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21000. Dijon
FRANCE

Remi.leandre@u-bourgogne.fr
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1 Introduction
Let us consider some vector fields Xi on Rd with
bounded derivatives at each order. We consider the
Hoermander’s type diffusion generator

L = X0 + 1/2
m∑

i=1

X2
i (1)

In (1), the vector fields are considered as first order
differential operators. If we consider the vector fields
as smooth section of the (trivial) tangent bundle of the
linear space, we can consider the horizontal differen-
tial equation associated to them: h denotes a L2 func-
tion from [0, 1] into Rm and we consider the equation

dxt(h) =
m∑

i=1

Xi(xt(h))hi
tdt (2)

We put ‖h‖2 =
∑m

i=1

∫ 1
0 |h

i
t|2dt and we introduce the

Carnot-Caratheodory distance d(x, y) ([6], [36]) asso-
ciated to the problem

d2(x, y) = inf
x0(h)=x,x1(h)=y

‖h‖2 (3)

In the sequel we will do the following hypothesis:
Hypothesis (H1)(x, y) → d(x, y) is continuous.
We put

E1(x) = {X1(x), .., Xm(x)} (4)

El+1(x) = El(x) ∪i>0 [Xi(x), El(x)] (5)

We do the strong Hormander’s hypothesis in x:
Hypothesis (H2): ∪El(x) = Rd

L generates a diffusion semi-group Pt.

Pt ◦ Psf = Pt+sf (6)

if f is a bounded continuous function onR. Moreover
when t→ 0

lim
Ptf − f

t
= Lf (7)

if f has bounded derivatives at each order. Moreover
it is a Markovian semi-group because L satisfies the
maximum principle

Pt[f ](x) =
∫

Rd

f(y)Pt(x, dy) (8)

where Pt(x, dy) is a probability measure.
Hoermander’s theorem ([2], [7], [10], [33]) states

that there is a heat-kernel associated to Pt:

Ptf(x) =
∫

Rd

pt(x, y)f(y)dy (9)

for any bounded continuous function f on Rd.
The goal of this paper is to prove again the fol-

lowing theorem:

Theorem 1 (Léandre [14], [15])Under hypothesis
(H1) and (H2), we have

limt→02t log pt(x, y) ≤ −d2(x, y) (10)

This theorem was proved originally by using the
Malliavin Calculus and the theory of large deviations
of Wentzel-Freidlin in [14], [15]. Let us stress that
the relationship between the Malliavin Calculus and
the large deviation theory was pioneered by Bismut
in [3]. Wentzel-Freidlin estimates were translated in
semi-group theory by Léandre in [31] and the Malli-
avin Calculus of Bismut type with some applications
to subelliptic estimates was translated by Léandre in
semi-group theory in [21], [23], [24], [25], [26], [28],
[29] and [30].
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Readers interested by probabilistic methods in
heat-kernels can look at the books [1], [8], [11], [38]
to the review papers of Léandre ([16], [17], [19],
[20]), Kusuoka ([13]) and Watanabe ([41]). Readers
interested by analytical methods for heat kernels can
look at the books ([4], [40]) and to the review papers
of Jerison-Sanchez [9] and Kupka [12]. Let us remark
that the marriage between large deviation estimates
and the Malliavin Calculus can be done for others
equations than the classical one (see for instance the
review paper [32]). In order to be self contained, we
begin by recall the scheme of our proof of Wentzel-
Freidlin estimates in semi-group theory.

2 The Itô-Stratonovitch formula in
semi-group theory

Let us consider some vector smooth fields Xi, i =
0, ..,m on the d-dimensional torus T d and let us con-
sider the operator

L = X0 + 1/2
∑

X2
i (11)

Let f be a smooth function on the torus, and let
us introduce the smooth vector fields on T d ×R

X̂i = (Xi, < df,Xi >) (12)

and the associated operator

L̂ = X̂0 + 1/2
∑

X̂2
i (13)

To L is associated a semi-group Pt and to L̂ is asso-
ciated a semi-group P̂t. Let g be a smooth function
on T d ×R bounded with bounded derivatives at each
order. We get:

Theorem 2 Let us consider the function ĝ(x) =
g(x, f(x)). Then

Pt[ĝ](x) = P̂t[g(., .)](x, f(x)) (14)

Proof:By a density result, we can suppose that f ,
g are finite sum of Fourier exponentials. Moreover,
since Pt and P̂t are limit of semi-groups where the
Xi are finite sum of trigonometric function, we can
suppose that the vector fields Xi are finite sums of
trigonometric functions. In such a case

Pt[ĝ](x) =
∑

tn/n!Lnĝ(x) (15)

and

P̂t[g(., .)](x, f(x)) =∑
tn/n![L̂ng(., .)](x, f(x)) (16)

But if we consider a function ψ which depends only
from x,

Xi(ĝψ)(x) = X̂i[g(., .)ψ](x, f(x)) (17)

and is a finite sum of expressions of the same type
with derivative of g involved in addition. This show
us

Lnĝ(x) = L̂n[g(., .)](x, f(x)) (18)

and the result follows.♦
This theorem is the translation in semi-group the-

ory of the Stratonovitch formula in stochastic anal-
ysis. Let us recall this well-known formula: let us
consider the stochastic process xt(x) on the torus as-
sociated to it. It is the solution of the Stratonovich
stochastic differential equation starting of x

dxt(x) = X0(xt(x))dt+
∑

Xi(xt(x))dBi
t (19)

where Bi
t is a Rm-valued Brownian motion. In the

Stratonovitch Calculus,

f(xt(x)) = f(x) +
∫ t

0
< df(xt(x), dxt(x) >=

f(x) +
∫ t

0
< df(xt(x)), X0(xt(x)) > dt+∫ t

0

∑
i>0

< df(xt(x)), Xi(xt(x)) > dBi
t (20)

such that the couple ((xt(x), f(xt(x))) is a diffusion
associated to the Laplacian L̂ on T d ×R.

It has the following important corollary.
Let Xi = (Xi(x), Yi(y)) some vector fields on

Rd × Rd′ bounded with bounded derivatives at each
order. (x, y) ∈ Rd × Rd′ . Let g be a bilinear form
on Rd × Rd′ . Let us introduce the vector fields on
Rd ×Rd′ ×R

X̂i(x, y, z) =

(Xi(x), Xi(y), g(Xi(x), DYi(y)Yi(y))

+ g(DXi(x)Xi(x), Yi(y))) (21)

To the vector fields Xi is associated a generator L on
Rd × Rd′ and to the vector fields X̂i is associated a
generator L̂ on Rd × Rd′ × R. They are of the type
studied in this work. Associated to L there is a semi-
group P t and to L̂ is associated a semi-group P̂t. We
get

Theorem 3 (Itô-Stratonovitch). Let f be a smooth
function onR with bounded derivatives at each-order.
Let f : (x, y) → f(g(x, y)) and f̂ : (x, y, z) → f(z).
Then

P t[f ](x, y) = P̂t[f̂ ](x, y, g(x, y)) (22)
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Proof: R is imbedded in T . The vector fields Xi

by this imbedding realize smooth vector fields on
T d × T d′ and the vector fields X̂i realize smooth vec-
tor fields with bounded derivative at each order on
T d × T d′ × R. The result is therefore a corollary of
the previous theorem.♦

3 Wentzel-Freidlin estimates in
semi-group theory

Let us begin by recalling the elementary Kolmogorov
lemma of the theory of stochastic processes ([34],
[39]).

Let s → Xs be a family of random variables (
X0 = 0) parametrized by s ∈ [0, 1] with values in Rd

such that

E[|Xt −Xs|p] ≤ C(p)|t− s|αp (23)

Then there exist a continuous version of s → Xs and
the Lp norm of X∗

1 = sups≤1 |Xs| is finite and can be
estimated in terms of the data of (23).

We remark that all the considered Markov semi-
group in this part satisfy the Burkholder-Davis-Gundy
inequalities in semi-theory of [21]

Qt[|.−X|p](X) ≤ C(p)tαp (24)

Namely if we use the semi-group property, we remark
that if p is an even integer, ∂r

∂trQ0[|. − X|p](X) = 0
for r ≤ p/2. and define therefore a measure W of the
involved continuous path-space by the Kolmogorov
lemma.

Let us consider the generator

Lt = tX0 + t/2
∑

X2
i (25)

It generates a semi-group P t
s . It is classical (See [5] in

analysis and [35] in probability) that

P t
1 = Pt (26)

We put in the sequel ε =
√
t. We consider (b, x, y) ∈

Rm×Rd×Rd and the following vector fields if i > 0

X̂i = (ε, εXi(x), 0) (27)

Ŷi = (0, 0, Xi(y)hi
s) (28)

X̂0 = (0, ε2X0(x), 0) (29)

We consider the generator

Lε = X̂0 + 1/2
∑

X̂2
i +

∑
Ŷi (30)

It generates a Markov semi-group P ε
s which defines

a probability measure W ε
0,x,y of the associated path-

space. We put

H i(t) =
∫ t

0
hi(s)ds (31)

We get

Lemma 4 ( [18], [31]))Let R > 0 and K > 0 and
h0. There exists r, C and ε0 > 0 such that for ε < ε0

sup
‖h‖≤h0

W ε
0,x0,x0

{(b−H)∗1 < r, |x1 − y1| > R}

≤ C exp[−K/ε2] (32)

Proof:We consider the stochastic process (b − H)s,
(xs − ys). By the Itô-Stratonovitch formula of the
previous part, it has the same law than the stochastic
process (b−H)s,

∑
(bis−H i

s)Xi(xs)−Xs+Ys where
bs, xs, Xs, ys, Ys are the stochastic processes associ-
ated to the generator

L̃ε = 1/2
∑

X̃2 + ε2X̃0 +
∑

Ỹi (33)

with if i > 0

X̃i =

(ε, εXi(x), (bi −H i
s)εDXi(x)Xi(x), 0, 0) (34)

Ỹi = (0, 0, 0, Xi(y)hi
s, (Xi(x)−Xi(y))hi

s) (35)

X̃0 = (0, ε2X0(x), 0, 0, 0) (36)

with generic element on this big space (b, x,X, y, Y ).
By Gronwall lemma, we deduce if r is small enough
that

W ε
0,x0,x0

{|b−H|∗1 < r; |x1 − y1| > R}
≤W ε

0,x0,0,x0,0{|b−H|∗1 < r;X∗
1 > CR} (37)

So it remains only to estimate this last quantity. The
result will follow from the next lemma:

Lemma 5 We have for all A the estimate valid for
t > s

W ε
0,x0,0,x0,0{|b−H|∗1 < r; | exp[< A,Xt >]

− exp[< A,Xs >]|p}
≤ (t− s)αp exp[C(p)|A|2ε2r] (38)

We postpone later the proof of this lemma, which uses
the analoguous in semi-group theory of the classical
exponential martingales of stochastic calculus. By the
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Kolmogorov lemma, we deduce from the lemma that,
if A > 0

W ε
0,x0,0,x0,0{|b−H|∗1 < r; exp[AX∗

1 ]}
≤ C exp[CA2ε2r] (39)

such that

W ε
0,x0,0,x0,0{|b−H|∗1 < r;X∗

1 > R}

≤ C exp[−C R
2

ε2r
] (40)

by choosing A = C1R
ε2r

in (39). Therefore the result
arises.♦.

Proof of the lemma Let us consider the vector
fields for i > 0

Xi = (ε, εXi(x), (bi −H i
s)εDXi(x)Xi(x), 0) (41)

X0 = (0, ε2X0(x), 0, 0) (42)

Y 0 = (0, 0, 0,
∑

(bi −H i
s)

2) (43)

with generic elements (b, x,X, z) on this big space.
Let us consider the generator

L = 1/2
∑

(Xi)2 +X0 + Y 0 (44)

There is associated a Markov semi-group P t. Let p be
an even integer and k an even bigger integer. Follow-
ing [21], we introduce the auxiliary function

FC(X) =
|X −X0|p

1 + |X −X0|k/C
(45)

Let us put

ut = P [FC ](0, x0, X0, 0) (46)

ut is finite and u0 = 0. Moreover, by applying the
semi-group property, we deduce that

|d/dtut| ≤ A+But (47)

where A, B don’t depend on C and X0. Therefore we
get a uniform estimate of ut and by using the Fatou
lemma, we deduce that:

P t[|X −X0|p](0, x0, X0, 0) ≤ C(p) (48)

By doing as in the beginning of this part, we deduce
that the derivatives ∂

∂trP 0[|.−X0|p](0, x0, X0, 0) = 0
for r ≤ p/3. Let us convert the generator L in Itô
form. The X part can be written as∑

< (bi −H i
s)εDXi(x)Xi(x), D2F (X),

(bi −H i
s)εDXi(x)Xi(x) >

+ < Ai(ε, x, f), DF (X) > (49)

where

|Ai(ε, x, ;h)| ≤ Cε3 + |b−Hs|ε2 (50)

We add an extra-variable u to the space and we modify
L in RA:

RAF = LF+∑
< (bi −H i

s)εDXi(x)Xi(x), A >2 DuF

+
∑

< Ai(ε, x, h), A > DuF (51)

where F depends on (b, x,X, z, u). RA generates a
semi-group QA

t . We consider a smooth decreasing
function g equals to 1 if z ≤ r2 and equals to 0 if
z > 2r2 and we consider the function

ψ(b, x,X, z, u) = g(z) exp[< A,X > −u] (52)

We remark that RAψ ≤ 0. Therefore

QA
t ψ(0, x0, 0, 0, 1) ≤ 1 (53)

By Cauchy-Schwartz inequality, we deduce that

P t[g(z) exp[< A,X >]](0, x0, 0, 0)

≤ (QA
t [g(z) exp[2u]](0, x0, 0, 0, 1))1/2 (54)

But this last quantity is smaller than exp[C|A|2ε2r].
The result arises then by replacing in (45) FC(X) by

(exp[< A,X −X0 >]− 1)p

1 + (exp[< A,X −X0 >]− 1)k/C
(55)

♦.

Theorem 6 (Wentzel-Freidlin)When t → 0, and if
d2(x,O) = infy∈O d

2(x, y)

limt→02t logPt[O](x) ≤ −d2(x,O) (56)

if O is an open suset of Rd.

Proof:Let bt be the process associated to the first
component in Lε. It is the Brownian motion. Its tran-
sition heat-kernel is C(tε)−m/2 exp[− |x−y|2

2ε2t
]. There-

fore if t > s

W ε
0,x0,0,x0

{exp[< A, bt − bs >]}
≤ (t− s)αp exp[C|A|2(t− s)ε2] (57)

By doing as in the end of the previous part, we deduce
that:

W ε
0,x0,0,x0

{b∗t > R} ≤ C exp[−CR
2

tε2
] (58)
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Therefore in order to estimat W ε
0,x0,0,x0

{x1 ∈ O},
we can by the previous estimate do the restriction that
b∗1 < R for some big R.

We choose a very small r0 and a lattice on Rm

with smesh r0 and a lattice on [0, 1] with a very small
smesh t0. We consider the space R of polygonal
curves H on the previous lattice on Rm with smesh
t0. We can choose r0 very small and t0 very small
such that infH∈R,x1(d/dtH)∈0 ‖d/dtH‖2 is very close
of infz∈O d

2(x, z).
By the inequality (58), we have if r′ is small

enough for a big K:

W ε
0,x0,0,x0

{(b−H)∗1 > r′for all h ∈ R} ≤
exp[−K/ε2] (59)

So it remains only to do the estimate for h ∈ R of
W ε

0,x0,0,x0
{(b−H)∗1 ≤ r′. But this quantity is smaller

than W ε
0,x0,0,x0

{for all ti |bti −Hti | ≤ r′} where the
ti run on the subdivision considered of [0, 1]. But the
heat kernel associated to the Brownian motion is clas-
sically known and this last quantity is smaller than
exp[−‖d/dtH‖2+r”

2ε2
] for a convenient small r”.♦

Remark:Let us motivate this theorem by using
the heuristic formulas of path integrals. We put ε =√
t and we consider the Stratonovitch stochastic dif-

ferential equation

dxε
s(x) = ε2X0(xε

s(x))ds+

ε
∑
i>0

Xi(xε
s(x))dB

i
s (60)

We write formally

dBi
s = d/dsBi

sds (61)

where d/dsBi
s is the white-noise. Formally, the white

noise follows the infinite dimensional Gaussian mea-
sure

dµ = 1/Z exp[−‖d/dsB.‖2/2]dD (62)

where dD is the formal Lebesgue measure of the path
space (We refer to [22], [27] for a rigorous approach
of this formal Lebesgue measure as a distribution in
infinite dimension in the Hida-Streit approach of func-
tional integrals). Therefore, εd/dsB. follows formally
the Law

dµ(ε) = 1/Z(ε) exp[−‖d/dsB.‖2/2ε2]dD (63)

and the result (56) goes as if we were in finite dimen-
sion.

4 Proof of the main theorem
We consider the Malliavin generator L̂ on Rd×Gd×
Md where Gd denotes the set of invertible matrices
on Rd and Md denotes the set of symmetric matrices
on Rd. (x,U, V ) denotes the generic element of this
space (V is called the Malliavin matrix). We consider
the vector fields

X̂i = (Xi, DXiU, 0) (64)

Ŷ =
m∑

i=1

< U−1Xi, . >
2 (65)

and the Malliavin generator is defined by

L̂ = X̂0 + Ŷ +
m∑

i=1

X̂2
i (66)

It generates a semi-group P̂t.
We use the integration by parts formula of [16]: if

(α) is a multi-index on Rd, we have by [21] and (56)

|Pt[g
∂(α)

∂y(α)
f ](x)| ≤

exp[
−d2(x, y) + η

2t
](P̂t[|V −1|r(α)](x, I, 0))1/p‖f‖∞

(67)

for a convenient r(α), a big p (‖f‖∞ denotes the uni-
form norm of the test function f ).

This comes from the basical tools of the Malliavin
Calculus of Bismut type without probability of [21].
Let us give some details on that.

We consider some convenient step by step con-
structed vector fields:

Xk
i (x1, .., xk) = Xk

1,i(x1, .., xk−1)xk+

Xk
2,i(x1, .., xk) +Xk

3,i(x1, .., xk−1) (68)

where Xk
i,1 have bounded derivatives at all order as

well as Xk
2,i and Xk

3,i(x1, .., xk−1) has derivatives
with polynomial growth.

(x1, .., xk) is the generic element of the big space
Rd1 ×Rd2 ×Rd3 ..×Rdk (In order to simplify the ex-
position, we omit to describe the details coming from
the fact some times Rdj is replaced by a set of invert-
ibles matrices). We consider the vector fields on the
big space

Xtot
i = (X1

i (x1), .., Xk
i (x1, .., xk)) (69)

and the big generator

Ltot = 1/2
∑
i>0

(Xtot
i )2 +Xtot

0 (70)
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Ltot spans a Markovian semi-group P tot
t , which

enlarges modulo some nice choices of X2
i and of

X3
i the Malliavin semi-group P̂t. The main remark

is the following: if f has a polynomial growth,
P̂t[f ](x, I, 0, ..) is finite ([21]). We denote this en-
larged semi-group Qtot

t . Let us consider a multi-index
(α). There exists a semi-group of this type Qtot

t so
that

Pt[
∂α

∂y(α)
(gf)](x) = Qtot

t [(gf)R](x, I, 0, ..) (71)

whereR contains polynomial in the enlarged variables
and some inverse of the Malliavin matrix V . By dis-
tributing the derivatives in gf and proceding induc-
tively on the length of the multi-index (α), we find
that

Pt[g
∂α

∂yα
f ](x) = Qtot

t [g̃Rf ](x, I, 0, ..) (72)

where g̃R is an algebraic expressions containing some
derivatives of g of length smaller than the length of
(α), in the extra variables and in the inverse of the
Malliavin matrix. We apply Cauchy-Schwartz in-
equality and we deduce that

|Pt[g
∂α

∂yα
f ](x)| ≤

‖f‖∞P̂t[|V −1|r(α)]1/β′(x, I, 0)Pt[|g̃|β ]1/β(x, 0)
(73)

for a big r(α), a convenient β′ and a β close from
1. The results comes then by (56). The result comes
from the following proposition:

Theorem 7 The following estimate is valid for t ≤ 1:

P̂t[|V −1|p](x, I, 0) ≤ C(p)t−r(p) (74)

for a convenient r(p) associated to the positive integer
p.

Namely from (73) and Theorem 7, we deduce the
bound valid for t ≤ 1

|Pt[g
∂α

∂yα
f ](x, )|

≤ t−r(α) exp[
−d2(x, y) + η

2t
]‖f‖∞ (75)

We apply this estimate when f is a Fourier
exponential in order to deduce that the density
of the measure f → Pt[gf ](x) is bounded by
t−r exp[−d2(x,y)+η

2t ]. The conclusions comes from the
fact the density of this measure in y is g(y)pt(x, y) =
pt(x, y).

5 Estimation of the Malliavin matrix
in small time

In this part we prove the Theorem 2. This follows
closely the appendix of [23]. We remark that tL̂ gen-
erates a semi-group P̂ t

s and that P̂t = P̂ t
1 . We put

F t
l (x,U, ξ) =

∑
El(x)

t < U−1Y (x), ξ >2 (76)

where ξ is a bounded element of Rd. We get

Lemma 8 : Let us suppose that for arbitrarly small
s0 we have

P̂ t
s0

[F t
l (., ., ξ) > tβsα

0 ](x, U0, 0) > C > 0 (77)

Then (77) remains true on an interval starting from
s0 and of length tβ1sα1

0 if U0, U−1
0 and ξ remain

bounded.

Proof:We introduce a function g from R+ into [0, 1]
with bounded derivatives, equals to 1 at a neighbor-
hood of the infinity and equals to 0 in 0. We introduce
the auxiliary function

s→ h(s) =

P̂ t
s [g(

F t
l (., ., ξ)
tβsα

0

)](x0, U0, 0) (78)

It has derivative bouded by t−2βs−2α
0 . This comes

from the fact that

h′(s) = P̂ t
s [tL̂(g(

F t
l (., ., ξ)
tβsα

0

))] (79)

When we compute L̂(g(F t
l (.,.,.ξ)

tβsα
0

)), there is a polyno-

mial in U−1
0 which appears, and some derivatives of

Y , Y ∈ El(x) which appear, two derivatives of g and
a coefficient in t−2βs−2α

0 which comes from the rule
of derivation of composition of functions. By [21], for
all p, P̂ t

s [|U−1|p](x,U0, 0) remains bounded if U0 and
U−1

0 remain bounded. We deduce since h(s0) = 1
that

h(s) > 1− C
t2βs2α

0

t2βs2α
0

> C > O (80)

if s ∈ [s0, s0+C1t
2βs2α

0 ] forC1 small enough. There-
fore the result.♦

We recall the result of [23]

P t
s [|y − x| > C](x)+

P̂ t
s [(|U |+ |U−1|) > C](x, I, 0) ≤ C(p)tpsp (81)

WSEAS TRANSACTIONS on MATHEMATICS Remi Leandre

ISSN: 1109-2769
249

Issue 5, Volume 7, May 2008



for all s ≤ 1, t ≤ 1 if C is big enough.
Let us proof this result. We consider a smooth and

positive function g equals to 1 outside a neighborhood
of x and equals to 0 in a neighborhood of x. We get

P t
s [|y − x| > C](x) ≤ P t

s [g(y)](x) (82)

Moreover
dr

dsr
P t

0[g(u)](0) = 0 (83)

and
dr

dsr
P t

s [g(y)](x) = P t
s [t

rLrg(y)](x) (84)

This last quantity is obviously bounded bt C(r)tr.
The result goes by Taylor formula.

We introduce a positive smooth function equals
to 1 outside a neighborhood of I and equals to 0 in a
neighborhood of I . We get

P̂ t
s [|U | > C](x, I, 0) ≤ P̂ t

s [g(U)](x, I, 0) (85)

Clearly,
dr

dsr
P̂ t

0[g(U)](x, I, 0) = 0 (86)

On the other hand
dr

dsr
P̂ t

s [g(U)](x, I, 0) = trP̂ t
s [L̂

rg(U)](x, I, 0)
(87)

In L̂rg(U) some polynomials in U appear. But
P̂ t

s [|U |p](x, I, 0) remains bounded ([21]). The result
goes as before.

We do the same to study P̂ t
s [|U−1| > C](x, I, 0):

we have only to remark that the vector fields DXiU
are transformed in −UDXi under the transformation
U → U−1.

In the sequel U0 and U−1
0 will remain bounded.

Lemma 9 Let us suppose that

P̂ t
s0

[F t
l (., ., ξ) > tβsα

0 ](x0, U0, 0) > C > 0 (88)

on an interval I(x0, U0) starting from s0 and of length
tβ1sα1

0 . Then there exists β2 and α2 depending on the
previous data and a s1 belonging to the previous in-
terval such that

P̂ t
s1

[F t
l−1(., ., ξ) > tβ2sα2

0 ](x0, U0, 0) > C > 0
(89)

Proof:Either

P̂ t
s0

[F t
l−1(., ., ξ) > tβ2sα2

0 ](x0, U0, 0) (90)

and the proof is finished or not. Let us suppose that
we are in the second situation. We consider

Gl−1(x”, U”, ξ) =
∑
El−1

(< (U”)−1Y (x”), ξ >

− < (U0)−1Y (x0), ξ >)2 (91)

We consider a increasing function g from R+ into
[0, 1] equals to 1 on a neighborhood on the infinity
and such that g(t) = t on a neighborhood of 0. We
consider the auxiliary function s→ h(s)

s→ P̂ t
s [g(

Gl−1

sα3
0 tβ3

)](x,U, 0) (92)

for some big α3, β3 and x,U being chosen according
the law of P̂ t

s0
(x0, U0, 0). By the consideration done

before this lemma, we can suppose that x, U and U−1

remain bounded. This function is equal to 0 in s0, has
a first derivative in s0 in Ct−α4 s−β4

0 (C > 0), and
has a second derivative bounded by Ct−2α4 s−2β4

0 for
some big α4 and β4.

Let us give the details of this statement. The main
remark is that

X̂i < U−1Y, ξ >=< U−1[Xi, Y ], ξ > (93)

Therefore

L̂Gl−1(x”, U”, ξ) =
∑
El

< (U”)−1Y (x”), ξ >2 +

∑
El−1

< (U”)−1[X0, Y ], ξ >

(< (U”)−1Y (x”), ξ > − < U−1
0 Y (x0), ξ >)+∑

El,i>0

< (U”)−1[Xi, [Xi, Y ]], ξ >

(< (U”)−1Y (x”), ξ > − < U−1
0 Y (x0), ξ >) (94)

This shows the following inequality:

|tL̂[g(
Gl−1

sα3
0 tβ3

)](x0, U0, 0)|

≥ tβsα
0 − tβ2/2s

α2/2
0

sα3
0 tβ3

(95)

We choose β2/2, α2/2, α3 and β3 very big and we
take α4 = α3−α and β4 = β3− β. We would like to
estimate

t2L̂2[g(
Gl−1

sα3
0 tβ3

)](x,U, 0) (96)

For that we iterate (93). We have

X̂i[g(
Gl−1

sα3
0 tβ3

)](x,U, 0) =

1
sα3
0 tβ3

g′(
Gl−1

sα3
0 tβ3

)
∑
El−1

< U−1[Xi, Y ], ξ >

(< U−1Y (x), ξ > − < U−1
0 Y (x0), ξ >) (97)
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We have moreover

X̂2
i [g(

Gl−1

sα3
0 tβ3

)](x, U, 0) =

1
s2α3
0 t2β3

g”(
Gl−1

sα3
0 tβ3

)
∑
El−1

< U−1[Xi, Y ], ξ >

(< U−1Y (x), ξ > − < U−1
0 Y (x0), ξ >)2

+
1

sα3
0 tβ3

g′(
Gl−1

sα3
0 tβ3

)

{
∑
El

< U−1Y (x), ξ >2 +
∑
El−1

< U−1[Xi, [Xi, Y ]], ξ >

(< U−1Y, ξ > − < U−1
0 Y (x0), ξ >)} (98)

We distinguish if t
∑

El−1
(< U−1Y (x), ξ > − <

U−1
0 (x0), ξ >)2 is larger of Ctβ2sα2

0 or not. If it the
case, we do as in the previous lemma. If it not the
case, we remark that

Gl−1

sα3
0 tβ3

<
tβ2−1sα2

0

sα3
0 tβ3

< C (99)

is very small because β2 and α2 are very big. There-
fore in t2L̂2[g( Gl−1

s
α3
0 tβ3

)](x,U, 0) there is only one
derivative of g which appears. Therefore the lead-
ing exponent which appears in this expression is
s−α3
0 t−β3 which is smaller than s−2α4

0 t−2β4 because
α3 and β3 are much more bigger than β and α.

Therefore the result. Namely, the first derivative
of h(s) on a time interval starting from s0 of length
Ctβ4sα4

0 are larger than Ct−β4s−α4
0 . This shows there

exists C1 and C2 such that

h(s0 + C1t
β4sα4

0 ) > C2 > 0 (100)

♦
By using the strong Hoermander’s hypothesis in

x, we deduce if x0 remains in a small neighborhood
of x and if U0, U

−1
0 remain bounded that

P̂ t
s [F

t
1(., ., ξ) > sαtβ ](x0, U0, 0) > C > 0 (101)

on an interval I(x0, U0) starting from s0 and of length
sα0
0 tβ0 .

By doing as in Lemma 5 of [23], we deduce
that for any x0 in a small neighborhood of x, if U0

and U−1
0 remain bounded, there exists an interval

I(x0, U0) starting from s0 small of length sα
0 t

β and
α0 and β0 such that

P̂ t
s [V (ξ) < tβ0sα0 ](x0, U0, 0) < C < 1 (102)

for s ∈ I(x0, U0).

We slice the time interval [0, 1] into s−αt−β small
intervals, we apply the semi-group property and we
deduce as in [23], Theorem 2 that

P̂ t
1[V (ξ) < tβ0sα0 ](x, I, 0) < CCs−α

1 Ct−β

1 (103)

where C1 is smaller than 1.
We deduce that

P̂ t
1[V (ξ) < tβε](x, I, 0) ≤ C(p)εptp (104)

for all p. We choose t−βrε−r points ξi on the unit
sphere of Rd. We deduce that

P̂ t
1[|V −1| > t−βε−1](x, I, 0) ≤∑

P̂ t
1[V (ξi) < tβε](x, I, 0)

+ P̂ t
1[|V | > t−γε−γ1 ](x, I, 0) ≤ C(p)εp (105)

Therefore (74) in Theorem 7 holds.♦

6 Conclusion
We translated in this work in semi-group theory
our proof of Varadhan estimates for subelliptic heat-
kernels which says that the estimates of large devia-
tion theory are still true for heat kernels.
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