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Abstract: - The Theory of Graphs is a wonderful, practical discipline. Informatics has played a big part in its 
development, and these two fields are strongly interconnected. This can, perhaps, mainly be seen in the design 
of computer algorithms. On the one hand, there are many methods which can be used for solving the same 
problem, while on the other hand, using effective modifications of one algorithm, we can devise methods of 
solving various other tasks. To educate students in the area close connected with Graph Theory and Computer 
Science, called as Combinatorial or Discrete Optimization, it is important to make them familiar with certain 
algorithms in contexts to be able to get deeper into each problem and entirely understand it. In the paper we 
present just a few ideas that have proved successful in teaching and learning this quite young part of 
mathematics. 
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1 Introduction 
Mathematics is one of the oldest science however 
the area known as Combinatorial or Discrete 
Optimization close connected with Graph Theory 
and Computer Science is quite young.  

When we deal with a particular problem we try 
to examine it from more than one point of view if 
possible and discuss various approaches to its 
solution. On the one hand, there are many methods 
which can be used for solving the same problem, 
while on the other hand, using effective 
modifications of one algorithm, we can devise 
methods of solving various other tasks.  

 
In this paper we discuss mutual relationships 

between solutions to some known problems. We 
devote attention to the well-known Minimum 
Spanning Tree Problem, including Jarník’s 
(Jarník’s-Prim’s resp.) approach to it, at first. We 
meet readers with different descriptions of some 
discussed solutions as well. 

Then we discuss the relationship between 
Dijkstra’s algorithm finding the shortest path and 
the Jarník’s-Prim’s solution to the above mentioned 
Minimum Spanning Tree Problem.  

It is followed by illustration of how the most 
used searching algorithms, Breadth-First-Search and 
Depth-First-Search, are also connected with the 

Jarník’s algorithm. We describe the properties of the 
Breadth-First-Search Tree and Depth-First-Search 
Tree and mention how the properties of the Search 
Trees influence our approach to the solutions of the 
other commonly used algorithms. 

Finally we deal with the maze problem. We 
remind three approaches to the solution of this 
problem, Trémaux, Tarry, and Edmonds-Johnson 
algorithms, their mutual relationship and relation of 
Edmonds-Johnson algorithm to the problem of how 
to find Eulerian trail in an Eulerian graph. 

 
At the end of the paper we mention one 

multimedia program that serves as a visual 
representation of basic graph-concepts and graph-
algorithms using a colouring process on graphs 
created within the program and emphasize its 
advantages for enhancing teaching and learning the 
discussed topic. 

 
 

2 Minimum Spanning Tree Problem 
In the contemporary terminology the Minimum 
Spanning Tree (MST in short) problem can be 
formulated as follows (see [1]): 
Given a connected undirected graph G = (V, E) with 
n vertices, m edges and real weights assigned to its 
edges (i.e. w: E→R). Find among all spanning trees 
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of G a spanning tree T = (V, E’) having minimum 
value w(T) = Σ(w(e); e ∈ E’), a so-called minimum 
spanning tree. 

“The Minimum Spanning Tree problem is 
generally regarded as a cornerstone of 
Combinatorial Optimization. Its importance and 
popularity stem from several reasons. The MST 
problem may be efficiently solved for large graphs 
by several algorithms. It has wide application. 
Methods for its solution have produced important 
ideas in modern combinatorics and have played 
central role in the design of graph algorithms.”[2] 

 
First formulation of the problem was given in 

1926 by the Czech mathematician Otakar Borůvka. 
(Remark: Otakar Borůvka was introduced to the 
problem by his friend, Jindřich Saxel, an employee 
of the West_Moravian Powerplants. It was at that 
time that electrification of the south and west parts 
of Moravia was beginning, and Borůvka was asked 
for help in solving the problem. The challenge was 
how and through which places to design the 
connection of several tens of municipalities in the 
Moravia region so that the solution was as short and 
consequently as low-cost as possible. Borůvka not 
only correctly stated this problem but also solved it 
in the papers [3] and [4]).  
 

 
2.1 Borůvka’s algorithm 
There are various descriptions of Borůvka’s solution 
in most of the modern textbooks. We introduce two 
algorithms solving the problem as an edge-
colouring process (see [1], [2]).(Remark: The survey 
of the works devoted to the MST problem until 
1985 is given in the article [5] and this historical 
paper is followed up in the article [2] Otakar 
Borůvka on minimum spanning tree problem: 
Translation of both the 1926 papers, comments, 
history.) 

 
It is necessary to remember that Borůvka’s 

solution of the MST problem presumes distinct 
edge-weights in the given graph. However, this 
condition does not restrict the universality of the 
problem (e.g. we can list all edges and in the case 
that two edges are equal weights the first on our list 
we consider as the smaller one.) 

 
Borůvka’s algorithm – first description
1. Initially all edges of the graph G are 

uncoloured and let each vertex be a trivial blue tree. 
2. Repeat the following colouring step until there 

is only one blue tree. 

Colouring step: For each blue tree T, select the 
minimum-weight uncoloured edge incident to T (i.e. 
edge having one vertex in T and the other not). 
Colour all selected edges blue. 

3.  Blue coloured edges form the unique 
minimum spanning tree. 

(Remark: The distinct edge-weights guarantee 
that the Borůvka’s solution finishes by gaining the 
unique blue minimum spanning tree of G.) 

 
 
Borůvka’s algorithm – second description 
1. Coloring: For each vertex v of the given graph 

G we color blue the minimum-weight edge incident 
to v. 

2. Contraction: We replace each blue tree by a 
single vertex. In this procedure we eliminate loops 
(i.e. edges with both ends in the same blue tree) and 
all the parallel edges (i.e. edges between the same 
pairs of blue trees) with the exception of the lowest 
weight edge. 

3. We apply the algorithm recursively to find the 
blue spanning tree T’ of contracted graph. 

The minimum spanning tree T is formed by the 
contracted blue edges together with the edges of T’. 

 
On figures Fig.1 – Fig.5 second description of 

Borůvka’s algorithm of the MST problem is 
illustrated there using the following graph G1. 

 

 
Fig.1 Given graph G1  
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Fig.2 Coloring  
 

          
Fig.3 Contraction      and     Coloring 
 
 

           
Fig.4 Contraction      and     Coloring 
 

 
Fig.5 The found unique minimum spanning tree of 
the given graph G1 

2.2 Jarník’s algorithm 
Another Czech mathematician, Vojtěch Jarník, 
quickly realized the novelty and importance of the 
problem after reading Boruvka’s paper. However 
the solution seemed very complicated to him. He 
started to think about another solution and soon 
afterwards wrote a letter to Otakar Borůvka in 
which he suggested a much easier method and 
consequently he published it in the article [6]. In the 
present terminology we can describe it as follow [1]. 

 
Jarník’s algorithm
1. Initially all vertices and edges of the graph G 

are uncoloured. Let us choose any single vertex and 
suppose it to be a trivial blue tree. 

2. At each of (n - 1) steps, colour the minimum-
weight uncoloured edge, having one vertex in the 
blue tree and the other not, blue. (In case, there are 
more such edges, choose any of them.) 

3.  The blue coloured edges form a minimum 
spanning tree. 

 
Fig. 6 illustrates four first steps of Jarník’s 

solution of MST problem on the graph G1 
represented by the Fig.1 supposing the vertex a be 
the initial trivial blue tree. (Remark For clearer 
illustration of the consecutively obtained blue trees 
we also denote vertices by the color blue.) 
Obviously, the whole solution is the same as that on 
the Fig.5. 

 

 
Fig.6 Jarník’s solution of the MST problem  
 
 

Much later and unaware of Jarník’s solution, 
R.C. Prim created the same solution as Jarník, 
during the time of newly developing field, computer 
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science. He used a more detailed implementation 
suitable for computer processing in the paper [7].  

To use the following description of his solution 
let us consider weights w(e) assigned to edges of a 
given graph as distances. (see [1]) 

 
Jarník’s-Prim’s algorithm 
1. Let us choose any single vertex a and suppose 

it to be a blue tree. Put the value (0, a) by the vertex 
a. By each vertex v which doesn’t belong to the blue 
tree, the actual information (f(v), u) is saved, 
describing the nearest distance f(v) between the 
vertex v and the blue tree (from the vertex u). Thus 
initially by each vertex v ≠ a put the value 
(w({a, v}, a) if v is a neighbor of the vertex a and 
the value (∞, a) if v is not a neighbor of the vertex a. 

2. At each of (n - 1) steps take the following 
commands: 

 choose a vertex z with the actual 
information (f(z), t) such that 
f(z) = min{f(v); v doesn’t belong to the 
blue tree}, 

 colour the corresponding edge {z, t} blue, 
 by each neighbor v of the vertex z, change 

the value (f(v), u)  to the value (w({z, v}), 
z) in the case that w({z, v}) <  f(v). 

3. The blue coloured edges form a minimum 
spanning tree. 

 
Using adjacency matrix of the graph G1 on the 

Fig.1 let us illustrate Jarník’s-Prim’s solution of 
MST problem (see Fig.7). 

 
 a b c d e f g h i j k 

a  1 7 22        

b 1  2         

c 7 2    30      

d 22     11 16     

e      31 6     

f   30 11 31  18 35   28

g    16 6 18      

h      35   8 24  

i        8  13  

j        24 13  5

k      28    5  

Fig.7 Adjacency matrix of the graph G1  
 

a (0,a)  
b (1,a)  
c (7,a) (2,b) 
d (22,a)(22,a)(22,a) 
e (∞,a)  (∞,a)  (∞,a)  (∞,a) (31,f) (6,g) 
f (∞,a)  (∞,a) (30,c) (11,d)  
g (∞,a)  (∞,a)  (∞,a)  (16,d)(16,d) 
h (∞,a)  (∞,a)  (∞,a)  (∞,a)  (35,f) (35,f) (35,f) (35,f) (24,j) (8,i) 
i (∞,a)  (∞,a)  (∞,a)  (∞,a)  (∞,a)  (∞,a)  (∞,a)  (∞,a) (13,j) 
j (∞,a)  (∞,a)  (∞,a) (∞,a)  (∞,a)  (∞,a)  (∞,a)   (5,k) 
k (∞,a)  (∞,a)  (∞,a)  (∞,a) (28,f) (28,f) (28,f)  
Fig.8 Jarník’s-Prim’s solution, blue coloured edges 
are {a,b},{b,c},{a,d},{g,e},{d,f},{d,g},{i,h},{j,i}, {k,j},{f,k} 

 
 
2.3 Kruskal’s algorithm 
The third classical solution of the MST problem was 
discovered by J. B. Kruskal [8]. We describe it as an 
edge-colouring process as well and illustrate it again 
on the graph G1 represented by the adjacency matrix 
on Fig.7, this time with help of disjoint sets of 
vertices (each set will represent one blue tree) using 
operation find(x) and union(M, N) (see Fig.9). 

 
Kruskal’s algorithm 
1. Initially all edges of the graph G are 

uncoloured. Let us order the edges in nondecreasing 
order by weight. Let each vertex be a trivial blue 
tree. 

2. At each of m steps decide about colouring 
exactly one edge if it is coloured by blue colour or 
not. The edges are examined in a sequence defined 
by above-mentioned ordering. The chosen edge is 
coloured blue if and only if it doesn’t form a circle 
with the other blue edges. 

3.  The blue coloured edges form a minimum 
spanning tree. 

 
sorted disjoint sets of vertices  colour  
edges {a} {b} {c} {d} {e} {f} {g} {h} {i} {j} {k} blue  
{a,b} {a} {b} {c} {d} {e} {f} {g} {h} {i} {j} {k} YES 
{b,c}  {a, b} {c} {d} {e} {f} {g} {h} {i} {j} {k} YES 
{k,j}  {a, b, c} {d} {e} {f} {g} {h} {i} {j} {k}  YES 
{e,g} {a, b, c} {d} {e} {f} {g} {h} {i} {j, k} YES 
{a,c} {a, b, c} {d} {e} {f} {g} {h} {i} {j, k} NO 
{h,i} {a, b, c} {d} {e} {f} {g} {h} {i} {j, k} YES 
{d,f} {a, b, c} {d} {e} {f} {g} {h, i} {j, k} YES 
{i, j} {a, b, c} {d, f} {e} {g} {h, i} {j, k} YES 
{d,g} {a, b, c} {d, f} {e} {g} {h, i, j, k} YES 
{f,g} {a, b, c} {d, f, g} {e} {h, i, j, k} NO 
{a,d} {a, b, c} {d, f, g} {e} {h, i, j, k} YES 
{h,j} {a, b, c, d, f, g} {e} {h, i, j, k} NO 
{f,k} {a, b, c, d, f, g} {e} {h, i, j, k} YES 
{c,f} {a, b, c, d, f, g, h, i, j, k} {e}  NO 
{e,f} {a, b, c, d, f, g, h, i, j, k} {e}  YES 
{f,h} {a, b, c, d, f, g, h, i, j, k, e}  NO 
Fig.9 Kruskal’s solution of MST problem on G1
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2.4 Summary  
Comparing the solutions written above we can 
characterize the basic difference as follows: 

In Borůvka’s solution, at each step the union of 
all the blue trees being the nearest to one another is 
demonstrated. 

Jarník’s solution at each of (n-1) steps spreads 
the only blue tree that contains the initial vertex by 
the nearest vertex.  

Kruskal’s solution connects the two nearest blue 
trees in one blue tree at each step in which one edge 
is coloured blue.  

 
Two different descriptions of Borůvka’s 

algorithm allow a better insight to his solution. Both 
descriptions of Jarník’s solution are important for 
description of other algorithms. Namely, from the 
first algorithm (see 2.2, Jarník’s algorithm) we can 
proceed to the searching methods (see section 4) and 
from the second algorithm (see 2.2, Jarník’s-Prim’s 
algorithm) we can continue to the algorithm finding 
the shortest path between two vertices of a 
connected undirected non-negative-weighted graph 
(see the following section 3). 

 
Students should be aware that, so far, all known 

methods solving MST problem make use of the 
various combinations of the following two dual 
properties of trees ([2], [9]). 

Cut rule: The optimal solution T to MST 
problem contains an edge with minimal weight in 
every cut. 

Circle rule: The edge of the circle C whose 
weight is larger than the weights of the remaining 
edges of C cannot belong to the optimal solution T. 

 
Thus Borůvka’s and Jarník’s (Jarník’s-Prim’s) 

solutions are based on the cut rule only. Kruskal’s 
algorithm combines both rules according to the 
initial order of edges, and thereby points out the 
blue one.  

Kruskal’s provided also the following similar 
elegant solution concerning the circle rule. 

 
Kruskal’s dual algorithm 
1. Initially all edges of the graph G are 

uncoloured. Let us order the edges in nonincreasing 
order by weight. Let each vertex be a trivial blue 
tree. 

2. At each of m steps decide about colouring 
exactly one edge if it is coloured by red colour or 
not. The edges are examined in a sequence defined 
by above-mentioned ordering. The chosen edge is 
coloured red if and only if it belongs to a circle that 
does not have a red coloured edge. 

3. Uncoloured edges form a minimum spanning 
tree. 

 
We shall not discuss here the complexity of the 

mentioned algorithms except to note that: 
1. Borůvka’s algorithm, thanks its suitability for 

parallel computation, is the basis of the fastest 
known algorithms solving the MST problem, 

2. “Methods solving the MST problem using 
mainly the circle rule seem to be less efficient”[9] 

 
 

3 Shortest path - Dijkstra’s algorithm 
In the second section above we discussed the 
shortest connection of all n vertices in a weighted 
connected undirected graph, considering the given 
weights as distances between two vertices. Could 
the solution of the MST problem also serve as a 
solution to the problem of how to find the shortest 
path from one vertex to another in a connected 
undirected graph with n vertices and non-negative 
weights assigned to its edges?  

The answer is no. See the shortest path from the 
vertex a to the vertex h in the graph G1 (see Fig.1) 
going through vertices b, c and f. Its length is 68 
while the length of the path between the same 
vertices in the blue minimum spanning tree of the 
graph G1 (see Fig. 5) is 87! 

However, it seems that there must be a 
relationship between the two problems.  

 
Let us consider Jarník’s-Prim’s algorithm again 

(see section 2.2) and imagine the only modification: 
At each step of the algorithm, by each vertex v 
which doesn’t belong to the blue tree, save the 
actual information describing the nearest distance 
between the vertex v and the initial vertex a (instead 
the nearest distance between the vertex v and the 
blue tree). In this way we really get the correct 
solution, namely the solution found in 1950’s by 
E.W.Dijkstra (see [10]) applied on a connected 
directed non-negative-weighted graph. 
 

As a lucid illustration of the relation see the 
Fig.10 where the Dijkstra’s algorithm finding the 
shortest path from the vertex a to the vertex h in 
the graph G1 (represented by adjacency matrix 
on Fig.7) is described. Compare the process 
with the process on the Fig.8. 
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a (0,a)  
b (1,a)  
c (7,a) (3,b) 
d (22,a)(22,a)(22,a) 
e (∞,a)  (∞,a)  (∞,a)  (∞,a) (64,f) (44,g) 
f (∞,a)  (∞,a) (33,c) (33,c) 
g (∞,a)  (∞,a)  (∞,a)  (38,d)(38,d) 
h (∞,a)  (∞,a)  (∞,a)  (∞,a)  (68,f) (68,f) (68,f) (68,f) (68,f)  
i (∞,a)  (∞,a)  (∞,a)  (∞,a)  (∞,a)  (∞,a)  (∞,a)  (∞,a) (79,j)  
j (∞,a)  (∞,a)  (∞,a) (∞,a)  (∞,a)  (∞,a)  (∞,a)   (66,k) 
k (∞,a)  (∞,a)  (∞,a)  (∞,a) (61,f) (61,f) (61,f)  
Fig.10 Dijkstra’s solution (a ,b, c, f, h) to the 
shortest path between two vertices in the graph G1  
 
 
4 Graph Searching 
A consecutive searching of vertices and/or edges 
occurs either directly or indirectly in almost all 
graph algorithms (see e.g. recent WSEAS 
transactions papers [11], [12], [13]). 

Breadth-First-Search and Depth-First-Search are 
two of the most used graph search algorithms. These 
methods are usually explained on a rooted tree at 
first and then the used ideas are extended to graphs. 

In the following text we present mutual relations 
between each of these algorithms and Jarník’s 
solution of MST problem to get Breadth-First-
Search Tree and Depth-First-Search Tree. Then we 
describe properties of these trees and mention their 
use by solving other graph problems. 

 
 

4.1 Graph Searching and MST Problem 
Let us imagine a connected undirected graph with 
all edges having the same weight (e.g. weight 
w(e) = 1 for each edge e) and let us trace the 
Jarník’s method for gaining the minimum spanning 
tree on this graph (see section 2.2). One can see that 
at each step an arbitrary edge, having one vertex in 
the blue tree and the other not, is coloured blue. A 
consecutive adding vertices into the blue tree can be 
understood as a consecutive search of them. Hence, 
to get either the Breadth-First Search or Depth-First 
Search algorithm for consecutive search of all 
vertices of the given connected undirected graph G, 
we simply modify Jarník’s method in the following 
way (see [14]). 

Breadth-First Search: At each step we choose 
from the uncoloured edges, having one vertex in the 
blue tree and the other not, such an edge having the 
end-vertex being added to the blue tree as the first of 
all in blue tree vertices belonging to the mentioned 
uncoloured edges and colour it blue. (Remark: To 
identify such a end-vertex we store vertices adding 
into the blue tree in the data structure queue 
(FIFO)). 

Depth-First Search: At each step we choose from 
the uncoloured edges, having one vertex in the blue 
tree and the other not, such an edge having the end-
vertex being added to the blue tree as the last of all 
in blue tree vertices belonging to the mentioned 
uncoloured edges and colour it blue. (Remark: To 
identify such a end-vertex we store vertices adding 
into the blue tree in the data structure stack (LIFO)). 

 
The following figures Fig.11 - Fig.15 illustrates 

four first steps of both search methods on the graph 
G1 (Fig.1) starting in vertex a, and the created blue 
spanning trees. To see mutual relations compare 
created blue trees on figures Fig.6, Fig13 and Fig15.  

 

 
Fig.11 Breadth-First Search on the graph G1 starting 
with the vertex a  
 
 

 
Fig.12 Blue tree obtained as the result of Breadth-
First Search on the graph G1 starting with a 
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Fig.13 Depth-First Search on the graph G1 starting 
with the vertex a 
 
 

 
Fig.14 Blue tree obtained as the result of Depth-
First Search on the graph G1 starting with a  
 
 
4.2   Breadth and Depth-First-Search Trees 
Let us describe both above illustrated blue trees as 
rooted trees with the root a (Fig.15-Fig.16). 

 
Fig.15 Rooted tree to the blue tree on the Fig.12  

 
Fig.16 Rooted tree to the blue tree on the Fig.14 
 

Generally, let us denote by (TB, v) the rooted tree 
with the root v, where T

B

BB is the tree gained by the 
Breadth-First Search with the initial vertex v. This 
rooted tree (TB, v) we will call the Breadth-First 
Search Tree. By analogy, let us denote by (T

B

D, v) the 
rooted tree with the root v, where TD is the tree 
gained by the Depth-First Search with the initial 
vertex v. This rooted tree (TD, v) we will call the 
Depth-First Search Tree. 

 
There are the two following obvious statements. 
Statement 1: 
Given G connected undirected graph. If (TB, v) is 

blue Breadth-First Search Tree of G, then the end-
vertices of each uncoloured edge of G belong either 
to the same level or to the adjacent levels of (T

B

BB, v). 

Statement 2: 
Given G connected undirected graph. If (TD, v) is 

blue Depth-First Search Tree of G, then for the end-
vertices of each uncoloured edge of G it follows that 
one is the ancestor of the other in (TD, v). 

 
From the statement 1 (statement 2 resp.) 

describing the property of Breadth-First-Search Tree 
(Depth-First-Search Tree resp.) the other statements 
follow, as e.g. 

Statement 3: 
Given G connected undirected graph and (TB, v) 

its blue Breadth-First Search Tree. There is a circle 
of odd length in G if and only if there is an 
uncoloured edge having both end-vertices in the 
same level of (T

B

BB, v). 

Statement 4: 
Given G connected undirected graph and (TD, v) 

its blue Depth-First Search Tree. For vertices of G it 
follows: 
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a)  v is a cut vertex if and only if v has at least 
two direct descendants in (TD, v), 

b)  x ≠ v is a cut vertex if and only if there is 
direct descendant y of x in (TD, v), such that neither 
y nor a descendant of y is connected by uncoloured 
edge of G with an ancestor of x in (TD, v). 
 
 

4.3 Summary 
Using Breadth-First-Search and Depth-First-

Search and the mentioned statements we are able 
easily formulate other algorithms as, for example, 
algorithms determining if the given graph is 
bipartite or not, or if there is a circle in the given 
graph containing the given vertex (edge 
respectively), algorithms determining the girth of 
the given graph, algorithms finding in the given 
graph all cut vertices and all 2-connected 
subgraphs as well. (Remark: Proofs of all 
statements together with the detailed descriptions 
and proofs of all algorithms mentioned above are 
available in [14].) 

However, to get needed information about end-
vertices of uncoloured edges of a connected 
undirected graph it is also necessary to arrange a 
consecutive search of edges (obviously together 
with consecutive search of vertices to get searching 
trees for validity of statements). It is easy to obtain 
such algorithms using a small modification of the 
above mentioned search algorithms. Especially, we 
enhance the algorithms including data structures 
FIFO and LIFO as follows. 

 
 
Breadth-First Search of vertices and edges
1. Initially all vertices and edges of the graph G, 

with n vertices and m edges, are uncoloured. Let us 
choose any single vertex, put it into FIFO, colour it 
blue and search it. 

2. While the FIFO is not empty do the following 
commands: 

 choose the first vertex x in FIFO, 
 if there is an uncoloured edge {x, y} then  

if the vertex y is uncoloured, then search 
and colour blue the vertex y and the edge 
{x, y}, and put the vertex y into FIFO 
else (i.e. if the ucoloured edge {x, y} has 
both vertices already in the blue tree) 
search and colour the edge {x, y} green 

 else remove the vertex x from FIFO (i.e. 
remove x in the case that it isn‘t end-vertex 
of any uncoloured edge). 

 
 

 
Depth-First Search of vertices and edges 

1. Initially all vertices and edges of the graph G, 
with n vertices and m edges, are uncoloured. Let us 
choose any single vertex, put it into LIFO, colour it 
blue and search it. 

2. While the LIFO is not empty do the following 
commands: 

 choose the last vertex x in LIFO, 
 if there is an uncoloured edge {x, y} then  

if the vertex y is uncoloured, then search 
and colour blue the vertex y and the edge 
{x, y}, and put the vertex y into LIFO 
else (i.e. if the ucoloured edge {x, y} has 
both vertices already in the blue tree) 
search and colour the edge {x, y} green 

 else remove the vertex x from LIFO (i.e. 
remove x in the case that it isn‘t end-vertex of any 
uncoloured edge). 

 
When searching green edges we can achieve 

needed information. Let us illustrate it at the 
following example. 

 
Example 

Decide if the graph, represented by the following 
adjacency matrix, is bipartite (i.e. if there does not 
exist a circle of odd length).  

 a b c d e f g h 
a  1 1 1     
b 1  1     1 
c 1 1  1 1    
d 1  1  1 1 1  
e   1 1     
f    1   1 1 
g    1  1   
h  1    1   

We use Breadth-First-Search starting with 
arbitrary vertex and when searching green edge we 
determine if its both end-vertices are in the same 
level of the created Breadth-First-Search tree. If 
there is no such an edge, the graph is bipartite. 
 
Solution 
FIFO Breadth-First-Search tree green edge 
a           a(0,a) 
a,b         a(0,a), b(1,a) 
a,b,c     a(0,a), b(1,a), c(1,a) 
a,b,c,d  a(0,a), b(1,a), c(1,a), d(1,a) 
b,c,d  a(0,a), b(1,a), c(1,a), d(1,a)        {b,c}   
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Both end-vertices of the edge {b,c} are in the same 
level, thus the given graph is not bipartite. 

 
All matter explained in this chapter was used on 

connected graphs, and can, when dealing with 
particular components of the given graph, be easily 
extended to graphs that need not be connected. 

 
 

5 Mazes and labyrinths 
There is an old question: “How to escape from a 
maze or labyrinth?” In the graph terminology the 
maze problem requires a walk, which contains every 
edge of the graph. Although it is ancient problem 
the seriously examination of it started not before the 
19th century. The efficient methods for solution of 
this problem were created by Trémaux in 1882 and 
by Tarry in 1895 (see [15]). 

Let us imagine a maze as a graph (each passage 
is represented by an edge and each junction by a 
vertex) and remind both methods using graph 
terminology. 

Trémaux’s rules 
1. Each edge is traversed exactly once in one 

direction, 
2. Do not return along the edge which has led to 

a vertex for the first time unless you cannot 
do otherwise, 

3. If you come along the edge to the already 
visited vertex go immediately along the same 
edge back. 

 
Tarry’s rules 
1. Each edge is traversed exactly once in one 

direction, 
2. Do not return along the edge which has led to 

a vertex for the first time unless you cannot 
do otherwise. 

 
It is obvious that Trémaux algorithm is a special 

case of Tarry’s algorithm. Moreover, Trémaux 
algorithm is identical with our Depth-First Search 
of vertices and edges algorithm (see the section 4.3) 
if we consider it also as walk through edges. 

Let us complete this part with a note that another 
special case of Tarry’s algorithm was found in 1973 
by Edmonds and Johnson.  

Edmonds-Johnson’s rules 
1. Each edge is traversed exactly once in one 

direction, 
2. Do not return along the edge which has led to 

a vertex for the first time unless you cannot 
do otherwise, 

3. If you have more edges available when 
leaving a vertex prefer this edge which has 
not been already visited. 

 
This algorithm also gives a suitable solution to 

the problem of how to find an Eulerian trail in an 
Eulerian graph. When looking for Eulerian trail in 
the given Eulerian graph it is sufficient to use 
Edmonds-Johnson algorithm and consider the 
“back” traverse of edges. This is the solution. 

 
We shall emphasize that the Edmonds-Johnson’s 

approach to searching edges of a connected 
undirected graph, as opposed to the Trémaux ones, 
does not search vertices. This can be clearly seen on 
the data structure LIFO. Using the Trémaux 
approach each vertex occurs in LIFO exactly once, 
however using the Edmonds-Johnson’s approach 
each vertex occurs as many times as it was 
traversed. 

 
 

6 Program Graphs 
The figures used in this paper ware created within 
the program “Graphs” [16]. Let us very briefly 
introduce this useful multimedia study material.  

The program “Graphs” enables the creation of a  
new graph, editing it, working on it (moving, 
colouring vertices, edges, etc.), saving graph in the 
program, and saving the graph in bmp format.  

 

Regarding the topic discussed in this paper the 
most important option of the program is the 
possibility to open more than one window so that 
two (three) objects can be compared at once (see 
Fig.17).  

 
Fig.17  Program “Graphs” – two opened windows; 
left: Breadth-First-Search of the given graph; right: 
its Breadth-First-Search tree 

 
Several algorithms in different windows can be 

started at a time as well. This option is very useful 
when illustrating the differences between two 
(three) algorithms applied on the same graph. 
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6 Results and Conclusion 
Well-prepared students in the area of Graph Theory 
and Combinatorial Optimization should be able to 
describe various practical situations with the aid of 
graphs, solve the given problem expressed by the 
graph, and translate the gained solution back into 
the initial situation. 

The method described in the paper of how they 
have been made familiar with combinatorial 
algorithms in contexts enables them not only to get 
deeper insight into the subject matter but also to 
enhance their logical thinking and their facility to 
solve everyday life practical situations. Thus, they 
gain many useful ideas and inspiration for their own 
solutions to tasks within various research areas. 
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