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Abstract: The symmetry analysis of differential equations in the context of Lie point and

nonlocal symmetries is rich in the literature. In this paper we present the computation of
the exact symmetry transformations of dynamical systems from their reduced systems in three
dimensions, using the Kepler problem as vehicle. We also note that this computational technique
is applicable to systems that can be reduced to couple oscillator(s) and a conservation law.
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1. Introduction

It is well known that symmetries in
general and in particular Lie point symmetry
analysis are formidable tools for finding
solution to differential equations (ordinary or
partial differential equations)[1,2,34,5]. Since
Lie’s theory and more recent works/researches
[2,4,6,7,8,9,10] in the subject, emphases are
placed on the infinitesimal generators of the
symmetries of these differential equations.
These may be due to the consequences
associated with the actual computational efforts
and complicities that are involved in obtaining
the Lie symmetry transformations (Flows) of the
dynamical systems involved, given the fact that

some symmetry transformations  of these
dynamical systems are nonlocal in their
representations.[11,10,9,8] More so, the

determinations of the symmetries of most
Physical dynamical systems actually posed
significant challenges in the literature [10,11,12]
as in the content of understanding their Physical
properties, visa vise their constants of the
motion, first integrals, linearization and orbit
equations. Lie’s theory actually involved the
usage of  one-parameter  group of
transformations which map solutions of
differential equations to solutions and that such
groups of transformations are invariants. The
use of infinitesimal generators with their
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prolongations are vital to the Lie algorithm for
finding the infinitesimal generators of the
symmetries, however the prolongation formulae
are very complicated [1,2,3,4] for differential
equations of order greater than two and with n-
dimensional (7 > 2) dependent and independent
variables. The Lie method involves the action of
the prolongation of the infinitesimal symmetry
generators on the differential equations (nth
prolonged infinitesimal generator acts on nth-
order differential equation) which leave the
differential equation invariant. Then this action
of the prolonged infinitesimal generator on the
differential equation resolved into systems of
partial  differential equations  with  the
infinitesimals as dependent variables, which are
easily solved for the infinitesimals by the
method of superposition. Noether theory is
significant in the literature in the aspect of
variational symmetries as it provided a
straightforward link between symmetries and
their  constants of the motion (first
integrals).[1,2,3] It is also well known that in
the case of the Kepler problem the Neother
symmetries (could only account for five
variational symmetries) are subset of the Lie
symmetries obtained in the literature (by Krause
(1994), Nucci (1996)). The events that followed
the analysis of complete symmetry groups of
differential equations brought to the fore the
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reduction of order of dynamical systems to
system of oscillator(s) and conservation law(s)
which are easily solvable for Lie point
symmetries of the reduced system using the Lie
algorithm and subsequent backward
transformations to symmetries in the original
variables, most of which are nonlocal
symmetries are well known in the
literature.[10,11,13,21,22] The reduction
technique revolutionized the entire symmetry
analysis although it did not amount to deviation
from the original idea of Lie’s but it explicitly
exposed the importance of nonlocal symmetries
as the bases for the actual integrability of
differential equations as there exists at least one
known differential equation without a single Lie
point symmetry but which is completely
integrable.[7,11,12] The reduction of order
algorithm reduced dynamical systems to
systems of oscillator(s) and conservation laws,
which admits Lie algorithm for determination of
their symmetry generators. The applicability of
the reduction of order algorithm is formidable
for determining the Lie symmetry group of
dynamical systems [6, 9, 10, 11,13]. We note
here that the literature refers to the vector fields
of the infinitesimal generators as symmetries.
We have recently reported [14,26,27] that the
exact symmetries of dynamical systems which
are different from vector fields of the
infinitesimal generators of dynamical systems
could be accurately computed from the Lie
symmetry generators of their reduced systems
obtained by the reduction of order algorithm.
We had also shown that one could use
analogous (Quasi-Ermanno-Bernoulli) constants
obtained from the Hamilton vector of dynamical
systems instead of the Ermanno-Bernoulli
constants to reduce dynamical systems to
systems that admit Lie algorithm.[14,26] In this
paper we present the actual computations of the
exact symmetry transformations of the Kepler
problem. We shall only note that the same is
true for generalized Kepler problem and the
Kepler related problems such as MICZ for
instance. In section 2, we present basic
definitions that are crucial to the understanding
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of the existing method of Lie, which also stand
as the base for our discussions. In section 3 we
shall give the computation of the exact
symmetry transformations of the Kepler
problem in two-dimensions while in section 4
we treated three-dimensional case of the Kepler
problem. In section 5 we presented concluding
remarks.

2. Basic definitions and concepts

Let 7T:X — Xbe a one-to-one, and
onto mapping (transformation) defined on a sub-
manifold X « M. The totality of such
transformations 7(M)form a group where the
composition of mappings plays the part of a
group operation and the identity transformation
is designated/,,. The point (x,f)to point
(x,t) transformation defined symmetry
transformation in general conceptualization. If
the point transformation depends on a group
parameter ¢; such that the point (x,f;a)is
(x,t;0) where

transformed to the point

a=(a,,a,..,a,), we have a parameter-

dependent symmetry transformation. By this we
mean the following symbolic transformations
t=t(x,;0), X =X(x,t;0);
X =X(X,05;0) =X(x,5a), (1
and for somed = a(a,a), the identity a =0
ensured that 7(x,£;,0)=¢ and X(x,#,0)=x hold
for the continuous group parameter a. Lie

theory 1s centered on one parameter
transformations which are flows

A AN)=1+2.

2.1 Flows (Lie group of symmetry
transformations)

A flow or one parameter group of
symmetry transformations of a  space
X cMonto itself is a set of functions
f,:X—>X such that the following

composition and identity maps are respectively
defined on the space X,

Issue 7, Volume 7, July 2008



WSEAS TRANSACTIONS on MATHEMATICS

(1) fmﬂ =/ Of,, 5
(i1) f, =idonX .
Theoreml. The map f, : X — Xis a flow if

and only if there is a vector function J on
Xsuch that X=f,(x)is a solution of the

equation
£— V(X), X=xwheni1=0.
dA
Proof: et [, X—>Xbe a flow,

then £, (x) = £, £, (®)].
this with respect to x# we have the following
relation

d _
Efiw (X) =

On differentiating

af,

d A ol
T ™ = ” [fi(0]. (@)

Setting #=0 in (4) we obtain %zV(i)

wherex = f,(x), V(x) = %f:u (X)‘FO

Conversely, if

% =V(X),X=xwhenA =0 5
thenX = £, (x) = x+ [ V[ £, (X)dA’, (6)
and X = f,(x).

But the function g,(x)=f,,,(x)is also a
solution of (5) which satisfies g,(x) = f,,(X) .

Thus g, (x) = /;(g,(x)),

e f,0=/fIf,(0].m
If F:X —>%Ris a function then by Taylor’s
Theorem we have that

A drF
F — 7
(® = % sl (7)
dF d_ oF
But — =) ——=
Z dA Ox, Z 8_1 o
= ZV,- —_ =WF (®)
i axl.
So (7) implies
F(X)= Z WF—e’lWF(x) 9)
n=0 n
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and W =>v0, where
called the vector field generating the flow f,

the symmetry

V=w,v..,v,)I1s

(commonly referred to as

generator).

2.2.1 Illustrative Examples
(1). The flow generated by the vector field

V=t0.on RxR={(x,t)|x,t € R}is given by
the solution to the equations
dx dt

ala
where (x,¢) =(x,t)when1 =0,

i.e. t =t, X =x+ At . So the flow is given by
(xX,t)= f,(x,0) =(x+ At,1). (10)
Conversely given the flow f;, the vector field

generating it is given by

d
afﬂ(x,t)‘ 0=

#=0

10, +00, =10

(2). The vector field V = xt0, +120, generates

the flow f,given by the solution of the

) dx - dt _
equations — = xt , =12
dA da

respectively give the solutions

The equations

and f:;.
1- At

=

Y
Thus
x,0)=f,(x,t)=(1= )" (x,0).

Conversely, calculating

d
Efy(xat)

&y

-0=xt0, +1%0,,
1=0
which is the vector field generating the flow.

2.3 Lie groups and Lie algebras

We present some examples of Lie
groups and Lie algebras for easy appreciation of
the concepts.

1). The group of rotations in two-dimensions is
defined by

SO(2)={4,, | ATA=1,det4=1}.
(12) The Lie algebra so(2)of SO(2) is
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so(2)={L,, | LT +L=0}. (13)
0 a
NowletL:( j:ago
-a 0

0 1
= go:( . Oj’ we have the following

relations

p*=-1, > =—¢, p*=¢> =1 etc. If
A € SO(2) then we have that
A=el =1+L+L 2+ 1 +...

=l+ap—Ltarl -S> <1+

4!
4
—{l-Laz—<i_ 31

+{a—ga*+4a’ -}
=cosal +sinag

_[cosa 0 N 0 sina
Lo cosa —sina 0

cosa sina
A ) ( ' J
—sina cosa
2). The group of rotations in three-dimensions is
defined by
SOQ3)={4,,|ATA=1,detA=1}. (15)
While the algebra so(3)of SO(3) is defined
by

(14)

so(3)={L,,|L" +L=0}. (16)
3). The group defined by
SO(LD) = {A,, | T -5 =xi=x2X (g
= Ax,det 4 =1}
While the algebra is given by
so(1,1)={L,, |e* € SO(1,])}. (18)

2.4 Lie point
symmetry

The Lie theory of symmetry analysis of
differential equations is anchored on the shore
of extended (prolongation) vector fields.
[4,1,2,3] For a vector field given by the relation

V =£&(x,t)0, +n(x,t)0,, (19)

the prolongation of V' to the nth order is defined
by the relation

symmetry and nonlocal
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Vi =&, +00, +1'0, +... 4™ (20)

x(n) 2

where 7 =j—n(77—x'§)+x<"+1>§ , (21)
x}’l

and n™is not the nth derivative of 7. The
invariance of the differential equation under the
action of the prolonged vector field is well
known. The general equation of order k denoted
by
E(t,x,x,..x5)=0, (22)

and is invariant under the action of the kth
prolonged vector field V' ® if and only if

V(’f>E(t,x,5c,...x’f)|E(t”_“ v =0 (23)

The system (23) separates into systems of
partial differential equations in terms of
&(x,t)and 7n(x,t) that can be solved by the

method of superposition of linearly independent
basis solutions &, (x,¢)and 7,(x,t) so that
Vi=¢(x,0)0, +1,(x,0)0,, (24)

become the infinitesimal generator of the Lie
point symmetries of (22). It is well known in the
literature that the totality (dimension) of (24)
defined the group dimensionality of the Lie
point symmetry group of (22). When (22) is of
order one, the totality of (24) is infinite and
there is no known algorithm of obtaining them,
while the dimension is less or equal eight if it is
of order two or more equation.

2.4.1 Definitions
If the functions &, (x,t), n,(y,t) in (24)
contains integral(s) of the dependent variable,
the resulting infinitesimal generator is called
nonlocal symmetry.[11,12.13] One type of the
nonlocal symmetries is given by
Y ={[ &0, +no, . (25)
We note also that there are exponential nonlocal
symmetries if the infinitesimal contained
exponent of integral(s).[12,15] If the
infinitesimals &, (x,f)and 7,(x,t) in (24) are
dependent on the derivative of xsay
&(x, x,t)and n(x,x,t) the resulting infinitesimal
generator is called contact symmetry. Note that
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contact symmetries are also regarded as Lie
point symmetries.

2.5 Complete symmetry groups

The concept of complete symmetry
groups was generally accepted to mean the
group of symmetries of differential equations
which completely specify them on till recently.
In this view Lie identified the symmetry groups
of second-order differential equations to have
not more than eight Lie point symmetries that
specify them completely (any linearizable
second-order differential equation has the
maximum  eight Lie point symmetry
group).[16,17,18,19] The literature in this issue
is very rich, the work of Noether on the Kepler
problem could only identified five variational
symmetries ( also found by Lie analysis) [1,2,3]
which could not specify the Kepler equation of
motion. So there was a gap of not been able to
obtain the complete symmetry groups for the
Kepler problem in the sense of Lie. More
recently, it was shown [7,20] that complete
symmetry groups and algebras are not unique
and the concepts of maximality and minimality
of symmetry groups and algebras came to the
fore. However for the purpose of this paper we
intend to confine our discussion to emergence of
nonlocal symmetries as by-product of the quest
for complete symmetry groups of the Kepler
problem for which the forerunner is Krause
(1994) [ we refer the interested reader to
references in ref. 11,10,13], who obtained the
additional three symmetries (nonlocal type) and
together with the five point symmetries obtained
by either Noether theorem or Lie theorem, was
able to specify the equation of motion of the
Kepler problem completely.

3. Exact symmetry transformations of Kepler
problem in two-dimensions

We firstly review the Kepler problem to
note some of its interesting properties as
following. The Kepler problem has the equation
of motion given by

K+ =0, r=|. (26)
’/‘3
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The system (26) possess the angular momentum
vector L where

L=x"x. (27)
The vector product of (26) with (27) yields the
relation

oLy + 4L g

7"3

Using x =7e, +ré, we have thatx"L =-r3¢_,
so that (28) becomes

(Xx*L) -, =0, (29)
and on integrating (29) we obtain the second
conserved quantity called Laplace-Runge-Lenz
(LRL) vector J given by

(x"L)— e, =J (30)

The third conserved vector of (26) is the

Hamilton’s vector obtained by Hamilton in
1845; videlicet

K=x-“1re,, L=|L].
L

(28)

€2))

The analysis of system (26) for its Lie
point symmetries is very rich in the literature. It
is well known that Lie method produced five
Lie point symmetry generator which was also
demonstrated by Noether method of variational
symmetry theory.[10,11,13] The first five Lie
point symmetry generators are given as follows

X, =0,,X,=10,+3r0,,
X, = x26x3 —x38x2 , X, =x,0

X5 = xlﬁxz - x,0

X _‘xlax ’
1 3

(32)
While the three additional nonlocal symmetry

generators [11] are

Y, =2{[x,dt}o, + x,r0,,

Y, =2{[x,dt}0, + x,r0,,

Y, =2{[x;d1}0, + x,r0, (33)

where 72 =x? +x} +x;. One notice that the

xl'

above symmetry generators (32) and (33)
separate into the following four symmetry
transformations viz

1) Translation symmetries (time and
special);

i1) Dilation also called self similarity or
scaling symmetries (time and special);
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iii) Rotation symmetries;

iv) Nonlocal symmetries.
The scaling symmetry X, described the
Laplace-Runge-Lenz (LRL) vector of the
Kepler problem which is the source of the orbit
equation of (26).[13,23] However later works
have established that these nonlocal symmetries
are attainable by reduction of order developed
by Nucci [13,21], and more also it is well
known that the reduction of order process is
achieved by natural reduction variables of the
system via the Ermanno-Bernoulli constants
[21,13,22] and as well as quasi-Ermanno-
Bernoulli constants reported in ref. 14, which
reduced (26) to a system of oscillator(s) and a
conservation law. We note that this is applicable
to a number of dynamical systems. The reduced
system of (26) using the method of Nucci [13],
Nucci and Leach [21] and the associated Lie
symmetry generators are given by (34) and (35)
respectively,

vi+v, =0, v;=0 (34)
where v, = [2r-' — u; v, =26 and

I =v,0,;I',=0,;I,=v0,; I',, =e*90,;
I\, =e*??[0, iv,0,];

I, =e*?[v,0, tivi0,]
where 0, =0/0v,. Obtaining the

generators of the dynamical system (26) entails
the backward translation from the symmetries
(35) of the reduced system (34) variables to the
original variables of system (26), the scheme for
doing this is available ** and many of which are
largely nonlocal symmetries in the original
variables. We only list the symmetries in the
original variables below:

I =310, +2r0,,

r,=0,,

T, = 2ufrdi - 124, + r(wr - 12)0,,

r,, = ZUreﬂga’t]@t +r2e*?o_,

Ty, = 2|[ (ur +302 Je20dt p,
+ r(pr + 312 )20 + [2e+2i09),,

(35)

symmetry
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I, = ZU {2}"L3 + ir(,u —r36? X,u + 1302 )}ei’pdtjat

+ r[2fL3 + ir(,u — 302 X./” +1302 )]8,
+ L2\ —r362 90,

in which the factor [2has been included to

make the expressions look simpler.

We now calculate the exact symmetry

transformations of (26) from (35) as following.

For the vector field av,0, where « is arbitrary

constant the flow of this vector field is the

function f(v,,v,,0) = (v,,v,,0) where

(36)

@:WI;&:o;ﬁ:o (37)
dA da dA
Solving system (37) we have the following
v, =e*y, ; v, =Vv,;0=6. (38)

The second equation in (38) implies that
L = L while the first equation implies that
L2 — p=C(L*r' — ),

L=l + C(U - plr),
r
F=H{r, (39)
where H, = urL? + C(1— ulL?r), C = e**. (40)

From 726 =26 we have that

dt

E:Hfz 41)

Equations (40) and (41) constitute the exact
symmetry transformations of (26) with the given

generatorl’; =v,0,. We note that these
symmetry transformations are global, that is
X=H'x. (42)

We also note that when xis made three-
dimensional, the symmetry transformations (42)
is also true. For the vector fieldav,0,, we have

the flow as f(v,,v,,60) = (v,,v,,0) where

D, Doy 49 43)
i di da

Solving system (43) we have the following
v, v, =e®v,;0 =0,
The (44)

L = CL while the first equation implies that

v, =V,
second

(44)

equation in implies

L2751 —u=0r"—pu
re. C2L2r ' —u=0r"—u
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where C = e+, then

r _
—=C=r=Cr.
B

But L = CL implies that

5,72 —CO?2 = fzﬁzCrzﬁ’
dt dt

(45)

which implies that

.

dt

ie. t=d+C3t,
where d is an arbitrary constant.
Consequently the exact symmetry
transformations generated by the vector field
Il =v,0,for the Kepler problem is given by
equations (45) and (46). If
(x,,x,)=(rcos@,rsin@) denotes the Cartesian
coordinates of xin the plane of motion then
0 = 0 implies that
x=C2x, (47)

which is the global symmetry transformation
where x=uxi+x,j is the two dimensional

Cartesian vector.

(46)

The vector field a0, has the flow
f(,,v,,60) = (¥,,v,,0) where
@: ; @:O;ﬁ:a. (48)
dA dA dA
Solving system (48) we have the following,
Vo=V, 5 v, =v,:0 =0+al. (49)
Since v, =v, = L = L we have that
L' —pu=Dr'—u = r=r, (50)
and f=t. (51)

While the global symmetry transformations are
given byX = x and (51). The rotation symmetry
transformations are given  byX = 4x,
where x, = r(cos(6 + al)),

x, =r(cos(6+ad)); Thatis
_ (X cosad —sinad | x,
X=|_ |= . . (52)
X, —sinad cosal \ x,
If the matrix A4 is arbitrary it implies that all

rotation symmetry transformations are ensured.
Applying the same manner of calculations we
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obtain the exact symmetry transformations for
the vector field
i.e.(a,cos@+a,sinh)o,
izH;lx;ﬁ:H;2 (53)
dt

where

H,=1+AL?a-x, C=e*,

o-X=qx +0,X, .
We note here also that this is true for the case
when xis in three-dimensions.

4. Exact symmetry transformations of Kepler
problem in three-dimensions

The reduced system for (26) in three-
dimensions have been known [14,10, 21, 25]
and is given by

u'+u, =0
uy, +u, =0 (54)
u; =0

where

u, = (l —L—Z,ujsine — L2r20cos b,

r
u| = —L2r2p¢sin6,
u, = L'r2gsin fcos 6,
uh, =—L1r20 . (55)

u, = r2gsin? 0
We have reported [14,27] that the symmetries of
dynamical systems in three-dimensions can be
obtained from the Lie symmetries of the
reduced systems. We list here the Lie symmetry
generators of the reduced system (26). They
consist of sixteen generators, one viz I} for the

conservation law u; =0 and the fifteen Lie

symmetry generators for the pair of harmonic
oscillators (54). They are as follows

[ =u,0,, ) =u,0,,
I,=0,, T}, =e0,,
[, =e®¥(0, +iu-0),
[), =e*u; (0, +iu-0)
where j,k =1,2;0, =0/0uand

u-0=u0,+u,0,.

(56)
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The symmetry representations of (56) in the
original variables are very much complicated
than that of section 2 above. We now compute
the symmetry transformation generated by the

vector field ol)' =ou,0,for the Kepler
problem. The symmetry transformation
generated by this vector field is the
transformation f given by

@,,$) = /(u,,$) where

u, =Cu,,u, =u,, u; =u,,

§=¢.C=en (57)
from which it follows that
u =Cul,u,=u), L=1L . (58)

The relations (41) in ref. 14, imply that
usecr @+ uy)* =1.
Thus from the invariance of u,and u) in (56)

and (58) we note thatsecd =sec8,

Le. 60 =6. (59)
The relations in (55) imply that
u, :(l—yszsinH—u{Q'cotH. (60)
r
Since L,0"andcot@ are invariants of this

transformation, the first relation in (56) becomes

(é - ,uL—stinG —u,0'cotl =
r
C(l—,uLZJSinH—Cu{H’cotQ, (61)

7
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which reduces to

[%—uuj - C(l—ysz;
Iz r
iLe. r=H;'r,
where H, = pul2r + C(1— pLr).
The relation %, =u) in (58) implies that

Tord = 126
— —\2
Le. ﬂz(zj =H;?

(62)

dt \r (©3)

In view of equations (62), (63) and the
relations@ =@, ¢ =¢ in (57) and (58) the
required exact symmetry transformation of the
Kepler problem in three-dimensions for the
vector field ou,0, s given by

d

— t

X = H;'x; E=H2‘2 . (64)
Thus, we hereby depict in the following table
some of the wvector fields with their

corresponding exact symmetry transformations
below:

Table 1 —Some Vector fields and exact
symmetry transformations they generate

Vector fields Exact symmetry transformations
dt
X=H-1x — =H-=2
o2 = au,d, X =Hx, 7 H-2, where
H= [1 + Aar cosec2Bcos@(1—0'2 cot H)].
al’, = ou,0, dt

X=H"'x, —=C1H">
dt

where H = ,u(C—2 —I)L—2r+1

o} =acosgo,
The sine part is deductive from this cosine part
obviously.

= H—lr,ﬂ = H-2where
dt

H [1 + Aar cos ecO(cos ¢ — 1 cot Osin ¢)],
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We note that the rotation symmetries of the
Kepler problem in three-dimension are
obtainable from the vector field
ol’; = ad ;which has the rotation symmetries

denoted byX = Bx,B is a scalar 3x3-matrix.
That is by setting
X =(rsinfcos@,rsinfsingd,rcosf) as the
spherical coordinates of the motion we have the
rotation symmetry transformation about the z -
axis as

X, cosal —sinad 0} x,

X, |=|sinad cosad O] x,

X, 0 0 1 x,
If Bis an arbitrary rotation matrix then the
rotation symmetry is globally defined.

We report that the exact symmetries of
the remaining six vector fields are computable
as well following the same method diligently.
We note also that the Hamilton vector K for the
Kepler problem is given by
[25]K =x— ul2r-'(L"x) (This is a constant
multiple of the expression for K given in

ref.14). This expression for K yields the relation
[14]

(65)

K, =K, tiK, =(v, £iv|)e*?,
where
L, = 7sin @+ r(1— uL2r)cos 60,

v = (- pL2r)sinfp. (66)
We note that one could consider instead of (54),
the same system of equations with u,replaced

withy,, and its Lie symmetries to obtain the
exact symmetries of the original system.[14]

5. Concluding remarks

We have demonstrated that the exact
(actual) symmetry transformations of the Kepler
problem can be calculated from the symmetries
of its reduced systems rather than just obtaining
the symmetry generators (vector fields) that are
often complicated in their representations as
they are in their nonlocal symmetry forms (37).
Hitherto the exact symmetry transformations
computation as demonstrated above is new. We
report here that we have devised and utilized
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this computational method to obtain the exact
symmetries of other dynamical systems that are
reducible to systems of oscillator(s) and
conservation  law(s).  Consequently  the
complicated nonlocal symmetry representations
of dynamical systems are simply realizable in
their simple explicit forms as shown using the
Kepler problem as a vehicle. In our recent
works the Kepler problem with drag, the
generalized Kepler problem, the MICZ problem
and a host of other dynamical systems with
complicated nonlocal symmetries have proven
to admit this computational method for
obtaining their exact symmetries in both two-
and three-dimensions. These are subject for
further discussions in upcoming papers.
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