symmetry groups and algebras are not unique 

and the concepts of maximality and minimality 

of symmetry groups and algebras came to the 

fore. However for the purpose of this paper we 

intend to confine our discussion to emergence of 

nonlocal symmetries as by-product of the quest 

for complete symmetry groups of the Kepler 

problem for which the forerunner is Krause 

(1994) [ we refer the interested reader to 

references in ref. 11,10,13], who obtained the 

additional three symmetries (nonlocal type) and 

together with the five point symmetries obtained 

by either Noether theorem or Lie theorem, was 

able to specify the equation of motion of the 

Kepler problem completely.  

 

3. Exact symmetry transformations of Kepler 

problem in two-dimensions 

We firstly review the Kepler problem to 

note some of its interesting properties as 

following. The Kepler problem has the equation 

of motion given by 

         0
3
=+

r

x
x

µ
&& , x=r .                             (26) 

The system (26) possess the angular momentum 

vector Lwhere  

              xxL &^= .                                       (27) 

The vector product of (26) with (27) yields the 

relation 

              ( ) 0
^

^
3

=+⋅
r

Lx
Lx

µ
& .                      (28) 

Using rr rr eex &&& +=  we have that rr eLx &3^ −= , 

so that (28) becomes 

               ( ) 0^ =−⋅ reLx && µ ,                         (29) 

and on integrating (29) we obtain the second 

conserved quantity called Laplace-Runge-Lenz 

(LRL) vector J given by 

                ( ) JeLx =− rµ^&                           (30)  

The third conserved vector of (26) is the 

Hamilton’s vector obtained by Hamilton in 

1845; videlicet 

                  r
L

eLxK ^ˆ
µ

−= & , L=L .          (31) 

The analysis of system (26) for its Lie 

point symmetries is very rich in the literature. It 

is well known that Lie method produced five 

Lie point symmetry generator which was also 

demonstrated by Noether method of variational 

symmetry theory.[10,11,13] The first five Lie 

point symmetry generators are given as follows 

  tX ∂=1 , rt rtX ∂+∂=
3

2
2 ,     

2
3

3
23 xx xxX ∂−∂= ,

3
1

1
34 xx xxX ∂−∂= , 

1
2

2
15 xx xxX ∂−∂= .                                    (32) 

While the three additional nonlocal symmetry 

generators [11] are  

rt rxdtxY ∂+∂= ∫ 111 }{2 , 

rt rxdtxY ∂+∂= ∫ 222 }{2 , 

rt rxdtxY ∂+∂= ∫ 333 }{2 ,                             (33) 

where 3
3

2
2

2
1

2 xxxr ++= . One notice that the 

above symmetry generators (32) and (33) 

separate into the following four symmetry 

transformations viz 

            i) Translation symmetries (time and 

special); 

           ii) Dilation also called self similarity or 

scaling symmetries (time and special); 
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          iii)  Rotation symmetries; 

          iv)   Nonlocal symmetries. 

The scaling symmetry 2X  described the 

Laplace-Runge-Lenz (LRL) vector of the 

Kepler problem which is the source of the orbit 

equation of (26).[13,23] However later works  

have established that these nonlocal symmetries 

are attainable by reduction of order developed 

by Nucci [13,21], and more also it is well 

known that the reduction of order process is 

achieved by natural reduction variables of the 

system via the Ermanno-Bernoulli constants 

[21,13,22]
 
and as well as quasi-Ermanno-

Bernoulli constants reported in ref. 14, which 

reduced (26) to a system of oscillator(s) and a 

conservation law. We note that this is applicable 

to a number of dynamical systems. The reduced 

system of (26) using the method of Nucci [13], 

Nucci and Leach [21] and the associated Lie 

symmetry generators are given by (34) and (35) 

respectively, 

         011 =+′′ vv ,    02 =′v                            (34)                                                                                                

where µ−= −12
1 rLv ; θ&2

2 rv =  and 

  221 ∂=Γ v ; θ∂=Γ2 ; 113 ∂=Γ v ; 14 ∂=Γ ±
±

θie ; 

   ][ 11
2

6 ∂±∂=Γ ±
± ive i

θ
θ ;    

][ 1
2
118 ∂±∂=Γ ±

± ivve i
θ

θ                               (35) 

where ii v∂∂=∂ / . Obtaining the symmetry 

generators of the dynamical system (26) entails 

the backward translation from the symmetries 

(35) of the reduced system (34) variables to the 

original variables of system (26), the scheme for 

doing this is available 
24
 and many of which are 

largely nonlocal symmetries in the original 

variables. We only list the symmetries in the 

original variables below: 

           rt rt ∂+∂=Γ 231 , 

           θ∂=Γ2 , 

           [ ] ( ) rt LrrtLrdt ∂−+∂−=Γ ∫ 22
3 2 µµ , 

           [ ] r
i

t
i erdtre ∂+∂=Γ ±±

± ∫ θθ 2
4 2 ,                

( )[ ]
( ) θ

θθ

θ

µ
µ

∂+∂++
∂+=Γ

±±

±
± ∫

i
r

i
t

i

eLeLrr

dteLr
2222

22
6

3               

32

( )( ){ }[ ] t
i dterrirLr ∂+−±=Γ ±

± ∫ θθµθµ 23233
8 22 &&&   

( )( )[ ]
( ) θ

θθµ
θµθµ
∂−+

∂+−±+
±i

r

erL

rrirLrr
232

23233

                 

2
&

&&&
           (36) 

in which the factor 2L has been included to 

make the expressions look simpler.       

We now calculate the exact symmetry 

transformations of (26) from (35) as following. 

For the vector field 11∂vα where α is arbitrary 

constant the flow of this vector field is the 

function ),,(),,( 2121 θθ vvvvf =  where  

   1
1 v

d

vd
α

λ
=  ; 02 =

λd
vd

; 0=
λ
θ
d

d
.                   (37) 

Solving system (37) we have the following 

          11 vev αλ=   ;   22 vv = ; θθ = .              (38)                          

The second equation in (38) implies that 

LL = while the first equation implies that  

             )( 1212 µµ −=− −− rLCrL , 

              )1( 22 rLCrL
r

r
−− −+= µµ , 

             rHr 1
1
−=  ,                                        (39) 

where )1( 22
1 rLCrLH −− −+= µµ , αλeC = . (40)  

From θθ && 22 rr = we have that 

             2
1
−= H

dt

td
                                         (41) 

Equations (40) and (41) constitute the exact 

symmetry transformations of (26) with the given 

generator 113 ∂=Γ v . We note that these 

symmetry transformations are global, that is 

              xx 1
1
−= H .                                        (42) 

We also note that when x is made three-

dimensional, the symmetry transformations (42) 

is also true. For the vector field 22∂vα , we have 

the flow as ),,(),,( 2121 θθ vvvvf =  where 

      01 =
λd
vd

 ;  2
2 v

d

vd
α

λ
= ; 0=

λ
θ
d

d
.               (43) 

Solving system (43) we have the following 

         11 vv =   ;   22 vev αλ= ; θθ = .               (44) 

The second equation in (44) implies 

CLL = while the first equation implies that 

                  µµ −=− −− 1212 rLrL  

               i.e. µµ −=− −− 12122 rLrLC  
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where αλeC = , then 

            2C
r

r
= ⇒ rCr 2=  .                      (45) 

But CLL =  implies that 

    22 rCr θθ && = ⇒
dt

d
Cr

td

d
r

θθ
22 = , 

which implies that 

                  3C
dt

td
= ,                                  (46) 

          i.e.  tCdt 3+= , 

where d is an arbitrary constant. 

Consequently the exact symmetry 

transformations generated by the vector field 

221 ∂=Γ v for the Kepler problem is given by 

equations (45) and (46). If 

)sin,cos(),( 21 θθ rrxx =  denotes the Cartesian 

coordinates of x in the plane of motion then 

θθ =  implies that 

                      xx 2C= ,                              (47) 

which is the global symmetry transformation  

where jix 21 xx +=  is the two dimensional 

Cartesian vector. 

The vector field θα∂  has the flow 

),,(),,( 2121 θθ vvvvf =  where 

   01 =
λd
vd

 ;  02 =
λd
vd

; α
λ
θ

=
d

d
.                 (48) 

Solving system (48) we have the following, 

     11 vv =   ;   22 vv = ; αλθθ += .            (49) 

Since 22 vv = ⇒ LL = we have that 

   µµ −=− −− 1212 rLrL  ⇒  rr = ,           (50) 

and           tt =  .                                         (51) 

While the global symmetry transformations are 

given by xx =  and (51). The rotation symmetry 

transformations are given by xx A= , 

where ))(cos(1 αλθ += rx , 

 ))(cos(1 αλθ += rx ; That is 


















−

−
=








=

2

1

2

1

cossin

sincos

x

x

x

x

αλαλ
αλαλ

x .       (52) 

If the matrix A  is arbitrary it implies that all 

rotation symmetry transformations are ensured. 

Applying the same manner of calculations we 

obtain the exact symmetry transformations for 

the vector field 

i.e. 121 )sincos( ∂+ θαθα           

xx 1
4
−= H ; 2

4
−= H

dt

td
                                    (53) 

where  

           xα ⋅+= −2
4 1 LH λ , λαeC = ,  

           2211 xx αα +=⋅ xα  .                                  

We note here also that this is true for the case 

when x is in three-dimensions. 

    

4. Exact symmetry transformations of Kepler 

problem in three-dimensions 

The reduced system for (26) in three-

dimensions have been known [14,10, 21, 25] 

and is given by 

              011 =+′′ uu  

              022 =+′′ uu                                       (54) 

              03 =′u  

where 

              θθθµ cossin
1

222
1

&&rrLL
r

u −− −






 −= , 

              θφ sin22
1

&&rrLu −−=′ , 

              θθφ cossin21
2

&rLu −= ,                                                      

              θ&21
2 rLu −−=′ .                                  (55) 

               θφ 22
3 sin&ru =   

We have reported [14,27] that the symmetries of 

dynamical systems in three-dimensions can be 

obtained from the Lie symmetries of the 

reduced systems. We list here the Lie symmetry 

generators of the reduced system (26). They 

consist of sixteen generators, one viz 1Γ  for the 

conservation law 03 =′u  and the fifteen Lie 

symmetry generators for the pair of harmonic 

oscillators (54). They are as follows 

             331 ∂=Γ u , kj

jk u ∂=Γ2 , 

             φ∂=Γ3 , j
ij e ∂=Γ ±

±
φ

4 , 

             )(2
5 ∂⋅+∂=Γ ±
± uie i

φ
φ ,  

             )(6 ∂⋅+∂=Γ ±
± uiue j

ij

φ
φ                 (56)     

 where jj ukj ∂∂=∂= /;2,1, and  

                2211 ∂+∂=∂⋅ uuu . 

WSEAS TRANSACTIONS on MATHEMATICS Festus I. Arunaye

ISSN: 1109-2769 457 Issue 7, Volume 7, July 2008



 

The symmetry representations of (56) in the 

original variables are very much complicated 

than that of section 2 above. We now compute 

the symmetry transformation generated by the 

vector field 11
11
2 ∂=Γ uαα for the Kepler 

problem. The symmetry transformation 

generated by this vector field is the 

transformation f given by 

         ),(),( φφ jj ufu = where   

        11 Cuu = , 22 uu = , 33 uu = , 

        φφ = , αλeC =                                     (57) 

from which it follows that  

 11 uCu ′=′ , 22 uu ′=′ , LL =  .                        (58) 

The relations (41) in ref. 14, imply that 

                  1)(sec 2
2

22
2 =′+ uu θ . 

Thus from the invariance of 2u and 2u′  in (56) 

and (58) we note that θθ secsec = ,  

       i.e. θθ = .                                             (59) 

The relations in (55) imply that                                     

   θθθµ cotsin
1

1
2

1
′′−







 −= − uL
r

u .            (60) 

Since L ,θ ′and θcot are invariants of this 

transformation, the first relation in (56) becomes  

  =′′−






 − − θθθµ cotsin
1

1
2 uL

r
                                   

θθθµ cotsin
1

1
2 ′′−






 − − uCL
r

C ,                 (61) 

which reduces to 

 

      






 −=






 − −− 22
11

L
r

CL
r

µµ ;                   (62) 

                  i.e. rHr 1
2
−= , 

where )1( 22
2 rLCrLH −− −+= µµ .  

The relation 22 uu ′=′  in (58) implies that 

                     θθ && 2121 rLrL −− =  

      i.e. 2
2

2

−=






= H
r

r

dt

td
                              (63) 

In view of equations (62), (63) and the 

relations θθ = , φφ =  in (57) and (58) the 

required exact symmetry transformation of the 

Kepler problem in three-dimensions for the 

vector field 11∂uα is given by 

            xx 1
2
−= H ;  2

2
−= H

dt

td
 .                     (64) 

Thus, we hereby depict in the following table 

some of the vector fields with their 

corresponding exact symmetry transformations 

below: 

 

 

Table 1 –Some Vector fields and exact 

symmetry transformations they generate 

Vector fields Exact symmetry transformations 

                         

                                 

12
21
2 ∂=Γ uαα                                 

                                         

  xx 1−= H , 2−= H
dt

td
, where                                                            

[ ])cot1(coscos1 22 θθθθλα ′−+= ecrH .                        

333 ∂=Γ uαα                  

                           
xx 1−= H , 21 −−= HC

dt

td
 

 where  ( ) 11 22 +−= −− rLCH µ  

                                                                

1
1
4 cos ∂=Γ φαα      

The sine part is deductive from this cosine part 

obviously.                         

                                              

 rHr 1−= , 2−= H
dt

td
where 

[ ])sincot(coscos1 1 φθφθφθλα −−+= &&ecrH , 
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We note that the rotation symmetries of the 

Kepler problem in three-dimension are 

obtainable from the vector field 

φαα ∂=Γ3 which has the rotation symmetries 

denoted by xx B= ,B  is a scalar 3x3-matrix. 

That is by setting  

)cos,sinsin,cossin( θφθφθ rrr=x  as the 

spherical coordinates of the motion we have the 

rotation symmetry transformation about the z -

axis as 

  






























 −

=
















3

2

1

3

2

1

100

0cossin

0sincos

x

x

x

x

x

x

αλαλ

αλαλ

.         (65) 

If B is an arbitrary rotation matrix then the 

rotation symmetry is globally defined. 

We report that the exact symmetries of 

the remaining six vector fields are computable 

as well following the same method diligently. 

We note also that the Hamilton vector K for the 

Kepler problem is given by 

[25] )^(12 xLxK −−−= rLµ&  (This is a constant 

multiple of the expression for K given in 

ref.14). This expression for K yields the relation 

[14] 

           φυυ ieiiKKK ±
± ′±=±= )( 1121 ,  

where 

           θθµθυ && cos)1(sin 2
1 rLrr −−+= , 

            φθµυ &sin)1( 2
1 rL−−=′ .                     (66) 

We note that one could consider instead of (54), 

the same system of equations with 1u replaced 

with 1υ , and its Lie symmetries to obtain the 

exact symmetries of the original system.[14]  

 

5. Concluding remarks 

We have demonstrated that the exact 

(actual) symmetry transformations of the Kepler 

problem can be calculated from the symmetries 

of its reduced systems rather than just obtaining 

the symmetry generators (vector fields) that are 

often complicated in their representations as 

they are in their nonlocal symmetry forms (37). 

Hitherto the exact symmetry transformations 

computation as demonstrated above is new. We 

report here that we have devised and utilized 

this computational method to obtain the exact 

symmetries of other dynamical systems that are 

reducible to systems of oscillator(s) and 

conservation law(s). Consequently the 

complicated nonlocal symmetry representations 

of dynamical systems are simply realizable in 

their simple explicit forms as shown using the 

Kepler problem as a vehicle. In our recent 

works the Kepler problem with drag, the 

generalized Kepler problem, the MICZ problem 

and a host of other dynamical systems with 

complicated nonlocal symmetries have proven 

to admit this computational method for 

obtaining their exact symmetries in both two- 

and three-dimensions. These are subject for 

further discussions in upcoming papers.      
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