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Abstract: The visual assessment of tendency (VAT) technique, developed by J.C. Bezdek, R.J. Hathaway
and J.M. Huband, uses a visual approach to find the number of clusters in data. In this paper, we develop
a new algorithm that processes the numeric output of VAT programs, other than gray level images as in
VAT, and produces the tendency curves. Possible cluster borders will be seen as high-low patterns on the
curves, which can be caught not only by human eyes but also by the computer. Our numerical results are
very promising. The program caught cluster structures even in cases where the visual outputs of VAT
are virtually useless.
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1 Introduction

In clustering one partitions a set of objects

O = {o1, o2, . . . , on}
into c self-similar subsets (clusters) based on avail-
able data and some well-defined measure of simi-
larity. But before using a clustering method one
has to decide whether there are meaningful clus-
ters, and if so, how many are there. This is be-
cause all clustering algorithms will find any num-
ber (up to n) of clusters, even if no meaningful
clusters exist. The process of determining the
number of clusters is called the assessing of clus-
tering tendency. We refer the reader to Tukey [1]
and Cleveland [2] for visual approaches in various
data analysis problems, and to Jain and Dubes [3]
and Everitt [4] for formal (statistics-based) and
informal techniques for cluster tendency assess-
ment. Other interesting articles include [13]–[17].
Recently the research on the visual assessment
of tendency (VAT) technique has been quite ac-
tive; see the original VAT paper by Bezdek and
Hathaway [5], also see Bezdek, Hathaway and
Huband [6], Hathaway, Bezdek and Huband [7],
and Huband, Bezdek and Hathaway [8, 9].

The VAT algorithms apply to relational data,
in which each pair of objects in O is represented
by a relationship. Most likely, the relationship be-
tween oi and oj is given by their dissimilarity Rij

(a distance or some other measure; see [11] and
[12]). These n2 data items form a symmetric ma-
trix R = [Rij ]n×n. If each object oi is represented

by a feature vector xi = (xi1, xi2, . . . , xis), where
xij are properties of oi such as height, length,
color, etc, the set

X = {x1, x2, . . . , xn} ⊂ IRs

is called object data representation of the set O.
In this case Rij can be computed as the distance
between xi and xj measured by some norm or
metric in IRs. In this paper if the data is given as
object data X, we will use as Rij the square root
of the Euclidean norm of xi − xj , that is,

Rij =
√

‖xi − xj‖2.

The VAT algorithms reorder (through indexing)
the points so that points that are close to one an-
other in the feature space will generally have sim-
ilar indices. Their numeric output is an ordered
dissimilarity matrix (ODM). We will still use the
letter R for the ODM. It will not cause confusion
since this is the only information on the data we
are going to use. The ODM satisfies

0 ≤ Rij ≤ 1, Rij = Rji and Rii = 0.

The largest element of R is 1 because the algo-
rithms scale the elements of R.

The ODM is displayed as ordered dissimilarity
image (ODI), which is the visual output of VAT.
In ODI the gray level of pixel (i, j) is proportional
to the value of Rij : pure black if Rij = 0 and pure
white if Rij = 1.
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Figure 1: Scatterplot of the data set X.
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Figure 2: The original order of X.

Figure 3: Dissimilarity image before reordering X
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Figure 4: A data set X ordered by VAT

Figure 5: ODI using the order in Fig 4.

The idea of VAT is shown in Fig.1–5.
Fig.1 shows a scatterplot of a data set X =
{x1, x2, . . . , x20} ⊂ IR2 of 20 points containing
three well-defined clusters. Its original order,
shown by the broken line in Fig.2 with x1 ≈
(1.3, 9.6) marked by a diamond, is random, as in
most applications. The corresponding dissimilar-
ity image in Fig.3 contains no useful visual infor-
mation about the cluster structure in X. Fig.4
shows the new order of the data set X, with the
diamond in the lower left corner representing the
new x1 ≈ (−6.1,−1.3) in the ordered data set.
Fig.5 gives the corresponding ODI. Now the three
clusters are represented by the three well-formed
black blocks.

The VAT algorithms are certainly useful, but
there is room for improvements. It seems to us
that our eyes are not very sensitive to structures
in gray level images. One example is given in
Fig.6. There are three clusters in the data as we
will show later. The clusters are not well sep-
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arated, and the ODI from VAT does not reveal
any sign of the existence of the structure.

The approach of this paper is to focus on
changes in dissimilarities in the ODM, the nu-
meric output of VAT that underlies its visual out-
put ODI. The results will be displayed as curves,
which we call the tendency curves. The borders
of clusters in the ODM (or blocks in the ODI) are
shown as certain patterns in peaks and valleys on
the tendency curves. The patterns can be caught
not only by human eyes but also by the computer.
It seems that the computer is more sensitive to
these patterns on the curves than human eyes are
to them or to the gray level patterns in the ODI.
For example, the computer caught the three clus-
ters in the data set that produced the virtually
useless ODI in Fig.6.

Figure 6: How many clusters are in this ODI?

2 Tendency Curves

Our approach is to catch possible diagonal blocks
in the ordered dissimilarity matrix R by using var-
ious averages of distances, which are stored as vec-
tors and displayed as curves. Let n be the number
of points in the data, we define

m = 0.05n, M = 5m, w = 3m. (1)

We restrict ourselves to the w-subdiagonal band
(excluding the diagonal) of R, as shown in Fig.7.
Let ℓi = max(1, i − w), then the i-th “row-
average” is defined by

r1 = 0, ri =
1

i − ℓi

i−1
∑

j=ℓi

Rij , 2 ≤ i ≤ n. (2)

In another word, each ri is the average of the el-
ements of row i in the w-band. The i-th m-row
moving average is defined as the average of all ele-
ments in up to m rows above row i, inclusive, that
fall in the w-band. This corresponds to the region
between the two horizontal line segments in Fig.7.
We also define the M -row moving average in al-
most the identical way except with m replaced by
M . They will be referred to as the r-curve, the
m-curve and the M -curve, respectively.

Figure 7: Sub-diagonal band of the ODM

The idea of the r-curve is simple. Just imag-
ine a horizontal line, representing the current row
in the program, moving downward in an ODI such
as the one in Fig.5. When it moves out of one di-
agonal black block and into another, the r-curve
should first show a peak because the numbers to
the left of diagonal element Rii will suddenly in-
crease. It should drop back down rather quickly
when the line moves well into the next black block.
Therefore the border of two blocks should be rep-
resented as a peak on the r-curve if the clusters
are well separated.

When the situation is less than ideal, there
will be noise, which may destroy possible patterns
on the r-curve. That is how the m-curve comes in,
which often reveals the pattern beneath the noise.
Since the VAT algorithms tend to order outliers
near the end, so the m-curve tends to move up in
the long run, which makes it hard for the program
to identify peaks. That is why we introduce the
M -curve, which shows long term trends of the r-
curve. The difference of the m- and M -curves,
which we call the d-curve, retains the shape of
the m-curve but is more horizontal, basically lying
on the horizontal axis. Furthermore, the M -curve
changes more slowly than the m-curve, thus when
moving from one block into another in the ODM,
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it will tend to be lower than the m-curve. As a
result, the d-curve will show a valley, most likely
below the horizontal axis, after a peak. It is the
peak-valley, or high-low, patterns that signal the
existence of cluster structures. This will become
clear in our examples in the section that follows.

3 Numerical Examples
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Figure 8: Scatterplot of three normally dis-
tributed clusters in IR2, with α = 8.

Figure 9: ODI from VAT for the data set with
α = 8

We give one group of examples in IR2 so
that we can use their scatterplots to show how
well/poorly the clusters are separated. We also
give the visual outputs (ODIs) of VAT for com-
parison. These sets are generated by choos-
ing α = 8, 4, 3, 2, 1 and 0 in the following set-
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Figure 10: Tendency curves for the data set with
α = 8

tings: 2000 points (observations) are generated
in three groups from multivariate normal distri-
bution having mean vectors µ1 = (0, α

√
6/2),

µ2 = (−α
√

2/2, 0) and µ3 = (α
√

2/2, 0). The
probabilities for a point to fall into each of the
three groups are 0.35, 0.4 and 0.25, respectively.
The covariance matrices for all three groups are
I2. Note that µ1, µ2 and µ3 form an equilateral
triangle of side length α

√
2.

Fig.8–10 for the case α = 8 show what we
should look for on the curves. The clusters are
very well separated, the ODI has three black
blocks on the diagonal with sharp borders. Our r-
curve (the one with “noise”) has two vertical rises
and the m-curve (the solid curve going through
the r-curve where it is relatively flat) has two
peaks, corresponding to the two block borders
in the ODI. The M -curve, the smoother, dash-
dotted curve, is only interesting in its relative po-
sition with respect to the m-curve. That is, it
is only useful in generating the d-curve, the dif-
ference of these two curves. The d-curve looks
almost identical to the m-curve, also having two
peaks and two valleys. The major difference is
that it is in the lower part of the figure, around
the horizontal axis.

Fig.11–13 show the case α = 4. The clusters
are less separated than the case α = 8, and the
slopes of the tendency curves are smaller. There
are still two vertical rises on the r-curve, and two
peaks followed by two valleys on all other curves
where the block borders are in the ODI in Fig.12.
What is really different here from the case α = 8 is
the wild oscillations near the end of the r-curve,
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bringing up all other three curves. This corre-
sponds to the small region in the lower-right cor-
ner of the ODI, where there lacks pattern. Note
that no valley follows from the third rise or peak.
This is understandable because a valley appears
when the curve index (the horizontal variable of
the graphs) runs into a cluster, shown as a block
in ODI.

Now we know what we should look for: verti-
cal rises or peaks followed by valleys, or high-low
patterns, on all the tendency curves maybe except
the M -curve.
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Figure 11: Three normally distributed clusters in
IR2 with α = 4

Figure 12: ODI from VAT, α = 4

The case α = 3 is given in Fig.14–16. One
can still easily make out the three clusters in the
scatterplot, but it is harder to tell to which cluster
many points in the middle belong, (the member-
ships are very fuzzy). It is expected that every
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Figure 13: Tendency curves for α = 4
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Figure 14: Three normally distributed clusters in
IR2 with α = 3

Figure 15: ODI from VAT, α = 3
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Figure 16: Tendency curves for α = 3

visual method will have difficulties with them, as
evidenced by the lower right corner of the ODI,
and the oscillations on the last one fifth of the
r-curve. The oscillations bring up the r- and
m-curves, but not the d-curve. The d-curve re-
mains almost the same as those in the two pre-
vious cases, except the third peak becomes larger
and decreases moderately without forming a val-
ley. The two high-low patterns on the m- and
d-curves show the existence of three clusters. As
we have said earlier that it is a valley on the m-
curve and, especially, the d-curve that signals the
beginning of a new cluster.

We hope by now the reader can see the pur-
pose of the d-curve. Both the m- and M -curves
in Fig.16 go up with wild oscillations, but the d-
curve always stays low, lying near the horizon-
tal axis. Unlike the other three curves, its values
never get too high or too low. This enables us to
detect the beginnings of new blocks in an ODM by
catching the high-lows on the d-curve. When the
d-curve hits a ceiling, set as 0.04, and then a floor,
set as 0, the program reports one new cluster. The
ceiling and floor values are satisfied by all cases in
our numerical experiments where the clusters are
reasonably, sometimes only barely, separated. If
we lower the ceiling and raise the floor, we would
be able to catch some of the less separated clus-
ters we know we have missed, but it would also
increase the chance of “catching” false clusters.
We do not like the idea of tuning parameters to
particular examples. We will stick to the same
ceiling and floor values throughout this paper. In
fact, we do not recommend changing the suggested
values of the parameters in our program, that is,
the values for the ceiling and floor set here, and
those for m, M and w given in (1).

−5 −4 −3 −2 −1 0 1 2 3 4 5
−4

−3

−2

−1

0

1

2

3

4

5

6

Figure 17: Three normally distributed clusters in
IR2 with α = 2

Figure 18: ODI from VAT, α = 2

The situation in the case α = 2, shown in
Fig.17–19, really deteriorates. One can barely
make out the three clusters in Fig.17 that are sup-
posed to be there; the ODI in Fig.18 is a mess. In
fact, this is the same ODI as the one in Fig.6, put
here again for side-by-side comparison with the
scatterplot and the tendency curves. The ten-
dency curves in Fig.19, however, pick up cluster
structure from the ODM. The d-curve has several
high-lows, with two of them large enough to hit
both the ceiling and floor, whose peaks are near
600 and 1000 marks on the horizontal axis, re-
spectively. This example clearly shows that our
tendency curves generated from the ODM are
more sensitive than the raw block structure in the
graphical display (ODI) of the same ODM. The
largest advantage of the tendency curves is proba-
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Figure 19: Tendency curves for α = 2

bly the quantization which enables the computer,
not only human eyes, to catch possible patterns.
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Figure 20: Three normally distributed clusters in
IR2 with α = 0 (combining into one)

When α goes down to zero, the cluster struc-
ture disappears. The scatterplots for α = 0
(Fig.20) and α = 1 (not shown) are almost iden-
tical, showing a single cluster in the center. The
tendency curves for both cases (Fig.21 and 22)
have no high-lows large enough to hit the ceiling
then the floor, which is the way they should be.
Note that while all other three curves go up when
moving to the right, the d-curve, the difference of
the m- and M -curves, stays horizontal, which is,
again, the reason we introduced it.

We also tested our program on many other
data sets, including small data sets containing
150 points in IR4. It worked equally well. We
also tested two examples in Figures 12 and 13
of Bezdek and Hathaway [5], where the points
are regularly arranged, on a rectangular grid, and
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Figure 21: Tendency curves for α = 0
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Figure 22: Tendency curves for α = 1

along a pair of concentric circles, respectively. Be-
cause we could only have speculated from ODI
images produced from the sets before applying
our program, it was to our great, and pleasant,
surprise that the program worked seamlessly on
them, accurately reporting the number of clus-
ters that exist. What we want to emphasize is
that we did all this without ever having to modify
any suggested parameter values ! These tests will
be reported in a forthcoming paper.

It is almost a sacred ritual that everybody
tries the Iris data in a paper on clustering, so we
conclude ours by trying our program on it. The
ODI from VAT is given by Fig.23, and the ten-
dency curves are given in Fig.24. The computer
caught the large high-low on the left and ignored
the small one on the right, and correctly reporting
two clusters.

Remark 1 There is more than one version of the
Iris data, we are using the “real” version as dis-
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Figure 23: ODI for the Iris data
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Figure 24: Tendency curves for the Iris data

cussed in [10]. The original object data consists
of measurements of four features of each of 150
irises, which are of three, not two, different phys-
ical types. Fifty of each type were used to generate
the data. Thus it seems there should be three clus-
ters in the data. The reason both the ODI and the
tendency curves show only two clusters is that two
of the three iris types generate data that overlap
in IR4, so many argue that the unlabeled data nat-
urally form two clusters; see [5].

4 Discussion

The original VAT algorithm introduced in 2002
provides a useful visual display of well-separated
cluster structure. Two significant weaknesses of
the original approach are: (1) there is no straight-
forward way to automate the procedure so that

cluster assessment can be done without the aid
of a human interpreter; and (2) the quality of
the information in the ODI–to a human observer–
deteriorates badly in some cases where there is
still a significant separation between clusters. Our
proposed use of ”tendency curves” derived from
the VAT reordering output successfully addresses
both of these problems. Regarding (1), while the
tendency curves provide much information for de-
tailed human interpretation of cluster structure,
they also concentrate and organize the informa-
tion in a way that allows the use of a simple auto-
mated procedure for detecting the number of clus-
ters, involving a simple counting of the number of
high-low patterns. And very importantly, good
choices for the ”high” and ”low” thresholds are
suggested elsewhere in the paper; the parameters
defining the automated procedure do not appear
to depend sensitively on the particular problem
being solved. Regarding weakness (2), the success
of the procedure on data sets such as that shown
in Fig. 17 demonstrates a great improvement over
results obtained from the raw ODIs produced by
VAT.

For clearer exposition in this note, we chose to
restrict the main discussion to the original VAT
procedure. Actually, the tendency curve modifi-
cation is completely applicable, and easily trans-
ferable, to several other cases involving more re-
cent relatives of VAT. For example, the sVAT pro-
cedure in Hathaway, Bezdek and Huband [7] is a
two step procedure for assessing cluster tendency
in very large scale data sets. First a representa-
tive sample of the original data set is chosen , and
then original VAT is applied to the selected sam-
ple. Clearly, the tendency curves could be added
as a third step of a cluster assessment procedure.
Significantly, this means the approach described
in this note is scalable and applicable to very large
data sets.

Another opportunity to extend the tendency
curve assessment approach is in the case of the
visual cluster validity (VCV) scheme suggested
in Hathaway and Bezdek [18]. Whereas VAT
involves a pre-clustering activity that uses regu-
lar Euclidean distances between points, the VCV
scheme is done post-clustering. The pair wise dis-
tances used by VCV are defined indirectly on the
basis of how closely pairs of data points fit into the
same cluster. In other words, two points that may
be far apart in a Euclidean sense, but both fitting
closely to a single cluster prototype, which could
be an ellipsoid, plane, etc., would be assigned a
small pair wise distance. An example of a linear
cluster structure and its corresponding VCV ODI
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Figure 25: Scatterplot of three linear clusters

from [18] is given in Figs. 25-26. VCV can be used
as one tool to visually validate how well the data
points fit the assumed cluster structure. Even
though cluster validity (done post-clustering) is a
fundamentally different activity than cluster ten-
dency assessment (done pre-clustering), the VCV
approach again involves applying VAT to a matrix
of pair wise distances, and is therefore completely
amenable to the application of a tendency curve
approach.

A more challenging extension of the use of
tendency curves is in the case of non-square dis-
similarity matrices considered in [6]. For rectan-
gular dissimilarity matrices we can calculate row-
based tendency curves, as done here, and also
(different) column-based tendency curves. We are
currently studying exactly how to make the best
use of the two sets of curves to assess the under-
lying co-cluster tendency.

In closing we mention a final thought that
may bear no fruit, but at least for now seems in-
triguing. An often used tactic in computational
intelligence is to find something done efficiently
in nature, and then attempt to mimic it com-
putationally in a way that solves some problem
of interest. The ”high-low” rule for identifying a
change in clusters reminds us of technical analysis
schemes used in analyzing market or individual
stock pricing charts. (The bible of such graph-
based rules is [19].) Is there any ”intelligence”
in these rules that can be adapted to clustering
or other types of data analysis. Moreover, how
generally applicable is the fundamental approach
taken in this paper, which we see as: (1) convert-
ing a large amount of multidimensional data into

Figure 26: VCV ODI for Fig. 25 data

a univariate data stream; and (2) then extract-
ing some important part of the information in the
data stream using some graph-based rules? What
is the most useful way to represent the stream
information so that it can be understood by hu-
mans? Visually? Sonically? Might it be possible
to ”hear” clusters? This will be researched in the
near future.

References:

[1] J.W. Tukey, Exploratory Data Analysis.
Reading, MA: Addison-Wesley, 1977.

[2] W.S. Cleveland, Visualizing Data. Summit,
NJ: Hobart Press, 1993.

[3] A.K. Jain and R.C. Dubes, Algorithms
for Clustering Data. Englewood Cliffs, NJ:
Prentice-Hall, 1988.

[4] B.S. Everitt, Graphical Techniques for Multi-
variate Data. New York, NY: North Holland,
1978.

[5] J.C. Bezdek and R.J. Hathaway, VAT: A tool
for visual assessment of (cluster) tendency.
Proc. IJCNN 2002. IEEE Press, Piscataway,
NJ, 2002, pp.2225-2230.

[6] J.C. Bezdek, R.J. Hathaway and J.M.
Huband, Visual Assessment of Clustering
Tendency for Rectangular Dissimilarity Ma-
trices, IEEE Trans. on Fuzzy Systems, 15

(2007) 890-903

[7] R. J. Hathaway, J. C. Bezdek and J. M.
Huband, Scalable visual assessment of cluster
tendency for large data sets, Pattern Recog-
nition, 39 (2006) 1315-1324.

WSEAS TRANSACTIONS on MATHEMATICS Yingkang Hu and Richard J. Hathaway

ISSN: 1109-2769 449 Issue 7, Volume 7, July 2008



[8] J. M. Huband, J.C. Bezdek and R.J. Hath-
away, Revised visual assessment of (clus-
ter) tendency (reVAT). Proc. North Amer-
ican Fuzzy Information Processing Soci-
ety (NAFIPS), IEEE, Banff, Canada, 2004,
pp.101-104.

[9] J. M. Huband, J.C. Bezdek and R.J. Hath-
away, bigVAT: Visual assessment of clus-
ter tendency for large data set. PATTERN
RECOGNITION, 38 (2005) 1875-1886.

[10] J. C. Bezdek, J. M. Keller, R. Krishnapu-
ram, L. I. Kuncheva and N. R. Pal, Will the
real Iris data please stand up? IEEE Trans.
Fuzzy Systems, 7, 368–369 (1999).

[11] I. Borg and J. Lingoes, Multidimensional
Similarity Structure Analysis. Springer-
Verlag, New York, 1987.

[12] M. Kendall and J.D. Gibbons, Rank Correla-
tion Methods. Oxford University Press, New
York, 1990.

[13] Nawara Chansiri, Siriporn Supratid and
Chom Kimpan, Image Retrieval Improve-
ment using Fuzzy C-Means Initialized by
Fixed Threshold Clustering: a Case Study
Relating to a Color Histogram, WSEAS
Transactions on Mathematics, 5.7 (2006),
926–931.

[14] Hung-Yueh Lin and Jun-Zone Chen, Ap-
plying Neural Fuzzy Method to an Urban
Development Criterion for Landfill Siting,
WSEAS Transactions on Mathematics, 5.9

(2006), 1053–1059.
[15] Nancy P. Lin, Hung-Jen Chen, Hao-En

Chueh, Wei-Hua Hao and Chung-I Chang,
A Fuzzy Statistics based Method for Mining
Fuzzy Correlation Rules, WSEAS Transac-
tions on Mathematics, 6.11 (2007), 852–858.

[16] Miin-Shen Yang, Karen Chia-Ren Lin, Hsiu-
Chih Liu and Jiing-Feng Lirng, A Fuzzy-Soft
Competitive Learning Algorithm For Oph-
thalmological MRI Segmentation, to appear
in WSEAS Transactions on Mathematics.

[17] Gita Sastria, Choong Yeun Liong and Ishak
Hashim, Application of Fuzzy Subtractive
Clustering for Enzymes Classification, to ap-
pear in WSEAS Transactions on Mathemat-
ics.

[18] R.J. Hathaway and J.C. Bezdek, Visual
Cluster Assessment for Prototype Generator
Clustering Models, Pattern Recognition Let-
ters, 24 (2003), 1563-1569.

[19] J.J. Murphy, Technical Analysis of the Fi-
nancial Markets, New York Institute of Fi-
nance, New York, 1999.

WSEAS TRANSACTIONS on MATHEMATICS Yingkang Hu and Richard J. Hathaway

ISSN: 1109-2769 450 Issue 7, Volume 7, July 2008


