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Abstract: - We consider the fluctuations of shapes of two phases boundaries of the one-dimensional 
statistical mechanics models. By applying the theory of one-dimensional random walk, the models of the two 
phases boundaries are constructed by assuming that there is a specified value of the large area in the 
intermediate region of the two phases boundaries. Then we investigate the asymptotical behavior of the 
corresponding sequence of probability measures describing the statistical properties of the two phases 
boundaries. We show that the limiting probability measures coincide with some conditional probability 
distribution of certain Gaussian distribution. Further we discuss the properties of fluctuations of phase 
separation lines for the Ising model, and we obtain the asymptotic properties of the two interfaces S.O.S. 
model. 
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1 Introduction 
The problem of description of shapes of phase 
boundaries is a well-known problem in statistical 
mechanics systems. In recent years, some research 
work has been done to investigate the statistical 
properties of the random phase boundaries for some 
statistical physics models, for example see Refs. [1-
8]. In this paper, we consider the statistical limiting 
properties of the two random phases boundaries 
model. This work originates in an attempt to 
describe the fluctuations of the phase boundaries in 
two random phases boundaries models (e.g. one-
dimensional two random phases boundaries S.O.S. 
model). In Ref. [1], the statistical properties of 
random walks and the interface of Widom-
Rowlinson model (conditioned by fixing a large 
area under their paths and conditioned by fixing the 
terminating point) are considered, and the central 
limit theorem for these conditional distributions is 
proved. In [7], the interfaces of supercritical Ising 
model (see [9-11]) on the lattice fractal---the 
Sierpinski carpet is studied. The similar problems 
arise in describing the fluctuations of two random 
phases boundaries models. In the first part of the 
present paper, with the conditions “fixed area” of 
the intermediate layer and “fixed end points” in a 
two random paths model, we study the limiting 

properties of the two random phases boundaries, see 
[12]. In the second part of this paper, the research 
results of the first part will be extended and 
improved, the statistical properties of the interfaces 
of S.O.S. model and the two-dimensional stochastic 
Ising model are studied. We show that the heights of 
the fluctuations of phase separation lines of the Ising 
model occur on a scale 1/ 2 1/ 2(ln )l l  for a large 
parameter β  and a large l  (where the Ising model 
is considered on a rectangle of horizontal side length 
2l). Then we discuss the asymptotic properties of 
the two interfaces S.O.S. model, and obtain the 
corresponding limiting results for the two interfaces 
S.O.S. model. 

In this paper, we consider the phase boundaries 
(or interfaces) models consisting of the interfaces 
without overhangs, and therefore its configurations 
of the horizontal length L  are represented by set of 
heights ,xh ∈Ζ  { }0 0 0, 1,...,Xx L x x x L∈ = + + ⊂ Ζ . 
At each site x of the one dimensional lattice Ζ , we 
attach the variable of “heights” xh ∈Ζ , therefore the 
configurations of the random interfaces model on a 
horizontal set XL  (with the length of L ) are 
represented by sets of heights LΩ = { } { }

X
x x L

h h
∈

= , 

for the simplicity, we assume 0 0x = . The energy of 
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the configuration { } { }
X

x x L
h h

∈
=  is determined by 

the Hamiltonian  

( )
1

1
0

( )
L

L i i
i

H h U h h
−

+
=

= −∑  

where ( )U ⋅  is a real-valued function. There are 
many possible choices for the function ( )U ⋅ , this 
means that the results of the present paper can be 
extended to some other interfaces models. For the 
sake of simplicity we restrict ourselves to the case 
of integer-valued heights xh ∈Ζ . Let a positive 
parameter β  be an inverse temperature, and the 
finite partition function of this system be 

[ ]
1

, exp ( )
L

L L
h Z h Z

Z H hβ β
∈ ∈

= −∑ ∑" . 

Then the corresponding Gibbs probability 
distribution on LΩ  is given by 

( ) ( ) [ ]1

, , exp ( )L L LP h Z H hβ β β
−

= − . 

Next we consider the two phases boundaries 
statistical mechanics model. At each site x of the 
one dimensional lattice Ζ , we attach two variables 
of “heights” 1 2,x xh h ∈Ζ , therefore the configurations 
of the random paths model on a horizontal set XL  
are represented by sets of heights 
{ } { }1 2 1 2, ,

X
x x x L

h h h h
∈

= , for the simplicity, we also 

assume 0 0x = . Now we define the interfaces of the 
two random interfaces model as followings, for 

[ ]0,1t∈ , 
1 1 ,h

L j
jX h
L

⎛ ⎞ =⎜ ⎟
⎝ ⎠

      Xj L∈  

( )1h
LX t = ( ) ( )1 1 11 ,h h

L L
j jj Lt X Lt j X
L L

+⎛ ⎞ ⎛ ⎞+ − + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

1j Lt j≤ ≤ +  

and 
2h

L
jX
L

⎛ ⎞
⎜ ⎟
⎝ ⎠

, ( )2h
LX t are defined similarly as 

above definitions. 
For Xx L∈ and 1x ≥ , let 1 1

1,x x xh hξ −= −  
2 2

1x x xh hη −= − , so we have 1
0

x
x xi

h ξ
=

=∑  and 
2

0

x
x xi

h η
=

=∑ , where let 0 0,ξ =  0 0η = . Let 

{ }, ,x Xx Lξ ξ= ∈  { },x Xx Lη η= ∈ , then the 
Hamiltonian of the model on the horizontal set of 

XL  is given by 

( )1 2
1

( , ) ( ) ( )
L

L i i
i

H U Uξ η ξ η
=

= +∑  

where 1( )U ⋅ , 2 ( )U ⋅  are real-valued functions. The 
partition function of the dynamic system is defined 
as following 

[ ],
,

exp ( , )L LZ Hβ
ξ η

β ξ η= −∑ , 

where β  is a positive parameter called an inverse 
temperature. The corresponding Gibbs probability 
distribution on is given by 

( ) ( ) [ ]1

, ,, exp ( , )L L LP Z Hβ βξ η β ξ η
−

= − . 

Thus we have the corresponding interfaces 

( ) ( ), , ,L L L L
j jX X t X X t
L L

ξ ξ η η⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 

From above definitions, { },x Xx Lξ ξ= ∈ and 

{ },x Xx Lη η= ∈  can be seen as the sequences of 
i.i.d. random variables respectively. So, the two 
random interfaces model has two independent 
random SOS paths, that is, the model corresponds to 
the ensemble of two independent self-avoiding paths 
in [ ]0, L ×Ζ  starting from ( )0,0  and ending at sites 
z in the line { }x L= (where ( ),z x y= ), which do 
not go back in the horizontal direction. Next we 
introduce the generating function of the height of 
the endpoints for one “step”, that is, for a fixed 

Xx L∈ , let 
( ),Q μ ν =  

( ) ( )
, ,

exp ,x x x x

x x x x

L x xe Hβμξ βνη β ξ η

ξ η ξ η

β ξ η+ − + ⎡− ⎤⎣ ⎦∑ ∑  

where ( ),Q μ ν is independent of x and 
,x xξ η−∞ < < +∞ . Due to the independence of the 

random variables { },x Xx Lξ ∈  and { },x Xx Lη ∈ , 
thus 
( ), LQ μ ν =  

( ) ,
,

exp exp ,L LH Z β
ξ η

βμξ βνη β ξ η⎡ ⎤+ ⎡− ⎤⎣ ⎦⎣ ⎦∑  

where  

1

L

x
x

ξ ξ
=

=∑    and    
1

L

x
x

η η
=

=∑ .  

For ( ), R Rμ ν ∈ × , we define 

( )
0

1, lim
L L

ϕ μ ν
→

= ×  

( ) ,
,

ln exp[ ]exp[ , ]L LH Z β
ξ η

βμξ βνη β ξ η
⎛ ⎞

+ −⎜ ⎟
⎝ ⎠
∑  

by the Refs. [1][3][6], it is known that this limit 
exists if ( ),μ ν  is in some neighborhood of the 
origin. 
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The aim of this paper is to study the asymptotes 
of fluctuations of the two random interfaces 
conditioned by fixing a large area between the two 
random interfaces. Denote by Laξ , Laη  representing 

the areas under the paths L
jX
L

ξ ⎛ ⎞
⎜ ⎟
⎝ ⎠

, L
jX
L

η ⎛ ⎞
⎜ ⎟
⎝ ⎠

 

respectively, and denote by L L La a aη ξ η ξ− = −  
representing the area of the intermediate layer 
between the two random interfaces. For a real 0ζ  
and 0 1s≤ ≤ , assume that 

( ) ( ) ( )( )
0 0

0 0 0
0

, , 1 , 1 ,dF s s s
d

ζ ζ

ζ β ϕ ζ ζ
ζ

=

= − − −  

( )1

00

1 , ,F s ds aζ β
β

=∫                                    (1) 

where 0a >  is some constant. Above (1) is an 
important condition for this paper, we will use this 
condition to fulfill our proof in the followings. Then 
we state the main results of this paper. 
 
Theorem 1  Assume that for some ( ) 0δ β >  and 

0a > , there exists a real 0ζ  satisfying above 
condition (1) and ( )0ζ δ β< , then the process 

( ) ( ) ( ) ( )00

1 , ,
t

L L L
LY t X t X t F s ds

L
η ξ ζ β

β
⎧ ⎫

= − −⎨ ⎬
⎩ ⎭

∫  

under ( ), .L LP a aLη ξ
β

− = ⎢ ⎥⎣ ⎦ , converges weakly to the 

process 

( ) ( ) ( )( ) ( )0 00

1 " 1 , 1
t

Y t s s dB sϕ ζ ζ
β

= − − −∫  

conditioned that ( )
1

0
0Y t dt =∫ , where ( ){ } 0s

B s
≥

is 

the one dimensional standard Brownian motion, and 
aL⎢ ⎥⎣ ⎦  is the integer part of aL . 

 
Remark 1  In Theorem 1, the model is only 
conditioned by fixing a large area between the two 
random interfaces and having the same starting 
endpoints. The results can also be proved similarly 
for the two random interfaces with fixed value of 
area and the two same endpoints. 
 

Theorem 2  Let ( ) ( )' , ,μϕ μ ν ϕ μ ν
μ
∂

=
∂

, and 

( ) ( ) ( )( )0 0 0, , ' 1 , 1F s s sμ ζ β ϕ ζ ζ= − − − − . With the 

same conditions of Theorem 1, the probability 
distribution of the random process ( )LX t Lξ− , 

under ( ), .L LP a aLη ξ
β

− = ⎢ ⎥⎣ ⎦ , converges weakly to the 

corresponding probability distribution concentrated 
on the function 

( ) ( )1 00

1 , ,
t

Y t F s dsμ ζ β
β

= ∫ . 

 
 
2 Convergence of Probability 
Measures for the Two Random 
Interfaces Model 
In this section, we begin discussing the area 
between the two random paths. Then we show the 
some results about the weak convergence (see [12]) 
of random vector of the two random interfaces for 
the model. Now we define the areas of Laξ , Laη , Laη ξ−  
as followings, 

( )1

1 1
1 ,

L L

L x x
x x

a h L x Lξ ξ
= =

= = −∑ ∑  

( )2

1 1
1 ,

L L

L x x
x x

a h L x Lη η
= =

= = −∑ ∑  

( )( )
1

1
L

L L L x x
x

a a a x Lη ξ η ξ η ξ−

=

= − = − −∑ . 

By the independence of { },x Xx Lξ ∈  and 

{ },x Xx Lη ∈ , the generation function of the area 

Laη ξ−  is defined by 
( )

La
Q η ξ ζ−  

{ } ( ){ } ,
,

exp exp ,L L La H Zη ξ
β

η ξ

βζ β ξ η−= −∑  

( )( ) ( ){ }
,1

exp 1
x x

L

x x x x
x

x L
ξ η

βζ η ξ β ξ η
=

= − − − +∑∏  

,

1

LZ β

×  

( ) ( )( )
1

1 , 1
L

x

Q x L x Lζ ζ
=

= − − −∏ . 

Let q  be a natural number, and let { },1it i q≤ ≤  be 
any set of real numbers, such that 10 ... 1qt t< < < ≤ . 
Set a random vector as 

( ) ( )1
ˆ ,...,q

L qX t t = ( )1 1

2 1 2 1, ,...,
q q

L t L t L t L t L
a h h h hη ξ−

⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
− − . 

Then for ( ) 1
0 1, ,..., q

q Rζ ζ ζ ζ += ∈ , we have 
( ) ( ) ( )1

ˆ ,..., ,
,

,

q
qL LX t t H

Le e Zβζ β ξ η
β

η ξ

− =∑  

( ) ( )( )
1

; , ;
L

L L
x

Q x xζ ζ ζ ζ
=

−∏  

where  
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( ) ( ) [ ] ( )0 0,
1

; 1 1
i

q

L i Lt
i

x x L xζ ζ ζ ζ
=

= − +∑ .  

For the real 0ζ  defined in (1) and some small 
constant 0α > , let 1qRζ +∈  satisfy the following 
conditions 

{ }
0 0 0, : , , 1,...,iD i qα ζ ζ α ζ ζ α ζ α= − < < + < = .  

Next we introduce the corresponding quadratic 
form, a (q + 1) ×  (q + 1) matrix denote by 

( )LV ζ =  

( ) ( ) ( )1
ˆ ,..., ,

,2
,

1 ln
q

qL LX t t H
LHess e e Z

L
βζ β ξ η

β
η ξβ

−⎛ ⎞
⎜ ⎟
⎝ ⎠
∑  

where ( )LV ζ  is analytic in 
0,Dα ζ . Assume that 

0,Dα ζζ ∈ , and according to the definition of ( )LV ζ , 

then uniformly in ζ  and ( ) 1
0 ,..., q

qy y y R += ∈  such 

that 1y = , we have 

        ( ) ( ). .Ly V y y V yζ ζ→ ,       as L →∞  

where 

    ( ) ( ) ( )( )1

2 0

1 ln ,V Hess Q s s dsζ ζ ζ
β

= −∫  

and  

( ) ( ) [ ] ( )0 0,
1

1 1
i

q

i t
i

s s sζ ζ ζ
=

= − ∑ ,   for 0 1s≤ ≤ .  

Let ( )ˆ q
LP  be the probability distribution of 

( ) ( )1
ˆ ,...,q

L qX t t  under ,LP β , and ( )
,

ˆ q
LP ζ  be given by 

( ) ( ) ( ) ( ){ }( ), , 1
ˆ ˆ ˆ( ) ( ) exp ,...,zq q q
L L L L qP z e P z E X t tβζ
ζ β βζ=  

for all 
0,Dα ζζ ∈  and ( ) ( )1q q

Lz Z L Z Z−∈ = × . Denote 

by ( )
,

ˆ ( )q
LE ζ ⋅  the corresponding expectation function 

for ( )
,

ˆ ( )q
LE ζ ⋅ . By the uniform boundedness of the 

family of analytical functions ( )LV ζ  for all L and 

all ζ  in
0,Dα ζ , according to Lemma 2.6 and 

Proposition 2.7 in Ref. [1], we have the following 
Lemma 1 and Lemma 2. 
 
Lemma 1  Let 

0, ,L Dα ζζ ζ ∈ , and Lζ ζ→  as 

L →∞ . Then the random vector 
( ) ( )1

ˆ ,...,q
L qY t t =  

( ) ( ) ( ) ( ) ( )( )1 , 1
1 ˆ ˆ ˆ,..., ,...,

L

q q q
L q L L qX t t E X t t

L ζ−  

converges weakly to a Gaussian random vector 
( ) ( )1

ˆ ,...,q
qY t t  of which covariance matrix is given 

by ( )V ζ . 

 
Let gζ be the density function of the Gaussian 

vector ( ) ( )1
ˆ ,...,q

qY t t  given in Lemma 1, then we 

have the following Lemma 2. 
 
Lemma 2 Let ( ) ( )1q q

LZ L Z Z−= × , then for each 
( )q

L Lz Z∈  and 
0,L Dα ζζ ∈ , define 

( ) ( ) ( ) ( )( ), 1
1 ˆ ˆ ,...,

L

q q q
L L L L L L qz Z y z E X t t

L ζ∈ = − . 

Then we have 
( ) ( ) ( )3 / 2

,
ˆ ( ) 0

L L

q q
L L LL P z g yζ ζ

+ − → ,   as   L →∞  

uniformly in ( )q
L Lz Z∈  and 

0,L Dα ζζ ∈ . 

 
 
3 Convergence of Finite Dimensional 
Distributions 
In this section, we discuss the limiting properties of 
the random vector ( ) ( )1

ˆ ,...,q
L qX t t  defined in Section 

2, and show the proofs of Theorem 1. Then we give 
the proof of Theorem 2, in fact, by using the 
proofing method of Theorem 1, we can prove 
Theorem 2. 
 
Proof of Theorem 1. In Section 2, the random 
vector ( ) ( )1

ˆ ,...,q
L qX t t  is given. First we consider the 

convergence of the finite-dimensional distribution 
of the random vector ( ) ( )1

ˆ ,...,q
L qY t t  defined in 

Lemma 1.  Let  0 0,Lζ ζ  be a special sequence in 

0, L
D

α ζ
, such that 

( )0
,0 ,0,...0L Lζ ζ=  ,    ( )0

0 ,0,...0ζ ζ=  

where 0ζ  is defined in (1), and ,0Lζ satisfies the 
following condition 

( )
0 ,00

0

ln
LL

d Q aL
d η ε ζ ζα

ζ
ζ

− = = ⎢ ⎥⎣ ⎦ .                 (2) 

by (1)(2), it can be proved that 0 0
Lζ ζ→  as L →∞ , 

here we omit the proof. Let 

( )
( ) ( ) ( )1

ˆ ,..., ,
1 ,

,

1; ,..., ln
q

q LL e
X t t H

L q Lt t e Z
L

βζ β ξ η
β

ξ η

ϕ ζ −⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ i  

and denote by 
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( ) ( ) ( )1 1; ,..., lim ; ,...,q
q L qL

t t t tϕ ζ ϕ ζ
→∞

=  

for 0, L
D

α ζ
ζ ∈  . By the uniform boundedness of 

Hess Lζ ϕ , we have 
( ) ( ) ( )0 1,

ˆ ˆ ,...,
L

q q
L qL

E X t t
ζ

=  

( ) ( ) ( ) ( )( )0 0
1 1 1 1

2 1
, ,

ˆ ˆ, ,...,
L L

q q q q
t L t L t L t LL L

aL E h h E h h
ζ ζ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

− −⎢ ⎥⎣ ⎦  

( )( )0
1; ,...,L L q

L t tζϕ ζ
β

= ∇  

( )( ) ( )( ) 0
1; ,..., 1q

q
L t tζϕ ζ ο
β

= ∇ + . 

By Lemma 2, we have for 
, 1j ja b j q−∞ < < < ∞ ≤ ≤ , 

( ) ( )0
ˆlim , , 1q
L j j jL

P y a b j q z aL
→∞

⎡ ⎤∈ ≤ ≤ = ⎢ ⎥⎣ ⎦⎣ ⎦  
( ) ( )0 0,

ˆlim , , 1
L

q
j j jLL

P y a b j q z aL
ζ→∞

⎡ ⎤= ∈ ≤ ≤ = ⎢ ⎥⎣ ⎦⎣ ⎦  

( )[ ]

( )
0

1 1

0

1 1, ... ,

1 1

0, ,..., ,...,

0, ,..., ,...,
q q

q

q qa b a b

q qR

g y y dy y

g y y dy y

ζ

ζ

⎡ ⎤× ×⎣ ⎦=
∫

∫
. 

According to Lemma 1, let 
( ) ( ) ( )1 0 1

ˆ ,..., , ( ),..., ( )q
q qY t t Y Y t Y t=  

be a Gaussian random vector with distribution 
density ( )0 ,..., qg y yζ . Then its covariance matrix is 

given by 
( ) ( )j KE Y t Y t⎡ ⎤⎣ ⎦  

( ) ( )( )" 0 0
2 0

1 1 , 1j kt t

Ls s dsϕ ζ ζ
β

∧
= − − −∫  

( ) ( ) ( )( )" 0 0
0 2 0

1 1 , 1jt

j LE Y Y t s s dsϕ ζ ζ
β

⎡ ⎤ = − − −⎣ ⎦ ∫  

( ) ( )( )12 " 0 0
0 2 0

1 1 , 1LE Y s s dsϕ ζ ζ
β

⎡ ⎤ = − − −⎣ ⎦ ∫  

for , 1,...,j k q= , where { }min ,a b a b∧ = . This 

means that  ( ){ } [ ]{ }0 0,1
,

t
Y Y t

∈
 is a Gaussian random 

process with covariance matrix given above for 
every 1q ≥ . In above proof, we suppose that 

2 1
i i

i i
L Lt L t L

Lt Lt
h h X X

L L
η ξ

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎛ ⎞ ⎛ ⎞⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦− = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

,  

for 1,...,i q= . Similarly to Ref. [1], the above 
argument is also true if we replace 

i i
L L

Lt Lt
X X

L L
η ξ⎛ ⎞ ⎛ ⎞⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦−⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 with ( ) ( )L i L iX t X tη ξ−  for 

every 1 i q≤ ≤ . Then the distribution of 
( ) ( )1

ˆ ,...,q
L qX t t , under ( ),L LP aLη ε

β α −⋅ = ⎢ ⎥⎣ ⎦ , 

converges weakly to the corresponding distribution 
of Gaussian random vector ( ) ( )1

ˆ ,...,q
L qY t t . 

Secondly, the tightness of above conditional 
distribution of the random process ( )LY t  should be 
discussed, see [1]. Following the similar argument 
of Section 3 in Ref. [1], we can prove a sufficient 
condition for the tightness of the considered process 

( )LY t . So by the theory of weak convergence (see 
[12]), together with the first part of this proof, this 
completes the proof of Theorem 1. 
 
Remark 2  According to the arguments of [1], and 
with the results of Theorem 1, the probability 
distribution of the random process 
                ( ) ( )( )L LX t X t Lη ξ−  

under ( ),L LP aLη ξ
β α −⋅ = ⎢ ⎥⎣ ⎦ , converges weakly to the 

corresponding distribution concentrated on the 

function ( )1

00

1 , ,F s dsζ β
β ∫ . 

 
Proof of Theorem 2  Let q  be a natural number, 
and let { },1it i q≤ ≤  be any set of real numbers, 
such that 10 ... 1qt t< < < ≤ . Set a random vector as 

       ( )1
ˆ ,...,L qX t tξ = ( )1

1 1, ,...,
q

L t L t L
a h hη ξ−

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
− − . 

Let  0 0,Lζ ζ  be a special sequence in 0, L
D

α ζ
, such that 

( )0
,0 ,0,...0L Lζ ζ=  ,   ( )0

0 ,0,...0ζ ζ=  

where 0ζ  is defined in (1), and ,0Lζ  is defined in (2). 
Then we have the corresponding function as 
following 

( )1
1; ,...,L qt tϕ ζ  

( ) ( )1
ˆ ,..., ,

,
,

1 ln qL L
X t t H

Le e Z
L

ξβζ β ξ η
β

ξ η

−⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ i  

( ) ( )( )0
1

1 ln ; , ;
L

L L
x

Q x x
L

ξ ηζ ζ ζ ζ
=

= −∏  

where  

( ) ( ) [ ] ( )0 0,1
; 1 1

i

q
L i Lti

x x L xξζ ζ ζ ζ
=

= − +∑ ,  

( ) ( )0; 1L x x Lηζ ζ ζ= − . 

For any ( ) 1
0 1, ,..., q

q Rζ ζ ζ ζ += ∈  satisfy the 

following conditions 
  { }

0 0 0, : , , 1,...,iD i qα ζ ζ α ζ ζ α ζ α= − < < + < = . 

Let 
      ( ) ( )1 1

1 1; ,..., lim ; ,...,q L qL
t t t tϕ ζ ϕ ζ

→∞
=  
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for 0, L
D

α ζ
ζ ∈ , and 1

,
ˆ ( )LE ζ ⋅  is the corresponding 

expectation function for ( )1
ˆ ,...,L qX t tξ . By the 

uniform boundedness of Hess Lζ ϕ , we have 

( )0
1

1,
ˆ ˆ ,...,

L
L qL

E X t tξ
ζ

=  

( ) ( )( )0 0
1

1 1 1 1
, ,

ˆ ˆ, ,...,
L L qt LL L t L

aL E h E h
ζ ζ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

− −⎢ ⎥⎣ ⎦  

( )( )1 0
1; ,...,L L q

L t tζϕ ζ
β

= ∇  

( )( ) ( )1 0
1; ,..., 1q

L t tζϕ ζ ο
β

= ∇ +  

where 1 j q≤ ≤ , and 

( )0
1

1 1
,

ˆ
L t LL

E h
ζ ⎢ ⎥⎣ ⎦

− = 

( ) ( )( )
0

0
1

ln ; , ;
L

L

L L
x i

Q x xξ η

ζ ζ

ζ ζ ζ ζ
ξ= =

∂
−

∂∑ . 

For the random vector ( )1
ˆ ,...,L qX t tξ , by using the 

methods of Lemma 2.6 and Proposition 2.7 in [1], 
we can have the similar results as that of Lemma 1 
and Lemma 2. Then following the steps in the proof 
of Theorem 1, we can prove that the probability 
distribution of the random process 

 ( ) ( )00

1 , ,
t

L
LX t F s ds

L
ξ

μ ζ β
β

⎧ ⎫
− −⎨ ⎬
⎩ ⎭

∫  

under ( ),L LP aLη ξ
β α −⋅ = ⎢ ⎥⎣ ⎦ , converges weakly to 

some Gaussian distribution. Thus by Remark 2, the 
probability distribution of the random 
process ( )LX t Lξ− , under ( ), .L LP a aLη ξ

β
− = ⎢ ⎥⎣ ⎦ , 

converges weakly to the corresponding probability 
distribution concentrated on the function 

( ) ( )1 00

1 , ,
t

Y t F s dsμ ζ β
β

= ∫ . 

This completes the proof of Theorem 2. 
 

According to the results of Theorem 1 and 
Theorem 2, we have the following Corollary 1. 
 
Corollary 1 Suppose that the definitions and 
conditions of Theorem 2 hold, then the probability 
distribution of the random process ( )LX t Lη , 

under ( ),L LP aLη ξ
β α −⋅ = ⎢ ⎥⎣ ⎦ , converges weakly to the 

corresponding probability distribution concentrated 
on the function 

    ( ) ( )0 00 0

1 1, , , ,
t t
F x dx F x dxμζ β ζ β

β β
−∫ ∫ . 

Proof. The random process ( )( )L LX t aLη η ξα − = ⎢ ⎥⎣ ⎦  

can be written as 
( )( )L LX t aLη η ξα − = ⎢ ⎥⎣ ⎦  

( ) ( )( )L L LX t X t aLη ξ η ξα −= − = ⎢ ⎥⎣ ⎦  

( )( )L LX t aLξ η ξα −+ = ⎢ ⎥⎣ ⎦ . 

For the first term of above equation, under 

( ),L LP aLη ξ
β α −⋅ = ⎢ ⎥⎣ ⎦  and by Theorem 1 and Remark 

2, we have that the probability distribution of the 
random process ( ) ( )( )L L LX t X t aLη ξ η ξα −− = ⎢ ⎥⎣ ⎦  

converges weakly to the corresponding probability 
distribution of the function 

                     ( )00

1 , ,
t
F x dxζ β

β ∫ . 

For the second term of above equation, under 

( ),L LP aLη ξ
β α −⋅ = ⎢ ⎥⎣ ⎦  and according to Theorem 2 

and Remark 2, the probability distribution of the 
random process ( )( )L LX t aLξ η ξα −− = ⎢ ⎥⎣ ⎦  converges 

weakly to the corresponding probability distribution 
of the function 

( )00

1 , ,
t
F x dxμ ζ β

β ∫ . 

This completes the proof of Corollary 1. 
 
 
4 The Fluctuations of S.O.S. Model 
and Ising Model 
In this section, we discuss the relations between the 
two random interfaces model and the two interfaces 
S.O.S. model and Ising model. The statistical 
properties of the interfaces of S.O.S. model and 
Ising model are studied in this section. The 
Hamiltonian ( )1 2,S

LH h h  of two interfaces S.O.S. 

model has the same definition of ( )1 2,LH h h  in 

Section 1. But the partition function of two 
interfaces S.O.S. model is given by 
        ( )

1 2

1 2
,

,

exp ,
x x X

S S
L L

h h x L

Z H h hβ β
≤ ∈

⎡ ⎤= −⎣ ⎦∑  

and according to the definitions in Section 1, we 
have the corresponding partition function 
        ( ), exp ,S S

L LZ Hβ
ξ η

β ξ η
≤

⎡ ⎤= −⎣ ⎦∑  

where ξ η≤  denote that  x xξ η≤  for all Xx L∈ .  
From above definitions, for the two interfaces 

S.O.S. model, the two interfaces of the model don't 
intersect, so that, the two interfaces are not 
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independent. The corresponding probability 
measure is defined as following 

( ) ( ) 1

, ,, exp ( , )S S
L L LP Z Hβ βξ η β ξ η

−
⎡ ⎤= −⎣ ⎦           (3) 

on the set { }( , ) : ,x x Xx Lξ η ξ η≤ ∀ ∈ . 
In this paper, we discuss the most popular 

ferromagnetic model that is the stochastic Ising 
model. First we discuss the fluctuations of two-
dimensional Ising model. Since the S.O.S. model is 
the simple case of Ising model, so our results of 
Ising model in this paper can be done similar to the 
S.O.S. model. Let 2Z  be the usual two-
dimensional square lattice with sites ( )1 2,u u u= , 
equipped with the 1l -norm:  

1 2| | | |u u u= + .  
Given 2ZΛ ⊂ , Λ

Λ +−=Ω }1,1{  is the 
configuration space. An element of 

Λ
Λ +−=Ω }1,1{  will usually denote by 

{ ( ) : }u uξ ξΛ = ∈Λ . Whenever confusion does 
not arise, we will also omit the subscript Λ  in the 
notation ξΛ . Given a boundary condition τ , we 
consider the Hamiltonian 

τ
ΛH (ξ ) = 

2
1

−
( , ')

' 1
u u
u u

∈Λ×Λ
− =

∑ ( ( ) ( ')u uξ ξ  – 1)  

( , ')
' 1

cu u
u u

∈Λ×Λ
− =

− ∑ ( ( ) ( ')u uξ τ  – 1). 

The Gibbs measure associated with the Hamiltonian 
is defined as 
  ( ), exp ( ) exp ( )H Hβ τ τ τ

ξ

μ ξ β ξ β ξ
Λ

Λ Λ Λ
∈Ω

⎡ ⎤ ⎡ ⎤= − −⎣ ⎦ ⎣ ⎦∑  

where β is a parameter. Note that we use 
( ),β τμ ξΛ  (not P ) to denote the probability 

measure for the Ising model. The stochastic 
dynamics which is studied in the present paper 
is defined by the Markov generator 

       ( )( ), ( , ) ( ) ( )u

u
A f c u f fβ τ ξ ξ ξ ξΛ

∈Λ

⎡ ⎤= −⎣ ⎦∑  

acting on 2 ,( , )L d β τμΛ ΛΩ , where ( )u vξ ξ= + , if 
v u≠ , and ( )u vξ ξ= − , if v u= . ( , )c u ξ  is the 
transition rates for the process ([9-11]), satisfying 
nearest neighbour interactions, attractivity, 
boundedness and detailed balance condition 
           ( , )c u ξ ( ),β τμ ξΛ = ( , )uc u ξ ( ), uβ τμ ξΛ . 

Let 2
,l mQ Z⊂  be a rectangle of side length 2l 

(horizontal size) and 2m. For the two-dimensional 
Ising model (see [9-11]), by using the techniques of 

correlation functions for estimating the fluctuation 
of phase separation (or interface) line, when 

sinI g
cβ β>   ( sinI g

cβ is the critical point of Ising 
model), we can prove that, with probability larger 
than ( )11 exp lnc lβ− ⎡− ⎤⎣ ⎦ , the interface has a height 

less than ( )( )1/ 2lnc l lβ , where l large enough and 

( )1c β , ( )c β  are positive constants. Let 
,l mQΩ be the 

configuration space of the Ising model, and 
,l mQ

τμ be 

the corresponding Gibbs measure with the boundary 
condition τ , where τ is defined by 

                 
2
2

1    if    1
1    if    

u m
u mτ

⎧− ≥ +⎨= + ≤⎩  

for ( ) 2
1 2,u u u Z= ∈ .  

Let 2
*Z  be the dual lattice of 2Z , i.e., 

2
*Z = 2Z + (1/ 2,1/ 2) . For 2,u v R∈ , let [ , ]u v  be the 

closed segment with ,u v  as its endpoints. The 
edges of 2

*Z ( 2Z ) are those [ , ]e u v=  with ,u v  
nearest neighbours in 2

*Z ( 2Z ). Given an edge e  
of 2Z , e∗  is the unique edge in 2

*Z  that 
intersects e . We denote by BΛ  the set of edges 
such that both endpoints are in Λ , and by BΛ  
the set of all edges with at least one endpoint in 
Λ . Given  2ZΛ ⊂ , we let 2 \c ZΛ = Λ  and 
define ∗Λ  as the set of all 2

*u Z∈  such that 
( , ) 1 2d u Λ = , where  

( , ) inf{| |: }d u u v vΛ = − ∈Λ .   
The set of the dual edges is defined as 

{ : }B e e B∗ ∗
ΛΛ = ∈ . The interior and exterior 

boundaries of Λ  are defined by 
       int { : , | | 1}u v u v∂ Λ = ∈Λ ∃ ∉Λ − =  
       { : , | | 1}ext u v u v∂ Λ = ∉Λ ∃ ∈Λ − =  
and int

∗∂ Λ , ext
∗∂ Λ  are defined in the similar way. 

For simplicity, we call an edge in 2
*Z  by a bond, 

so that we can distinguish it from edges in 2Z . We 
say that a neighbouring pair u  and v  in 2Z  are 
separated by a bond e∗  if the edge [ , ]e u v=  

intersects e∗ . Let  2ZΛ ⊂  and 
2

{ 1,0, 1}Zτ ∈ − +  be 
fixed, for every configuration ξ Λ∈Ω , we denote by 

( )ξΓ  the collection of all bonds separating 
neighbouring sites u  and v  such that:  

(i) ,u v∈Λ , and ( ) ( ) 1u vξ ξ = −  or  
(ii) u∈Λ , extv∈∂ Λ  and ( ) ( ) 1u vξ τ = − .  
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We divide ( )ξΓ  into connected components. 
Further we use the convention that any pair of 
orthogonal bonds that intersect in a given site u∗  of 
the dual lattice 2

*Z  are a linked pair of bonds iff they 
are both on the same side of the forty-five degrees 
line across u∗ , then we regard that two linked pairs 
at u∗  are not connected at u∗ . By this convention, 
each connected component of ( )ξΓ , say Γ , has the 
following properties:  

(i) if int\u∗ ∗ ∗∈Λ ∂ Λ , then the number of bonds in 
Γ  that intersect u∗  is always even;  

(ii) bonds in Γ  can be ordered as 0 1, , , ne e e∗ ∗ ∗" , so 
that ie∗  and 1ie∗+  have a common vertex for every 
i , and if Γ  has a point u∗  at which 4  bonds in 
Γ  which intersect u∗ , then there are i j≠  such 
that these 4  bonds are divided into two linked 
pairs 1{ , }i ie e∗ ∗

+ and 1{ , }j je e∗ ∗
+ .  

We call these components of ( )ξΓ  by contours in ξ  
(with boundary conditionτ ). If for any u∗ ∈ 2

*Z , the 
number of bonds in the contour Γ  which intersect 
u∗  is even, then we call Γ  a closed contour. A 
contour which is not closed is called by an open 
contour. The length | |Γ  of a contour is simply the 
number of bonds in Γ .  

Now we give the following Lemma 3 and 
Lemma 4. They are important for us to estimate the 
heights of the interfaces. 
 
Lemma 3  For the two-dimensional stochastic Ising 
model, let ,l mQ  be defined as above and 

let sinI g
cβ β> . For some ( ) 0k β > , set 

( ) ( )1/ 21/ 2[ ln ]m k l lβ= , ( ) ( )1/ 21/ 2[ ln /10]k k l lβ= .   
Suppose that  

kQ  = 1 2 , 2{( , ) : 3 }l mu u Q u m k∈ ≤ − , 
then there are ( )1 0c β >  and ( )0 0 0l l β= >  
independent of ,l mQ , such that for all 0l l>  and 

ku Q∈ , we have 

           ( )( ) ( )
, , 1exp ln

l m l m

c

Q QF c lτ τμ β≤ ⎡− ⎤⎣ ⎦  

where 
,l mQFτ is the event  

,l mQFτ = ( )
, , 2

13: { : }
16l mQ open l m

mu Q uτξ ξ⎧ ⎫∈Ω Γ ⊂ ∈ ≥⎨ ⎬
⎩ ⎭

  

and ( )open
τ ξΓ denote those open contours produced 

by the configuration 
,l mQξ ∈Ω  with boundary 

condition τ on  ,l mQ . 

Proof.  The proof of Lemma 3 depends on the 
estimates of the heights of the interfaces for the 
Ising model. By the Lemma 6.10 of [8], for 

sinI g
cβ β>  and some large constant 0M > , when l  

is large enough we have 
( )( )

,
( , : ln )

l mQ open S A B M lτ τμ ξΓ ⊄  

                            ( )exp , lnM lκ β≤ ⎡− ⎤⎣ ⎦                (4) 

where ( , )A l m= − , ( , )B l m= , and ( ), 0Mκ β >  is a 
positive parameter, let 

( , : ln )S A B M l  
={ }, : | | | | | | lnl mu Q u A u B A B M l∈ − + − ≤ − + . 

According to the definition of ,l mQ  and kQ , by the 
computation of ( , : ln )S A B M l  and above (4), the 
fluctuations of phase separation line occur on a scale 

1/ 2 1/ 2(ln )l l , that is, there are ( ) 0k β > , ( )1 0c β >  
(dependent on M ) such that 

( )( )
, , 2{ : 13 /16}

l mQ open l mu Q u mτ τμ ξΓ ⊄ ∈ ≥  

( )1exp lnc lβ≤ ⎡− ⎤⎣ ⎦ . 
This inequality proves the inequality of Lemma 3. 
 
Lemma 4  For the two-dimensional stochastic Ising 
model, let ,l mQ  be defined as above and 

let sinI g
cβ β> . For some ( ) 0k β > , set 

( ) ( )1/ 21/ 2[ ln ]m k l lβ= , ( ) ( )1/ 21/ 2[ ln /10]k k l lβ= .   
Suppose that  

kQ = 1 2 , 2{( , ) : 3 }l mu u Q u m k∈ ≤ − ,  
then there are ( )1 0c β >  and ( )0 0 0l l β= >  
independent of ,l mQ , such that for all 0l l>  and 

ku Q∈ , we have 

( ) ( )
, ,

( ) 1 ( ) 1
l m l mQ Qu uτμ ξ μ ξ+ = − = ≤ ( )( ), ,l m l m

c

Q QFτ τμ  

where 
,l mQFτ is the event  

,l mQFτ = ( )
, , 2

13: { : }
16l mQ open l m

mu Q uτξ ξ⎧ ⎫∈Ω Γ ⊂ ∈ ≥⎨ ⎬
⎩ ⎭

  

and ( )open
τ ξΓ denote those open contours produced 

by the configuration 
,l mQξ ∈Ω  with boundary 

condition τ on  ,l mQ . Further we have 

( ) ( )
, ,

( ) 1 ( ) 1
l m l mQ Qu uτμ ξ μ ξ+ = − =  

≤ ( )( ), ,l m l m

c

Q QFτ τμ ( )1exp lnc lβ≤ ⎡− ⎤⎣ ⎦  

where 
,l mQμ

+ is the Gibbs measure with the plus 

boundary condition on ,l mQ . 
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Proof.  Let  
,l mQFτ  be the event defined as above. We 

can write 
( )

,
( ) 1

l mQ uτμ ξ = = ( ) ( ), , , ,
( ) 1|

l m l m l m l mQ Q Q Qu F Fτ τ τ τμ ξ μ=  

+ ( )( ), ,
( ( ) 1)

l m l m

c

Q Qu Fτ τμ ξ = ∩  

where ( ),l m

c

QFτ  is just the complement event. By the 

FKG inequality 

( ) ( ), , , ,
( ) 1|

l m l m l m l mQ Q Q Qu F Fτ τ τ τμ ξ μ= ≥ ( )
,

( ) 1
l mQ uμ ξ+ = . 

Then we have the difference 

( ) ( )
, ,

( ) 1 ( ) 1
l m l mQ Qu uτμ ξ μ ξ+ = − = ≤ ( )( ), ,l m l m

c

Q QFτ τμ . 

Combing the result of Lemma 3, this inequality 
proves the inequality of Lemma 4. 
 
Remark 3  Lemma 3 and Lemma 4 are proved for 
the two-dimensional stochastic Ising model, they 
describe the statistical properties of the interfaces of 
the Ising model. The simple case of this problem 
arises in the one-dimensional S.O.S. model. 
Through the similar arguments in the proof of 
Lemma 3 and Lemma 4, we can have the similar 
result as that of Lemma 3 and Lemma 4 for one-
dimensional S.O.S. model, that is, the interfaces of 
S.O.S. model have a height less than ( )( )1/ 2lnc l lβ  
with large probability. 
 

In above Remark 3, we discuss the interface 
height for one-interface S.O.S. model. The aim of 
this paper is to study two random paths model and 
two interfaces S.O.S. model. From Section 1 to 
Section 3, we have studied the interface of the two 
random paths model conditioned on a fixed area in 
the intermediate layer and fixed end points. In this 
Section, by using Lemma 3, Lemma 4, and Remark 
3, we study the relations between the two random 
paths model and the two interfaces S.O.S. model. 

In the definitions of Section 1, with the starting 
points 0 0ξ = and 0 0η = , we discussed the two 
random paths model with the partition function of 

( ), ,
exp ,L LZ Hβ ξ η

β ξ η= ⎡− ⎤⎣ ⎦∑ . While in this 

Section, we modify the end points of the model. Let 
,
xL

ξ ηΨ  denote the event 

     0 0,Lξ ξ= =    ( )( )
1
2

0 lnL M L Lη η β= = , 

where ( ) ( )( )4M cβ β> is a large positive constant. 

The random paths L
jX
L

ξ ⎛ ⎞
⎜ ⎟
⎝ ⎠

, L
jX
L

η ⎛ ⎞
⎜ ⎟
⎝ ⎠

 are defined in 

Section 1, and let ,
xL

ξ ηϒ  denote the event that the 

random paths L
jX
L

ξ ⎛ ⎞
⎜ ⎟
⎝ ⎠

 and L
jX
L

η ⎛ ⎞
⎜ ⎟
⎝ ⎠

 don't intersect 

each other on xL , then we have the following 
Lemma 5. 
 
Lemma 5  For the two random paths model defined 
in Section 1, there are ( )2 0c β > , ( )2 2 0L L β= >  
and 2 0β > such that for all 2L L>  and for all 

2β β> , 

( )( ) ( ), ,
, 22exp ln

x x

c

L L LP c Lξ η ξ η
β βϒ Ψ ≤ ⎡− ⎤⎣ ⎦  

where ,LP β  is the corresponding probability measure 
for two interfaces S.O.S. model, which is defined in 
(3). 
 
Proof. The proof of Lemma 5 follows directly from 
Lemma 3, Lemma 4, Remark 3 and the condition 

( ) ( )4M cβ β> . This lemma shows that, with large 
probability, the two random paths don't intersect 
each other.  
 

Let 
  ( ) ( )( ) ( ) ( )( )( )* , ,, , ,

x xL L L L L LX t X t X t X tξ η ξ η ξ η ξ η= ϒ Ψ  

and ( )* , ,
, , ,

x xL L L LP P ξ η ξ η
β β= ⋅ ϒ Ψ  be the corresponding 

conditional probability distribution of the 
random process ( ) ( )( )*

,L LX t X tξ η . According to 
above preparation and Lemma 5, we have the 
following Corollary 2. 
 
Corollary 2  With the same conditions of Lemma 5, 
we have the following 
   ( ) ( )( )( ){ ,

,lim ,
xL L L LL

P X t X t Gξ η ξ η
β→∞

∈ Ψ  

                    ( ) ( )( )( )},

* , 0
L L LP X t X t G
β

ξ η− ∈ =  

where [ ] [ ]1 2 1 2, ,G a a b b= × , i ia b−∞ < < < ∞  , for 
1,2i = . 

 
From the definition of the process 

( ) ( )( )*
,L LX t X tξ η , it is known that the process 

( ) ( )( )*
,L LX t X tξ η  is a conditional two interfaces 

S.O.S. model (with the special fixed end points). 
Corollary 2 shows a limiting relation between the 
two random paths model and the conditional two 
interfaces S.O.S. model. This result is useful to 
study the asymptotic properties of the two interfaces 
S.O.S. model by using the results of two random 
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paths model, for example, we consider the two 
interfaces S.O.S. model with a large fixed area 
between the two interfaces, etc. 
 
 
5 Conclusion 
In this paper, we studied the statistical properties of 
the two random interfaces model. Under some 
conditions, that there is a specified value of the large 
area in the intermediate region of the two random 
interfaces, Theorem 1 shows the weak convergence 
of the fluctuations for the two random interfaces. In 
Section 4, the research results in Section 1-3 are 
extended and improved for the two interfaces S.O.S. 
model. The results of the present paper can also be 
applied to other fields, for example, see [13-15]. 
 
 
Acknowledgements 
The authors are supported in part by National 
Natural Science Foundation of China Grant 
No.70771006, BJTU Foundation No.2006XM044. 
The authors would like to thank Z.Q. Zhang and B.T. 
Wang for their kind cooperation on this research 
work. 
 
 
References: 
[1] Y. Higuchi, J. Murai, and J. Wang, The 
Dobrushin-Hryniv Theory for the Two-Dimensional 
Lattice Widom-Rowlinson Model, Advanced 
Studies in Pure Mathematics, vol. 39, pp. 233-281, 
2004. 
[2] Y. Higuchi, On some Limit Theorems Related 
to the Phase Separation Line in the Two 
Dimensional Ising Model, Z. 
Wahrscheinlichkeitstheorie verw. Gebiete., vol. 50, 
pp. 287-315, 1979. 
[3] R. Dobrushin, R. Kotecky, and S. Shlosman, 
Wullf Construction. A Global Shape from Local 
Interaction, Providence, Rhode Island: American 
Mathematical Society, 1992. 
[4] J. Wang and S. Deng, Fluctuations of interface 
statistical physics models applied to a stock market 
model, Nonlinear Analysis: Real World Application, 
vol. 9, pp. 718-723, 2008. 
[5] J. Wang, The Spectral Gap of Two Dimensional 
Ising Model with a Hole: Shrinking Effect of 
Contours, J. Math. Kyoto Univ. (JMKYAZ), vol. 39, 
no. 3, pp. 529-556, 1999. 
[6] J. Wang, The statistical properties of the 
interfaces for the lattice Widom-Rowlinson model, 
Applied Mathematics Letters, vol. 19, pp.  223-228, 
2006. 

[7] J. Wang, Supercritical Ising Model on the 
Lattice Fractal---the Sierpinski Carpet, Modern 
Physics Letters B, vol. 20, pp. 409-414, 2006. 
[8] C. E. Pfister and Y. Velenik, Interface, surface 
tension and reentrant pinning transition in the 2D 
Ising model, Commun. Math. Phys., vol. 204, pp. 
269-312, 1999. 
[9] M. F. Chen, From Markov Chains To Non-
Equilibrium Particle Systems, World Scientific, 
1992. 
[10] T. M. Liggett, Interacting Particle Systems, 
Berlin: Springer-Verlag, 1985. 
[11] R. S. Ellis, Entropy, Large Deviations, and 
Statistical Mechanics, New York: Springer-Verlag, 
1985. 
[12] P. Billingsley, Convergence of probability 
measures, New York: John Wiley & Sons, 1968. 
[13] Q. D. Li and J. Wang, Statistical Properties of 
Waiting Times and Returns in Chinese Stock 
Markets, WSEAS Transactions on Business and 
Economics, vol.3, pp. 758-765, 2006. 
[14] M. F. Ji and J. Wang, Data Analysis and 
Statistical Properties of Shenzhen and Shanghai 
Land Indices, WSEAS Transactions on Business and 
Economics, vol. 4, pp. 33-39, 2007. 
[15] J. Wang and Q. Y. Wang, The Statistical 
Properties of Fluctuations of Interfaces for Voter 
Model, International Journal of Mathematics and 
Computers in Simulation, vol. 2, pp. 31-35, 2008. 

WSEAS TRANSACTIONS on MATHEMATICS Jun Wang and Cuining Wei

ISSN: 1109-2769 282 Issue 5, Volume 7, May 2008


