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Abstract: The rate of change of u, a solution to Lu=divf in a bounded, rough domain ΩT, u=g on ∂pΩT , is 
investigated using a local Hölder norm of u and different measures on ΩT and on ∂pΩT. Results are 
discussed for both L a strictly elliptic operator and for L=∂/∂t-L0, with L0 a strictly parabolic divergence 
form operator; the coefficients are bounded and measurable, and in the case of L0 , time dependent. 
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1  Introduction                                
The question of the rate of change of a 
temperature function or of a potential function in 
a limited environment is of fundamental 
importance in many applications of mathema-
tics. The focus of this paper is to answer one part 
of the following general question: For which 
measures, μ, η, and νdω, where μ and η are 
Borel measures on a bounded domain Ω in 
Euclidean space R^{d}, d>2, or R^{d+1},d≥ 2, 
and νdω is a measure on ∂Ω, so that, for a 
solution u to the second order boundary value 
problem, 

 

the following inequality is valid: 

 

  

for as large a range of indices q, p, and r as 
possible.  denotes either the gradient 

of u, , or a local Hölder norm for u at x 
(see the definition below). The functions f and g 
are assumed to be in some test class: say, f 
belongs to the space L∞(∂Ω) and g is in the usual 
Sobolev space H¹(Ω). The boundary measure 
νdω is composed of a non-negative, locally 
integrable weight function ν(x′) multiplied by 
dω, the "harmonic measure" generated by the 
operator L on the domain. 

The operators I will be considering will be either 
strictly elliptic divergence form operators, i.e. 

 

 or their parabolic counterpart, (∂/∂t)-L, with 
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where  (  for a 

constant λ≥ 1. The coefficients a(i,j)(x), a(i,j)(x,t) 
are symmetric, bounded and measurable. 

     A standard method for finding solutions to 
this equation is to break it up into two different 
problems and then to use superposition to obtain 
the solution to the original equation. The two 
problems are: 1. the Dirichlet problem, namely 
to find a solution u to (DP)  

 

 and 2. Poisson’s equation, namely to find a 
solution v(x) to (PE)   

 

For the Dirichlet problem one has only to 
consider the two measures, μ on Ω, and νdω the 
measure on the boundary of Ω. For the second 
problem, solving the inhomogeneous equation 
with zero boundary data, one has only the two 
Borel measures on Ω, μ and η, to deal with.  

     In the case of Ω being a classical domain, i.e. 
for the unit disk or the upper half space, the 
question for the Dirichlet problem has been 
thoroughly investigated.  In 1995 for solutions to 
the heat equation and for harmonic functions in 
the upper half space, Wheeden and Wilson [37] 
proved necessary and sufficient conditions on a 
Borel measures, μ, defined in R(d+1), and a non-
negative weight ν(x′), so that ν(x′) dx′ defines a 
measure on Rd, and 

 

 

for any solution to the Dirichlet problem Lu=0 
in R(d+1), u=f on Rd. Here L=Δ or ∂/∂t-Δ, and 
1<p≤ q<∞ with q≥ 2.  In other words they solved 
the problem in the case of harmonic functions, 
considering each partial derivative separately, on 
the domain R+

d+1, for 1<p≤ q<∞ and q≥ 2. 
Wheeden and Wilson used the dual operator 
approach, which was again employed by Sweezy 
and Wilson when they considered extending the 
situation to harmonic functions on Lipschitz 
domains [31]. Prior to the time Wheeden and 
Wilson proved their theorems for the upper half 
space, work of Luecking, Shirokov, Verbitsky 
and Videnskii had completely characterized the 
measures μ for which one could obtain the 
weighted norm inequality for harmonic 
functions with νdω=ds, ds being the surface 
measure on ∂Ω when Ω is the upper half space 
[15], [16], [21], [22], [34], [35]. Their results 
cover all indices 0<p,q<∞; f's Lp norm must be 
replaced by the Hp Hardy space norm if 0<p≤ 1.  
Since that time, J. M. Wilson and the author 
have investigated the question of characterizing 
measures for which one can prove a weighted 
norm inequality of the form (2) on rough 
boundary domains, such as Lipschitz domains 
and Lip(1,1/2) domains, and for a wider range of 
second order partial differential equation 
solutions [25], [31], [32], [33]. 

        Their work depends on classical topics in 
harmonic analysis such as A^{p} weights and 
Littlewood-Paley theory, [38], [36], [23], 
[12],[13], [39], [30] as well as the basic 
existence and uniqueness of kernel functions and 
estimates of these kernel functions for solutions 
to the kind of Dirichlet problem described 
above. The theory of A^{p} weights, as it gives 
weighted inequalities for maximal functions and 
singular integrals, was originated by Benjamin 
Muckenhoupt [18] and further developed by 
Coifman and Fefferman [3]. The main other 
sources for background material that is used 
(and often assumed especially in local estimates 
for the elliptic and/or parabolic solutions) are 
contained in [2], [4], [5], [6], [10], [11], [14], 
[19]. 

One needs other methods to handle the case of 
more general operators of the form ∂/∂t – L, 
with  
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     Here u(x,t) is a weak solution to the 
inhomogeneous equation with zero boundary 
data, i.e., for any test function ψ(x,t),  and any τ 
such that for  

, and  

, (see 
Section 2 for other definitions), we have 

 

 

We also require that u(x,t) lie in the closure of 
CS¹(ΩT), the space of functions defined and 
continuous on the closure of  ΩT  which vanish 
on the lateral boundary of the domain, under the 
norm,  

 

 

 where  

, 

, and 

.  

In [29] a reverse Hölder argument is employed 
to obtain a higher order integrability for the 
gradient of such a solution [8] [9]. It follows 
from these results that weights of the form 
δ(x,t)γ can be introduced to the norm inequalities 
without difficulty. (See also [28].)  

In the present paper solutions to the 
inhomogeneous equation Lu=divf in ΩT,  
u|∂pΩT=0  will be investigated for  operators    

 

as described above. In [26] the question of 
finding conditions on two measures μ and ν, 
defined on a domain Ω in Rd, to give the 
inequality  

 

 

was introduced in the case of u(x) being a 
solution to an elliptic equation, Lu=divf. It was 
shown that a condition involving a singular 
potential of the measure μ gives the same kind 
of norm inequality for a local Hölder norm 
replacing . The present paper starts to 
investigate what can be proved for a solution to 
the inhomogeneous parabolic equation on rough 
domains in R(d+1). Theorem C and its proof 
(given in Section 3) is the major result of this 
paper. (The result of Theorem C was announced 
in a lecture given at the Fourth International 
Conference of Applied Mathematics in Plovdiv, 
Bulgaria, August 2007 [24].) Theorem C 
contains a condition for the measures μ and ν for 
solutions to 
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which guarantees the validity of a norm 
inequality similar to the one above. The 
condition is analogous to the condition 
mentioned above for solutions to the elliptic 
operator equation; it involves the convolution of 
dσ=((dν/(dxdt))(1-p’) with a singular kernel. In the 
present paper we intend to present the proof of 
the theorem, after describing the setting in which 
it occurs. 

The other half of the problem, namely finding 
conditions on weights μ on ΩT and νdω on the 
parabolic boundary of ΩT, ∂p ΩT, (this means the 
lateral boundary and the bottom part of the 
boundary) so that  

  

 

 holds for solutions to the Dirichlet problem  

 

will be discussed in the last section of the paper, 
along with open problems. The Hölder norm 

is defined by  

 

where 

 

and 

. 

2  Problem Formulation                  
To state Theorem C we give some background 
information. First W will denote the collection 
of certain Whitney-type parabolic dyadic cubes 
(these are dyadic cubes whose dimension 
compares with the cube's distance from the 
boundary of ΩT, and whose dimension in the 
time direction is the square of its space 
dimension) that lie in ΩT.  These cubes have the 
property that their interiors are pairwise disjoint; 
a fixed dilate of any cube will also be Whitney-
type with respect to ΩT, and 

 

The measures μ and ν will be taken to be Borel 
measures defined on ΩT, with ν absolutely 
continuous with respect to Lebesgue measure. 

The operators under consideration are second 
order divergence form whose coefficients are 
symmetric, bounded and measurable. 

 

with the existence of a constant λ>0 such that 

 

for all (x,t) in ΩT. 
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Points in R(d+1) are denoted by (x′,xd,t) with x′ in 
R(d-1) ,  xd  in R¹,  and t in R¹. The parabolic 
metric is given by  

 

The domain ΩT lying in R(d+1) will be taken to be 
a bounded domain whose boundary, ∂pΩT, 
consists of three parts, a top part, TΩT, 

; 

a bottom part, BΩT,  

, 

and a lateral part, SΩT,  

 

The parabolic boundary of ΩT is denoted by 

  

The lateral boundary can be described locally as 
the graph of a Lipschitz function, which may 
have been rotated and/or translated. More 
precisely ∂pΩT can be covered by finitely many 
cylinders  

 

with (z,τ) lying in ∂pΩT; if (z,τ) is in ST, then 

 

where  

 

The constant M>0 is called the Lipschitz 
constant of the domain ΩT . It is best to think of 
the domain ΩT as being a finite part of a larger 

domain Ω that is infinite in the time variable, so 
that 

 

Every point P on ∂Ω satisfies the condition that 
there is a polygonal curve γ lying completely 
inside Ω. The curve starts at the point P and has 
a strictly increasing time coordinate. For the 
kinds of operators we will be considering, ∂/∂t-L 
as described above, Aronson [1] (see also [5]) 
proved the existence and uniqueness of the 
fundamental solution Γ(x,t;y,s) on R(d+1) . The 
Green function for the operator on a given 
domain ΩT can be taken to be 

 

 

ω(x,t) is the ("harmonic") measure on sets in ∂pΩT 
induced by the operator ∂/∂t-L, taken at the point 
(x,t). It is not hard to see that the Green function 
of Ω, when it is restricted to ΩT, will be identical 
to the Green function on ΩT (see [20]). 

     The Hölder norm of u is defined as 

  

 with δ(x,t) being the parabolic distance of the 
point (x,t) from the parabolic boundary of ΩT. 
The region P(δ(x,t)/100) is defined as 

 

With W being the collection of parabolic dyadic 
regions in ΩT described above, let us denote the 
fixed dilate of any such cube Qj, which is again 
a Whitney type cube in ΩT , to be βQj , with β>1. 

3  Problem Solution                            
We will be assuming that any solution to the 
inhomogeneous boundary value problem,  

WSEAS TRANSACTIONS on MATHEMATICS Caroline Sweezy

ISSN: 1109-2769 267 Issue 5, Volume 7, May 2008



 

 

has the representation 

 

Theorem C:  Suppose that u(x,t) is a solution 
to 

 

 

with ΩT as described above. Let μ and ν be Borel 
measures defined on ΩT such that ν is absolutely 
continuous with Lebesgue measure. Let 
dσ(x,t)=(dν)/dxdt)(x,t))(1-p′)dxdt. If there is a 
constant C0>0 such that 

 

 

for all cubes Qj  in W, then for all 0<q<∞ and 
1<p<∞, there is a constant C>0, independent of 
u and f, so that 

 

 

Proof: (see [26] Theorem 3): In the following 
argument we use the estimate on the Green 
function: 

 

 

This estimate can be proved by using Moser 
iteration and geometric decay of the Green 
function if (x,t) and (w,τ) are in a Whitney-type 
region whose dimension is also comparable to 
its distance from the pole (y,s). In this paper we 
only need the estimate if 

 

So if  

   

(β′>β by a fixed amount) this will be the case. 
Also if (y,s) lies in β′Qj , but if dp(x,t;y,s)≥ 
0.05δ(x,t) (and this implies that dp(w,τ;y,s)≥ 
0.04δ(x,t) and that dp(x,t;y,s)> dp(x,t;w,τ)), again 
Moser iteration gives the estimate. Lastly if 
dp(x,t;y,s)≤ C dp(x,t;w,τ), then dp(x,t;w,τ)/ 
dp(x,t;y,s))α ≥ C-α. Assuming that G(x,t;y,s)≥ 
G(w,τ;y,s) means that 

 

 

 

    If G(w,τ;y,s)≥ G(x,t;y,s), a symmetric 
argument gives the same upper bound. (Other 
cases can be dealt with by using elementary 
estimates and the adaptation of Moser's 
techniques [17] to regions on the boundary of ΩT 
introduced by Fabes and Safonov, and Nystrom 
[7], [20].) 

     Writing 
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Consequently 

 

 

With  equal to the sum   

 

 

The condition given in Theorem C implies that 

 

, 

and this means that the qth root of the expression 

 

is less than or equal to  

 

 
4    Conclusion 
The question of what conditions on two weights 
will allow one to prove a norm inequality of the 
form stated in the Introduction has been 
extensively studied for solutions to the Dirichlet  
problem over the past 30 years. The companion 
result to Theorem C was proved in [27]. It is 
given below as Theorem A. Prior to proving 
Theorem A, the author and Wilson had proved a 
norm inequality [32] for the space gradient of 
the solution u(x,t) to  

 

Obtaining the norm inequality for  

instead of was originally due to a 
suggestion of R.L.Wheeden. There are several 
advantages to using the Hölder norm defined in 
the Introduction instead of trying to deal with 

.One important reason is that with a 
Hölder norm one can gain control of the rate of 
change of the temperature function as it changes 
in time as well as its rate of change with respect 
to the space variable, x. Another reason is that, 
for the most general kind of operator whose 
solutions are amenable to our methods, namely a 
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strictly parabolic, divergence form operator, L as 
described above, we were obliged to put 
additional restrictions on the range of the 
exponents, p and q, for which we could prove an 
inequality of the nature of (2) for = 

. We also had to assume an extra 
condition on the measure μ. (Remark: the 
additional restriction on p and q and the extra 
condition on μ are not necessary in dealing with 
solutions to the heat operator, ∂/∂t-Δ.) 

Theorem A:  For ΩT and ∂/∂t-L as described 
above, assume that u(x,t) is a weak solution of 

 

with f(z,τ) in L∞(∂pΩT,dω), and ω=ω(X
0

,T) being 
the parabolic measure on ∂pΩT generated by the 
operator ∂/∂t-L, measured from the fixed point 
(X0,T). Let μ be a Borel measure defined on ΩT, 
and let ν be a non-negative weight defined on 
∂pΩT so that ν is locally integrable on ∂pΩT with 
respect to the measure dω. Further assume that 
for σ(z,τ)≡(ν(z,τ))(1-p′), then σdω is an A∞ measure 
with respect to dω. Suppose for all parabolic 
cubes Qb on ∂pΩT, with TQb denoting the top half 
of the Carleson-type region associated to Qb a 
boundary cube, with  

 

the following inequality is valid: 

 

 

Then there is a constant 

C=C(d,λ,α,β,δ,η,ΩT,r0,p,q) so that for 1<p≤ 
q<∞, q≥ 2, and Ω{T,δ}≡{(x,t)in ΩT, δ(x,t)<δ},  the 
following inequality is valid: 

 

Remark:  It will be shown below that an 
analogous condition on ΩT \ ΩT,δ is sufficient to 
prove that 

 

Thus givng the norm inequality for the entire 
domain ΩT. 

To prove Theorem A one must first establish a 
Litllewood-Paley type norm inequality for 
functions of the form 

 . F is a finite 

family of “dyadic” parabolic boundary cubes 
(the ones mentioned in Theorem A) Qb. The 
functions φQb (z,τ) have certain decay, 
smoothness (Hölder continuity is enough) and 
cancellation properties that are essential to 
obtaining the square function result by the 
method employed in [27]. The φQb depend on 
the kernel function for the operator L in the case 
of the Dirichlet problem or on the Green 
function of L and the domain in the case of the 
inhomogeneous equation. 

 Recently the author began to investigate what 
kinds of results could be obtained for solutions 
to Poisson’s equation for the same kinds of 
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second order operators on rough boundary 
domains. Results obtained for strictly elliptic 
operators on Lipschitz domains ([24], [25]) have 
indicated that it  may be possible to prove 
similar theorems for solutions to parabolic 
operators on rough boundary domains. Theorem 
C is the first (and simplest) finding in this 
direction.  
     Future work will involve finding conditions 
on two measures so that one can prove a 
weighted norm inequality and a semi-discreet 
Littlewood-Paley type inequality in the setting 
that is appropriate for the generalized heat 
equation for solutions to the inhomogeneous 
parabolic boundary value problem stated at the 
beginning of Section 3. To prove sufficient 
conditions on μ and ν for a norm inequality that 
depends on a dual operator argument, for 
parabolic u, along the lines of what is known to 
work for elliptic operator solutions, one must 
establish estimates for the Green function. These 
estimates are proved in Gruter and Widman for 
the elliptic Green's function on a non-smooth 
domain [GW]. However, it is well-known that 
the capacity arguments used by Gruter and 
Widman are not valid in the case of parabolic 
operators of the type considered here. One can, 
however, obtain geometric estimates on the 
parabolic Green's function that are needed for a 
Littlewood-Paley type inequality from results 
proved by Kaj Nystrom [20]; so it is probable 
that a similar result can be established for 
parabolic Hölder norms on non-smooth 
domains. This is work in progress.  
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