
Combinatorial Optimization: Mutual Relations among Graph Algorithms

EVA MILKOVÁ
Department of Informatics and Quantitative Methods

University of Hradec Králové
Rokitanského 62

CZECH REPUBLIC
eva.milkova@uhk.cz http://lide.uhk.cz/fim/ucitel/milkoev1/

Abstract: - The Theory of Graphs is a wonderful, practical discipline. Informatics has played a big part in its
development, and these two fields are strongly interconnected. This can, perhaps, mainly be seen in the design
of computer algorithms. On the one hand, there are many methods which can be used for solving the same
problem, while on the other hand, using effective modifications of one algorithm, we can devise methods of
solving various other tasks. To educate students in the area close connected with Graph Theory and Computer
Science, called as Combinatorial or Discrete Optimization, it is important to make them familiar with certain
algorithms in contexts to be able to get deeper into each problem and entirely understand it. In the paper we
present just a few ideas that have proved successful in teaching and learning this quite young part of
mathematics.

Key-Words: - Graph Algorithms, Minimum Spanning Tree Problem, Breadth-First-Search, Depth-First-Search,
Dijkstra’s Algorithm, Maze Problem, Eulerian Graph

1 Introduction
Mathematics is one of the oldest science however
the area known as Combinatorial or Discrete
Optimization close connected with Graph Theory
and Computer Science is quite young.

When we deal with a particular problem we try
to examine it from more than one point of view if
possible and discuss various approaches to its
solution. On the one hand, there are many methods
which can be used for solving the same problem,
while on the other hand, using effective
modifications of one algorithm, we can devise
methods of solving various other tasks.

In this paper we discuss mutual relationships

between solutions to some known problems. We
devote attention to the well-known Minimum
Spanning Tree Problem, including Jarník’s
(Jarník’s-Prim’s resp.) approach to it, at first. We
meet readers with different descriptions of some
discussed solutions as well.

Then we discuss the relationship between
Dijkstra’s algorithm finding the shortest path and
the Jarník’s-Prim’s solution to the above mentioned
Minimum Spanning Tree Problem.

It is followed by illustration of how the most
used searching algorithms, Breadth-First-Search and
Depth-First-Search, are also connected with the

Jarník’s algorithm. We describe the properties of the
Breadth-First-Search Tree and Depth-First-Search
Tree and mention how the properties of the Search
Trees influence our approach to the solutions of the
other commonly used algorithms.

Finally we deal with the maze problem. We
remind three approaches to the solution of this
problem, Trémaux, Tarry, and Edmonds-Johnson
algorithms, their mutual relationship and relation of
Edmonds-Johnson algorithm to the problem of how
to find Eulerian trail in an Eulerian graph.

At the end of the paper we mention one

multimedia program that serves as a visual
representation of basic graph-concepts and graph-
algorithms using a colouring process on graphs
created within the program and emphasize its
advantages for enhancing teaching and learning the
discussed topic.

2 Minimum Spanning Tree Problem
In the contemporary terminology the Minimum
Spanning Tree (MST in short) problem can be
formulated as follows (see [1]):
Given a connected undirected graph G = (V, E) with
n vertices, m edges and real weights assigned to its
edges (i.e. w: E→R). Find among all spanning trees

WSEAS TRANSACTIONS on MATHEMATICS Eva Milkova

ISSN: 1109-2769 293 Issue 5, Volume 7, May 2008

http://lide.uhk.cz/fim/ucitel/milkoev1/

of G a spanning tree T = (V, E’) having minimum
value w(T) = Σ(w(e); e ∈ E’), a so-called minimum
spanning tree.

“The Minimum Spanning Tree problem is
generally regarded as a cornerstone of
Combinatorial Optimization. Its importance and
popularity stem from several reasons. The MST
problem may be efficiently solved for large graphs
by several algorithms. It has wide application.
Methods for its solution have produced important
ideas in modern combinatorics and have played
central role in the design of graph algorithms.”[2]

First formulation of the problem was given in

1926 by the Czech mathematician Otakar Borůvka.
(Remark: Otakar Borůvka was introduced to the
problem by his friend, Jindřich Saxel, an employee
of the West_Moravian Powerplants. It was at that
time that electrification of the south and west parts
of Moravia was beginning, and Borůvka was asked
for help in solving the problem. The challenge was
how and through which places to design the
connection of several tens of municipalities in the
Moravia region so that the solution was as short and
consequently as low-cost as possible. Borůvka not
only correctly stated this problem but also solved it
in the papers [3] and [4]).

2.1 Borůvka’s algorithm
There are various descriptions of Borůvka’s solution
in most of the modern textbooks. We introduce two
algorithms solving the problem as an edge-
colouring process (see [1], [2]).(Remark: The survey
of the works devoted to the MST problem until
1985 is given in the article [5] and this historical
paper is followed up in the article [2] Otakar
Borůvka on minimum spanning tree problem:
Translation of both the 1926 papers, comments,
history.)

It is necessary to remember that Borůvka’s

solution of the MST problem presumes distinct
edge-weights in the given graph. However, this
condition does not restrict the universality of the
problem (e.g. we can list all edges and in the case
that two edges are equal weights the first on our list
we consider as the smaller one.)

Borůvka’s algorithm – first description
1. Initially all edges of the graph G are

uncoloured and let each vertex be a trivial blue tree.
2. Repeat the following colouring step until there

is only one blue tree.

Colouring step: For each blue tree T, select the
minimum-weight uncoloured edge incident to T (i.e.
edge having one vertex in T and the other not).
Colour all selected edges blue.

3. Blue coloured edges form the unique
minimum spanning tree.

(Remark: The distinct edge-weights guarantee
that the Borůvka’s solution finishes by gaining the
unique blue minimum spanning tree of G.)

Borůvka’s algorithm – second description
1. Coloring: For each vertex v of the given graph

G we color blue the minimum-weight edge incident
to v.

2. Contraction: We replace each blue tree by a
single vertex. In this procedure we eliminate loops
(i.e. edges with both ends in the same blue tree) and
all the parallel edges (i.e. edges between the same
pairs of blue trees) with the exception of the lowest
weight edge.

3. We apply the algorithm recursively to find the
blue spanning tree T’ of contracted graph.

The minimum spanning tree T is formed by the
contracted blue edges together with the edges of T’.

On figures Fig.1 – Fig.5 second description of

Borůvka’s algorithm of the MST problem is
illustrated there using the following graph G1.

Fig.1 Given graph G1

WSEAS TRANSACTIONS on MATHEMATICS Eva Milkova

ISSN: 1109-2769 294 Issue 5, Volume 7, May 2008

Fig.2 Coloring

Fig.3 Contraction and Coloring

Fig.4 Contraction and Coloring

Fig.5 The found unique minimum spanning tree of
the given graph G1

2.2 Jarník’s algorithm
Another Czech mathematician, Vojtěch Jarník,
quickly realized the novelty and importance of the
problem after reading Boruvka’s paper. However
the solution seemed very complicated to him. He
started to think about another solution and soon
afterwards wrote a letter to Otakar Borůvka in
which he suggested a much easier method and
consequently he published it in the article [6]. In the
present terminology we can describe it as follow [1].

Jarník’s algorithm
1. Initially all vertices and edges of the graph G

are uncoloured. Let us choose any single vertex and
suppose it to be a trivial blue tree.

2. At each of (n - 1) steps, colour the minimum-
weight uncoloured edge, having one vertex in the
blue tree and the other not, blue. (In case, there are
more such edges, choose any of them.)

3. The blue coloured edges form a minimum
spanning tree.

Fig. 6 illustrates four first steps of Jarník’s

solution of MST problem on the graph G1
represented by the Fig.1 supposing the vertex a be
the initial trivial blue tree. (Remark For clearer
illustration of the consecutively obtained blue trees
we also denote vertices by the color blue.)
Obviously, the whole solution is the same as that on
the Fig.5.

Fig.6 Jarník’s solution of the MST problem

Much later and unaware of Jarník’s solution,
R.C. Prim created the same solution as Jarník,
during the time of newly developing field, computer

WSEAS TRANSACTIONS on MATHEMATICS Eva Milkova

ISSN: 1109-2769 295 Issue 5, Volume 7, May 2008

science. He used a more detailed implementation
suitable for computer processing in the paper [7].

To use the following description of his solution
let us consider weights w(e) assigned to edges of a
given graph as distances. (see [1])

Jarník’s-Prim’s algorithm
1. Let us choose any single vertex a and suppose

it to be a blue tree. Put the value (0, a) by the vertex
a. By each vertex v which doesn’t belong to the blue
tree, the actual information (f(v), u) is saved,
describing the nearest distance f(v) between the
vertex v and the blue tree (from the vertex u). Thus
initially by each vertex v ≠ a put the value
(w({a, v}, a) if v is a neighbor of the vertex a and
the value (∞, a) if v is not a neighbor of the vertex a.

2. At each of (n - 1) steps take the following
commands:

 choose a vertex z with the actual
information (f(z), t) such that
f(z) = min{f(v); v doesn’t belong to the
blue tree},

 colour the corresponding edge {z, t} blue,
 by each neighbor v of the vertex z, change

the value (f(v), u) to the value (w({z, v}),
z) in the case that w({z, v}) < f(v).

3. The blue coloured edges form a minimum
spanning tree.

Using adjacency matrix of the graph G1 on the

Fig.1 let us illustrate Jarník’s-Prim’s solution of
MST problem (see Fig.7).

 a b c d e f g h i j k

a 1 7 22

b 1 2

c 7 2 30

d 22 11 16

e 31 6

f 30 11 31 18 35 28

g 16 6 18

h 35 8 24

i 8 13

j 24 13 5

k 28 5

Fig.7 Adjacency matrix of the graph G1

a (0,a)
b (1,a)
c (7,a) (2,b)
d (22,a)(22,a)(22,a)
e (∞,a) (∞,a) (∞,a) (∞,a) (31,f) (6,g)
f (∞,a) (∞,a) (30,c) (11,d)
g (∞,a) (∞,a) (∞,a) (16,d)(16,d)
h (∞,a) (∞,a) (∞,a) (∞,a) (35,f) (35,f) (35,f) (35,f) (24,j) (8,i)
i (∞,a) (∞,a) (∞,a) (∞,a) (∞,a) (∞,a) (∞,a) (∞,a) (13,j)
j (∞,a) (∞,a) (∞,a) (∞,a) (∞,a) (∞,a) (∞,a) (5,k)
k (∞,a) (∞,a) (∞,a) (∞,a) (28,f) (28,f) (28,f)
Fig.8 Jarník’s-Prim’s solution, blue coloured edges
are {a,b},{b,c},{a,d},{g,e},{d,f},{d,g},{i,h},{j,i}, {k,j},{f,k}

2.3 Kruskal’s algorithm
The third classical solution of the MST problem was
discovered by J. B. Kruskal [8]. We describe it as an
edge-colouring process as well and illustrate it again
on the graph G1 represented by the adjacency matrix
on Fig.7, this time with help of disjoint sets of
vertices (each set will represent one blue tree) using
operation find(x) and union(M, N) (see Fig.9).

Kruskal’s algorithm
1. Initially all edges of the graph G are

uncoloured. Let us order the edges in nondecreasing
order by weight. Let each vertex be a trivial blue
tree.

2. At each of m steps decide about colouring
exactly one edge if it is coloured by blue colour or
not. The edges are examined in a sequence defined
by above-mentioned ordering. The chosen edge is
coloured blue if and only if it doesn’t form a circle
with the other blue edges.

3. The blue coloured edges form a minimum
spanning tree.

sorted disjoint sets of vertices colour
edges {a} {b} {c} {d} {e} {f} {g} {h} {i} {j} {k} blue
{a,b} {a} {b} {c} {d} {e} {f} {g} {h} {i} {j} {k} YES
{b,c} {a, b} {c} {d} {e} {f} {g} {h} {i} {j} {k} YES
{k,j} {a, b, c} {d} {e} {f} {g} {h} {i} {j} {k} YES
{e,g} {a, b, c} {d} {e} {f} {g} {h} {i} {j, k} YES
{a,c} {a, b, c} {d} {e} {f} {g} {h} {i} {j, k} NO
{h,i} {a, b, c} {d} {e} {f} {g} {h} {i} {j, k} YES
{d,f} {a, b, c} {d} {e} {f} {g} {h, i} {j, k} YES
{i, j} {a, b, c} {d, f} {e} {g} {h, i} {j, k} YES
{d,g} {a, b, c} {d, f} {e} {g} {h, i, j, k} YES
{f,g} {a, b, c} {d, f, g} {e} {h, i, j, k} NO
{a,d} {a, b, c} {d, f, g} {e} {h, i, j, k} YES
{h,j} {a, b, c, d, f, g} {e} {h, i, j, k} NO
{f,k} {a, b, c, d, f, g} {e} {h, i, j, k} YES
{c,f} {a, b, c, d, f, g, h, i, j, k} {e} NO
{e,f} {a, b, c, d, f, g, h, i, j, k} {e} YES
{f,h} {a, b, c, d, f, g, h, i, j, k, e} NO
Fig.9 Kruskal’s solution of MST problem on G1

WSEAS TRANSACTIONS on MATHEMATICS Eva Milkova

ISSN: 1109-2769 296 Issue 5, Volume 7, May 2008

2.4 Summary
Comparing the solutions written above we can
characterize the basic difference as follows:

In Borůvka’s solution, at each step the union of
all the blue trees being the nearest to one another is
demonstrated.

Jarník’s solution at each of (n-1) steps spreads
the only blue tree that contains the initial vertex by
the nearest vertex.

Kruskal’s solution connects the two nearest blue
trees in one blue tree at each step in which one edge
is coloured blue.

Two different descriptions of Borůvka’s

algorithm allow a better insight to his solution. Both
descriptions of Jarník’s solution are important for
description of other algorithms. Namely, from the
first algorithm (see 2.2, Jarník’s algorithm) we can
proceed to the searching methods (see section 4) and
from the second algorithm (see 2.2, Jarník’s-Prim’s
algorithm) we can continue to the algorithm finding
the shortest path between two vertices of a
connected undirected non-negative-weighted graph
(see the following section 3).

Students should be aware that, so far, all known

methods solving MST problem make use of the
various combinations of the following two dual
properties of trees ([2], [9]).

Cut rule: The optimal solution T to MST
problem contains an edge with minimal weight in
every cut.

Circle rule: The edge of the circle C whose
weight is larger than the weights of the remaining
edges of C cannot belong to the optimal solution T.

Thus Borůvka’s and Jarník’s (Jarník’s-Prim’s)

solutions are based on the cut rule only. Kruskal’s
algorithm combines both rules according to the
initial order of edges, and thereby points out the
blue one.

Kruskal’s provided also the following similar
elegant solution concerning the circle rule.

Kruskal’s dual algorithm
1. Initially all edges of the graph G are

uncoloured. Let us order the edges in nonincreasing
order by weight. Let each vertex be a trivial blue
tree.

2. At each of m steps decide about colouring
exactly one edge if it is coloured by red colour or
not. The edges are examined in a sequence defined
by above-mentioned ordering. The chosen edge is
coloured red if and only if it belongs to a circle that
does not have a red coloured edge.

3. Uncoloured edges form a minimum spanning
tree.

We shall not discuss here the complexity of the

mentioned algorithms except to note that:
1. Borůvka’s algorithm, thanks its suitability for

parallel computation, is the basis of the fastest
known algorithms solving the MST problem,

2. “Methods solving the MST problem using
mainly the circle rule seem to be less efficient”[9]

3 Shortest path - Dijkstra’s algorithm
In the second section above we discussed the
shortest connection of all n vertices in a weighted
connected undirected graph, considering the given
weights as distances between two vertices. Could
the solution of the MST problem also serve as a
solution to the problem of how to find the shortest
path from one vertex to another in a connected
undirected graph with n vertices and non-negative
weights assigned to its edges?

The answer is no. See the shortest path from the
vertex a to the vertex h in the graph G1 (see Fig.1)
going through vertices b, c and f. Its length is 68
while the length of the path between the same
vertices in the blue minimum spanning tree of the
graph G1 (see Fig. 5) is 87!

However, it seems that there must be a
relationship between the two problems.

Let us consider Jarník’s-Prim’s algorithm again

(see section 2.2) and imagine the only modification:
At each step of the algorithm, by each vertex v
which doesn’t belong to the blue tree, save the
actual information describing the nearest distance
between the vertex v and the initial vertex a (instead
the nearest distance between the vertex v and the
blue tree). In this way we really get the correct
solution, namely the solution found in 1950’s by
E.W.Dijkstra (see [10]) applied on a connected
directed non-negative-weighted graph.

As a lucid illustration of the relation see the
Fig.10 where the Dijkstra’s algorithm finding the
shortest path from the vertex a to the vertex h in
the graph G1 (represented by adjacency matrix
on Fig.7) is described. Compare the process
with the process on the Fig.8.

WSEAS TRANSACTIONS on MATHEMATICS Eva Milkova

ISSN: 1109-2769 297 Issue 5, Volume 7, May 2008

a (0,a)
b (1,a)
c (7,a) (3,b)
d (22,a)(22,a)(22,a)
e (∞,a) (∞,a) (∞,a) (∞,a) (64,f) (44,g)
f (∞,a) (∞,a) (33,c) (33,c)
g (∞,a) (∞,a) (∞,a) (38,d)(38,d)
h (∞,a) (∞,a) (∞,a) (∞,a) (68,f) (68,f) (68,f) (68,f) (68,f)
i (∞,a) (∞,a) (∞,a) (∞,a) (∞,a) (∞,a) (∞,a) (∞,a) (79,j)
j (∞,a) (∞,a) (∞,a) (∞,a) (∞,a) (∞,a) (∞,a) (66,k)
k (∞,a) (∞,a) (∞,a) (∞,a) (61,f) (61,f) (61,f)
Fig.10 Dijkstra’s solution (a ,b, c, f, h) to the
shortest path between two vertices in the graph G1

4 Graph Searching
A consecutive searching of vertices and/or edges
occurs either directly or indirectly in almost all
graph algorithms (see e.g. recent WSEAS
transactions papers [11], [12], [13]).

Breadth-First-Search and Depth-First-Search are
two of the most used graph search algorithms. These
methods are usually explained on a rooted tree at
first and then the used ideas are extended to graphs.

In the following text we present mutual relations
between each of these algorithms and Jarník’s
solution of MST problem to get Breadth-First-
Search Tree and Depth-First-Search Tree. Then we
describe properties of these trees and mention their
use by solving other graph problems.

4.1 Graph Searching and MST Problem
Let us imagine a connected undirected graph with
all edges having the same weight (e.g. weight
w(e) = 1 for each edge e) and let us trace the
Jarník’s method for gaining the minimum spanning
tree on this graph (see section 2.2). One can see that
at each step an arbitrary edge, having one vertex in
the blue tree and the other not, is coloured blue. A
consecutive adding vertices into the blue tree can be
understood as a consecutive search of them. Hence,
to get either the Breadth-First Search or Depth-First
Search algorithm for consecutive search of all
vertices of the given connected undirected graph G,
we simply modify Jarník’s method in the following
way (see [14]).

Breadth-First Search: At each step we choose
from the uncoloured edges, having one vertex in the
blue tree and the other not, such an edge having the
end-vertex being added to the blue tree as the first of
all in blue tree vertices belonging to the mentioned
uncoloured edges and colour it blue. (Remark: To
identify such a end-vertex we store vertices adding
into the blue tree in the data structure queue
(FIFO)).

Depth-First Search: At each step we choose from
the uncoloured edges, having one vertex in the blue
tree and the other not, such an edge having the end-
vertex being added to the blue tree as the last of all
in blue tree vertices belonging to the mentioned
uncoloured edges and colour it blue. (Remark: To
identify such a end-vertex we store vertices adding
into the blue tree in the data structure stack (LIFO)).

The following figures Fig.11 - Fig.15 illustrates

four first steps of both search methods on the graph
G1 (Fig.1) starting in vertex a, and the created blue
spanning trees. To see mutual relations compare
created blue trees on figures Fig.6, Fig13 and Fig15.

Fig.11 Breadth-First Search on the graph G1 starting
with the vertex a

Fig.12 Blue tree obtained as the result of Breadth-
First Search on the graph G1 starting with a

WSEAS TRANSACTIONS on MATHEMATICS Eva Milkova

ISSN: 1109-2769 298 Issue 5, Volume 7, May 2008

Fig.13 Depth-First Search on the graph G1 starting
with the vertex a

Fig.14 Blue tree obtained as the result of Depth-
First Search on the graph G1 starting with a

4.2 Breadth and Depth-First-Search Trees
Let us describe both above illustrated blue trees as
rooted trees with the root a (Fig.15-Fig.16).

Fig.15 Rooted tree to the blue tree on the Fig.12

Fig.16 Rooted tree to the blue tree on the Fig.14

Generally, let us denote by (TB, v) the rooted tree
with the root v, where T

B

BB is the tree gained by the
Breadth-First Search with the initial vertex v. This
rooted tree (TB, v) we will call the Breadth-First
Search Tree. By analogy, let us denote by (T

B

D, v) the
rooted tree with the root v, where TD is the tree
gained by the Depth-First Search with the initial
vertex v. This rooted tree (TD, v) we will call the
Depth-First Search Tree.

There are the two following obvious statements.
Statement 1:
Given G connected undirected graph. If (TB, v) is

blue Breadth-First Search Tree of G, then the end-
vertices of each uncoloured edge of G belong either
to the same level or to the adjacent levels of (T

B

BB, v).

Statement 2:
Given G connected undirected graph. If (TD, v) is

blue Depth-First Search Tree of G, then for the end-
vertices of each uncoloured edge of G it follows that
one is the ancestor of the other in (TD, v).

From the statement 1 (statement 2 resp.)

describing the property of Breadth-First-Search Tree
(Depth-First-Search Tree resp.) the other statements
follow, as e.g.

Statement 3:
Given G connected undirected graph and (TB, v)

its blue Breadth-First Search Tree. There is a circle
of odd length in G if and only if there is an
uncoloured edge having both end-vertices in the
same level of (T

B

BB, v).

Statement 4:
Given G connected undirected graph and (TD, v)

its blue Depth-First Search Tree. For vertices of G it
follows:

WSEAS TRANSACTIONS on MATHEMATICS Eva Milkova

ISSN: 1109-2769 299 Issue 5, Volume 7, May 2008

a) v is a cut vertex if and only if v has at least
two direct descendants in (TD, v),

b) x ≠ v is a cut vertex if and only if there is
direct descendant y of x in (TD, v), such that neither
y nor a descendant of y is connected by uncoloured
edge of G with an ancestor of x in (TD, v).

4.3 Summary
Using Breadth-First-Search and Depth-First-

Search and the mentioned statements we are able
easily formulate other algorithms as, for example,
algorithms determining if the given graph is
bipartite or not, or if there is a circle in the given
graph containing the given vertex (edge
respectively), algorithms determining the girth of
the given graph, algorithms finding in the given
graph all cut vertices and all 2-connected
subgraphs as well. (Remark: Proofs of all
statements together with the detailed descriptions
and proofs of all algorithms mentioned above are
available in [14].)

However, to get needed information about end-
vertices of uncoloured edges of a connected
undirected graph it is also necessary to arrange a
consecutive search of edges (obviously together
with consecutive search of vertices to get searching
trees for validity of statements). It is easy to obtain
such algorithms using a small modification of the
above mentioned search algorithms. Especially, we
enhance the algorithms including data structures
FIFO and LIFO as follows.

Breadth-First Search of vertices and edges
1. Initially all vertices and edges of the graph G,

with n vertices and m edges, are uncoloured. Let us
choose any single vertex, put it into FIFO, colour it
blue and search it.

2. While the FIFO is not empty do the following
commands:

 choose the first vertex x in FIFO,
 if there is an uncoloured edge {x, y} then

if the vertex y is uncoloured, then search
and colour blue the vertex y and the edge
{x, y}, and put the vertex y into FIFO
else (i.e. if the ucoloured edge {x, y} has
both vertices already in the blue tree)
search and colour the edge {x, y} green

 else remove the vertex x from FIFO (i.e.
remove x in the case that it isn‘t end-vertex
of any uncoloured edge).

Depth-First Search of vertices and edges

1. Initially all vertices and edges of the graph G,
with n vertices and m edges, are uncoloured. Let us
choose any single vertex, put it into LIFO, colour it
blue and search it.

2. While the LIFO is not empty do the following
commands:

 choose the last vertex x in LIFO,
 if there is an uncoloured edge {x, y} then

if the vertex y is uncoloured, then search
and colour blue the vertex y and the edge
{x, y}, and put the vertex y into LIFO
else (i.e. if the ucoloured edge {x, y} has
both vertices already in the blue tree)
search and colour the edge {x, y} green

 else remove the vertex x from LIFO (i.e.
remove x in the case that it isn‘t end-vertex of any
uncoloured edge).

When searching green edges we can achieve

needed information. Let us illustrate it at the
following example.

Example

Decide if the graph, represented by the following
adjacency matrix, is bipartite (i.e. if there does not
exist a circle of odd length).

 a b c d e f g h
a 1 1 1
b 1 1 1
c 1 1 1 1
d 1 1 1 1 1
e 1 1
f 1 1 1
g 1 1
h 1 1

We use Breadth-First-Search starting with
arbitrary vertex and when searching green edge we
determine if its both end-vertices are in the same
level of the created Breadth-First-Search tree. If
there is no such an edge, the graph is bipartite.

Solution
FIFO Breadth-First-Search tree green edge
a a(0,a)
a,b a(0,a), b(1,a)
a,b,c a(0,a), b(1,a), c(1,a)
a,b,c,d a(0,a), b(1,a), c(1,a), d(1,a)
b,c,d a(0,a), b(1,a), c(1,a), d(1,a) {b,c}

WSEAS TRANSACTIONS on MATHEMATICS Eva Milkova

ISSN: 1109-2769 300 Issue 5, Volume 7, May 2008

Both end-vertices of the edge {b,c} are in the same
level, thus the given graph is not bipartite.

All matter explained in this chapter was used on

connected graphs, and can, when dealing with
particular components of the given graph, be easily
extended to graphs that need not be connected.

5 Mazes and labyrinths
There is an old question: “How to escape from a
maze or labyrinth?” In the graph terminology the
maze problem requires a walk, which contains every
edge of the graph. Although it is ancient problem
the seriously examination of it started not before the
19th century. The efficient methods for solution of
this problem were created by Trémaux in 1882 and
by Tarry in 1895 (see [15]).

Let us imagine a maze as a graph (each passage
is represented by an edge and each junction by a
vertex) and remind both methods using graph
terminology.

Trémaux’s rules
1. Each edge is traversed exactly once in one

direction,
2. Do not return along the edge which has led to

a vertex for the first time unless you cannot
do otherwise,

3. If you come along the edge to the already
visited vertex go immediately along the same
edge back.

Tarry’s rules
1. Each edge is traversed exactly once in one

direction,
2. Do not return along the edge which has led to

a vertex for the first time unless you cannot
do otherwise.

It is obvious that Trémaux algorithm is a special

case of Tarry’s algorithm. Moreover, Trémaux
algorithm is identical with our Depth-First Search
of vertices and edges algorithm (see the section 4.3)
if we consider it also as walk through edges.

Let us complete this part with a note that another
special case of Tarry’s algorithm was found in 1973
by Edmonds and Johnson.

Edmonds-Johnson’s rules
1. Each edge is traversed exactly once in one

direction,
2. Do not return along the edge which has led to

a vertex for the first time unless you cannot
do otherwise,

3. If you have more edges available when
leaving a vertex prefer this edge which has
not been already visited.

This algorithm also gives a suitable solution to

the problem of how to find an Eulerian trail in an
Eulerian graph. When looking for Eulerian trail in
the given Eulerian graph it is sufficient to use
Edmonds-Johnson algorithm and consider the
“back” traverse of edges. This is the solution.

We shall emphasize that the Edmonds-Johnson’s

approach to searching edges of a connected
undirected graph, as opposed to the Trémaux ones,
does not search vertices. This can be clearly seen on
the data structure LIFO. Using the Trémaux
approach each vertex occurs in LIFO exactly once,
however using the Edmonds-Johnson’s approach
each vertex occurs as many times as it was
traversed.

6 Program Graphs
The figures used in this paper ware created within
the program “Graphs” [16]. Let us very briefly
introduce this useful multimedia study material.

The program “Graphs” enables the creation of a
new graph, editing it, working on it (moving,
colouring vertices, edges, etc.), saving graph in the
program, and saving the graph in bmp format.

Regarding the topic discussed in this paper the
most important option of the program is the
possibility to open more than one window so that
two (three) objects can be compared at once (see
Fig.17).

Fig.17 Program “Graphs” – two opened windows;
left: Breadth-First-Search of the given graph; right:
its Breadth-First-Search tree

Several algorithms in different windows can be

started at a time as well. This option is very useful
when illustrating the differences between two
(three) algorithms applied on the same graph.

WSEAS TRANSACTIONS on MATHEMATICS Eva Milkova

ISSN: 1109-2769 301 Issue 5, Volume 7, May 2008

6 Results and Conclusion
Well-prepared students in the area of Graph Theory
and Combinatorial Optimization should be able to
describe various practical situations with the aid of
graphs, solve the given problem expressed by the
graph, and translate the gained solution back into
the initial situation.

The method described in the paper of how they
have been made familiar with combinatorial
algorithms in contexts enables them not only to get
deeper insight into the subject matter but also to
enhance their logical thinking and their facility to
solve everyday life practical situations. Thus, they
gain many useful ideas and inspiration for their own
solutions to tasks within various research areas.

References:
[1] Milková, E., THE MINIMUM SPANNING

TREE PROBLEM: Jarník's solution in
historical and present context, Electronic Notes
in Discrete Mathematics, 28 (2007), pp. 309–
316.

[2] Nešetřil, J., Milková, E., Nešetřilová,
H., Otakar Borůvka on Minimum Spanning
Tree Problem, Discrete mathematics, 233
 (2001), pp. 3-36.

[3] Borůvka, O., O jistém problému minimálním,
Práce Mor. Přírodověd. Spol v Brně, 3, 1926,
pp. 37-58.

[4] Borůvka, O.: Příspěvek k řešení otázky
ekonomické stavby elektrovodních sítí.
Elektrotechnický obzor, 15, 1926, 153-154.

[5] Graham, R. L., Hell, P., On the History of the
Minimum Spanning Tree Problem, Annals of
the History of Computing 7, 1, 1985, pp. 43-57.

[6] Jarník, V., O jistém problému minimálním,
Práce Mor. Přírodověd. Spol.v Brně, 6, 1930,
pp. 57-63.

[7] Prim, R. C., Shortest connection networks and
some generalizations, Bell Syst. Tech.
J., 36, 1957, pp. 1389-1401.

[8] Kruskal, J. B., On the shortest spanning tree of
a graph and the travelling salesman problem,
Proc. Amer. Math. Soc., 7, 1956, pp. 48-50.

[9] Tarjan, R. E., Data structures and network
algorithms, Ch. 6, CBMS Regional Conf.,
SIAM, Philadelphia, 1983

[10] Dijkstra, E. W., A note on two problems in
connection with graphs, Numer. Math.,1,
1959, pp. 269-271.

[11] Brendel, R., Krawczyk , H., Application of
Social Relation Graphs for Early Detection of
Transient Spammers, WSEAS TRANSACTIONS
on INFORMATION SCIENCE &

APPLICATIONS, Issue 3, Volume 5, 2008,
pp.267-276.

[12] Nhor Sok Lang, Takao Shimomura, Quan
Liang Chen, Kenji Ikeda, Context-Dependent
Extensible Syntax-Oriented Verifier with
Recursive Verification, WSEAS
TRANSACTIONS on INFORMATION
SCIENCE & APPLICATIONS, Issue 2, Volume
5, 2008, pp.44-53.

[13] Azlinah Mohamed, Marina Yusoff, Itaza Afiani
Mohtar, Sofianita Mutalib, Shuzlina Abdul
Rahman, Constraint Satisfaction Problem
Using Modified Branch and Bound Algorithm,
WSEAS TRANSACTIONS on COMPUTERS,
Issue 1, Volume 7, 2008, pp.44-53.

[14] Milková, E., Optimalizace, třídění a
prohledávání stromů, diploma thesis, Charles
University, Faculty of Mathematics and
Physics, 1997.

[15] Biggs, N. L., Lloyd, K. E., Wilson, R. J.,Graph
theory 1736-1936, Clarendon Press,
Oxford, 1976.

[16] Pozdílek M., Grafové algoritmy: vizualizace,
Hradec Králové, diploma thesis, 2004.

WSEAS TRANSACTIONS on MATHEMATICS Eva Milkova

ISSN: 1109-2769 302 Issue 5, Volume 7, May 2008

