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Abstract: 

 

It is known that, if all the roots of a polynomial are real, they can be localised, using a set of intervals, which 
contain the arithmetic average of the roots. The aim of this paper is to present an original method for giving 
other distributions of the roots/ modules of the roots, on real axis, a method for evaluating and improving the 
“polynomial minimum root separation” results, a method for the complex polynomials and for polynomials 
having all roots real. We use the discriminant, Hadamard’s inequality, Mahler’s measure and new original 
inequalities. Also we will make some considerations about the cost for isolate the polynomial real roots. Our 
method is based on the successive splitting for the interval which contain all roots.  
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1 Introduction       
       The roots repartition of a complex polynomial, 
on real axis, means to give real intervals, not 
necessarily disjunctive, for every polynomial root or 
module of the polynomial root. 
        Pre-isolating respectively isolating the complex 
roots of a polynomial with complex coefficients, 
means to compute separating boxes in the complex 
plane, which contains at most one, respectively 
exact one complex root of the polynomial.  
           The “exact algorithms” for isolating the roots 
are based on: Sturm’s sequences, see [1]; 
differentiation technique, see [2] and Vincent’s 
theorem, see [3]. 
        Other root finding methods are the numerical 
methods. These methods work with a  great variety 
of  approximation errors. Recently results which 
generalize the univariate Hermite interpolation 
formula  can be found in  [4], [5], [6]. 
        The numerical algorithms, compute an 
approximation for all the complex roots of a 
polynomial up to a desired accuracy and if that is 
smaller than “minimum roots separation” then the 
algorithms can be turned on the isolation algorithms. 
For the same approximation error, the costs of the 
fastest ‘isolating algorithms’ and ‘numerical 
algorithms’ are comparable.  
        The aim of this article is to give original results 
regarding the roots repartition on real axis, the 
minimum roots separation for complex polynomials 

and for the polynomials with all real roots. These 
results are necessarily in “exact algorithms” for 
isolating the roots based on successive splitting (see  
[1] and [2]) and can be useful also in numerical 
algorithms. 
        In this section we introduce the basis notations 
and  notions and present the preliminary results in 
this field. We denote a  complex polynomial with 

1
1 1 0( ) ... , 1,n n

n nP x a x a x a x a n−
−= + + + + ≥  

and its  roots with 1,  , nx x… . 

Definition 1.1 Let be ( ) [ ]P x C x∈ . We define: 

a) ( )2
1

i j

i n

x x

≤ ≤

∆ = −∑ .  

b) ( ) min{| | / , 1 , }i j i jsep P x x x x i j n= − ≠ ≤ ≤  

the minimum roots separations.  

c) 
2 22

0 1|| || .. nP a a a= + + +  - the polynomial 

norm. 
d) 0 1( ) .. nL P a a a= + + +  -  the polynomial 

length. 

e) 1 2 .. nx x x
x

n

+ + +
=  the average of the roots. 

Definition 1.2 The discriminant of a polynomial 
[ ]P C x∈  with leading coefficient na  and roots 

1,  , nx x…  is defined as:  
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disc(P)= ( )22 -2

1

n
n i j

i j n
a x x

≤ < ≤
⋅ Π − . 

Proposition 1.1 Let be [ ]P C x∈  

a) The expression of   D= ( )
1≤ < ≤
Π −i j
i j n

x x , is 

1 2
2 2 2( 1)/2
1 2

1 1 1
1 2

1 1 1 1

( 1)

n

n n
n

n n n
n

x x x

x x xD

x x x

−

− − −

= −

K

K

M M M

K

. 

b) disc(P)= 2 -2 2.⋅n

na D  

Definition 1.3 Let be 
1

1 1 0( ) ... ,m m
m mP P x a x a x a x a−

−= = + + + +  and  
1

1 1 0( ) ...n n
n nQ Q x b x b x b x b−

−= = + + + + ,

1, 0,mm a≥ ≠ 1n ≥ , 0.nb ≠   Sylvester's matrix of   

P and Q is the matrix S: 

1 0

1 0

1 0

1 0

1 0

1 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

m m

m m

m m

n n

n n

n n

a a a

a a a

a a a
S

b b b

b b b

b b b

−

−

−

−

−

−

 
 
 
 
 
 
 
 =
 
 
 
 
 
 
 
 

K K

K K

M O O O K O O M

M O O O K O M

K K

K K

K K

M O O O K O O M

M O O O K O M

K K

 

 
where there are  n  rows of the ia   followed  by  m  

rows of the .ib  ( ),i jS s=  is a matrix with  m + n  

rows  and  m + n columns having the elements: 

, 1,for 1   and   

for 1 .

i j m j i n j n j is a i n s b

i m

− + + − += ≤ ≤ =

≤ ≤
 

Definition 1.4 The resultant of P and Q is the 
determinant of  Sylvester's matrix, res (P; Q)=det(S)  
Proposition 1.2   ( ) ( )  ;  ’na disc P res P P= . 
See [7] or [8]. 
Observation 1.1 The discriminant, disc(P) can be 
expressed only by the degree and the polynomial 
coefficients. See Definition 1.3 and 1.4 and 
Proposition 1.2. 
For many others results in this area see [9].  
 

Theorem 1.1 ([7]) Let be 
2 1

0 1 2 1

1 2

( ) .. ; ;

0; 1, 1, with the roots  , ,..., ;

n n
n i

n

P x a a x a x a x x a C

i n n x x x C

−
−= + + + + + ∈

= − ≥ ∈
  

if 0 1 2max{| |, | |,..., | |} then:nr x x x=  

a) 
1

0
0

m ax 1,  | |
n

k
k

r a
−

=

  
≤  

  
∑ , 

b) 0
0 1

 1 max {| |},k
k n

r a
≤ ≤ −

≤ +  

( )

( ){ }

1

1 1
1

1/
0

1

 If  ,. . . ,    0;  such that

  · · ·   1 then

 max 1,  max {  · | | } ,

n

n

k
k n k

k n
r a

λ λ

λ λ

λ

− −

−
≤ ≤

∈ +∞

+ + =

≤

c)

( ){ }1/
0

1
 max 1,  max  · | | ,

k
n k

k n
r n a −

≤ ≤
≤d)  

2 01
0

1 2 1

For 0;   {0,  1,... ,    1}

we have:   max{ 2  ,..., 2  , },

k

n

n

a k n

a aa
r

a a a

−

−

≠ ∈ −

≤ ⋅ ⋅

e)

0 1 2 1

0 1 0

   |1  | |   | ...

... |   | | |,
n n nr a a a

a a a

− − −≤ − + − +

+ − +

)f

1/ 1/ 1
0

1

| |
   max {(  ) · (2   1) }k nn k

kk n n

a
r

C

−−

≤ ≤
≤ −g) . 

Corollary 1.1 
1

1 1 0Let be ( ) ... , 1.n n
n nP x a x a x a x a n−

−= + + + + ≥  

( )[ ], then  , real, such thatP R x r R∈ ∃  

( ), 1, .ir x R i n≤ ≤ ∀ =   

Proof: Obviously results from the Theorem 1.1, 

replacing { }  with  , for 1,..., 1 .i
i

n

a
a i n

a
∈ −   

For , {1}r R∉ we can take: 

0( )
1 and  1.

( )n

aL P
R r

a L P
= > = <  

For others useful bounds see [10] and [11]. 
Definition 1.5  The  Mahler Measure  of the 
polynomial P, denoted by  M(P) is: 

1

( ) [ ( )] | | max{1, }.
n

n j

j

M P M P x a x

=

= = ⋅∏  

Theorem 1.2    
1

1 1 0Let ( ) ... , 1.n n
n nP x a x a x a x a n−

−= + + + + ≥

0 0, ( ) [ ]na a P x C x⋅ ≠ ∈  then: 
2

0

1
ln[ ( )] ln | ( ) | .

2
iM P P e d

π
θ θ

π
= ∫  
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See [12], [13]. 
Proposition 1.3  ([7])  With the notation from 
Theorem 1.1 we have 

0

1

| |
) ( ) ,

min{1, }
n

j

j

a
M P

x

=

=

∏
a  

1
[ ( )] [ ( )],

( ) ( ) ( ), ( ) , [ ],

[ ( )] [ ( )],

n

k

M x P M P x
x

M P Q M P M Q P Q C x

M P x M P x

⋅ =

⋅ = ⋅ ∀ ∈

=

b)

c)

d)

       

2 22 2
0( ) ( ) ,nM P a a M P P−+ ⋅ ≤e)  ( )M P P≤ .  

Theorem 1.3 ([14]) 
1

1 1 0Let ( ) ... , 1,n n
n nP x a x a x a x a n−

−= + + + + ≥  

and 0, ( ) [ ]na P x C x≠ ∈ or 

1

( ) ( )
n

n j

j

P x a x x

=

= ⋅ −∏ , 

with the roots    1 2, ,..., ;nx x x C∈  not necessarily 

distinct. Introducing the polynomials 

 2 2

1

( ) ( ); 0
m m

n

m n j

j

P x a x x m

=

= ± ⋅ − ≥∏ . 

 we can  calculate , 0,mP m ≥  according to Graeffe's 

Method that is: 
i) 0 ( ) ( )P x P x= .  

ii) If  *m N∈  we can obtain 

1{ ( ) , ( ), ( )} [ ]+ ∈m m mG x H x P x C x  from the 

relations: 2 2( ) ( ) ( ),m m mP x G x x H x= − ⋅  
2 2

1( ) ( ) ( )m m mP x G x x H x+ = − ⋅ . 

iii) Starting to the previous points we find from 
recursion method: ( )mP x  for 1m ≥ . 

Theorem 1.4 ([14])  If  ( ) [ ]; deg( ) 1P x C x P∈ ≥  

and , 0,mP m ≥  the polynomial series associated to 

the Graeffe’s Method, then: 

2 222 ( ) .
m mmn

m mP M P P
− −−− ⋅ ⋅ ≤ ≤  

and
2

lim ( ).
m

m
n

P M P
−

→∞
=  

Theorem 1.5 ( ) inf{|| || / [ ],M P P Q Q C x= ⋅ ∈   

is monic polynomial}.Q  

For proving, see [15] and [16]. 
Observation 1.2 The Mahler measure  M(P) can be 
approximated using only the degree and the 
polynomial coefficients. See Definition 1.5,  
Theorem 1.3 and 1.4. 
Definition 1.6  a) A pre-isolating/isolating interval 

for a complex  polynomial represent an open 
interval (a, b), having as limits two rational  
numbers, between which there is at most/precisely, 
one root (modules of the root) of the polynomial. 
For an isolating interval we have: 
( ) { } ( ) { }1 2such that , ,..., ,n ii N x x x a b x∃ ∈ ∩ =   
for real roots of the polynomial and 

( ) { } ( ) { }1 2such that , ,..., ,n ii N x x x a b x∃ ∈ ∩ =  

for complex roots of the polynomial. 
b) Pre-isolating/isolating the real roots consists in 
finding for all the polynomial’s roots, disjunctive 
pre-isolating/isolating intervals. 
Definition 1.7 For a given function g(x), : ,g R R→  

we denote by O(g(x))  the set of functions: O(g (x)) 
={f(x) / :f R R→ , (∃) c, 0x R∈  such that    

0≤ f(x) ( ),c g x≤ ⋅ (∀) 0x x≥ }.  In this case for every 
f(x) we denote:  O(g(x))=f(x).         
We are saying that “ f  grows at the same rate or it 
may grow more slowly than g when x is very large”.    
Definition 1.8 For a given function g(x), : ,g R R→  

we denote by (g(x))  the set of functions: Θ(g(x))= 
{ f(x) / : ,f R R→  O(g(x))=f(x) and O(f(x))=g(x)}.  

In this case for every  f(x) we denote:  Θ(g(x))=f(x).  
We are saying that  “ f  grows at the same rate than g 
when x is very large”.  
For more details see  [17] and [18]. 
 
 

2. Polynomial roots distribution  
2.1 Centered  intervals repartition method 

for polynomials with all real roots. 
Definition 2.1.1 Let be b1, b2, real numbers. We 
denote by 1 2( , ) [ ]nP b b R x∈  the set of all 

polynomials,  having the form: 
1 2

1 2( ) .. 2n n n
nP x x b x b x ... b , n ,− −= + + + + ≥ .n N∈  

with all real roots and the following inequalities 
hold between the roots: 1 2 1...n nx x x x−≤ ≤ ≤ ≤ . 

Proposition 2.1.1  If  ( ) 1 2( , )nP x P b b∈  then: 

a) 2 2

1 1

( ) ;
n n

k k

k k

n x x

= =

∆ = −∑ ∑   

b) 2
1 2( 1) 2 ;n b nb∆= − −  c) 1bx

n
= − . 

See [19] and [20]. 
Theorem 2.1.1  Let be   

1 1
( ) -

n j j

j
j n j

P x x x x x
n n j n j

−
   −

= + ∆ − − ∆      −   
)(∀  { }1,2, 1 ,j n∈ … − then 1 2( ) ( , )j nP x P b b∈ . 
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See [19] and [20]. 
Theorem 2.1.2  Let be 1 2( ) ( , )nP x P b b∈  then:  

1
1 1

( 1) ,
1

x x x n
n n n

∆
+ ≤ ≤ + − ⋅∆

−
a)  

1 1 1
( 1) ,

( 1)

1 1 1
,

1

n

k

x n x x
n n n

k n k
x x x
n n k n k

− − ∆ ≤ ≤ − ⋅∆
−

− −
− ∆ ≤ ≤ + ⋅∆

− +

b)

c)

 

{ }( ) 2,3,..., 1 .k n∀ ∈ −  

If we denoted by 1 2 3{( ) ,( ) ,( ) ,..., ( ) }j j j n jy y y y  the 

roots of ( )jP x  for fixed  ‘j’,  j∈{ 1, 2,…, n-1} 

to the Theorem 2.1.1, then the previous 
delimitations are optimal in the set 1 2( , )nP b b  so 

then exist  j  natural  number, such that:  

1 2 1 2

1 1 1 1
( , ) ( , )

min{ } ( ) , min{ } ( ) ; 2 ,
n n

n i i j
P P b b P P b b

x y x y i n− −
∈ ∈

= = ≤ ≤

1 2 1 2

1
( , ) ( , )

max{ } ( ) , max{ } ( ) ; 1 1.
n n

n n i i j
P P b b P P b b

x y x y i n
∈ ∈

= = ≤ ≤ −

 See [19] and [20]. 
 
 
2.2 A different distribution for the 

polynomials 1 2( ) ( , )nP x P b b∈  roots. 

Theorem 2.2.1 Let be  1 2( ) ( , )nP x P b b∈ . Be it: 

1 1
1 1

; ( 1) ;
1

1 1
( 1) ; ;

1n n

n
n n n

n
n n n

α β

α β

∆
= = − ∆

−

∆
= − − ∆ = −

−

 

1 1 1
; ,

1

2, 1,  I [ , ] for 1, .

Then we have:

k k

k k k

k n k

n n k n k

k n k n

α β

α β

− −
= − ∆ = ∆

− +

= − = =

For 1, , I [ , ],α β= ∈ = + +a) k k k kk n x x x  

b) For {2,3,.., 2}:∈ −k n 1 1I I [ , ],α β+ +∩ =k k k k  

c) For 1{2,3,.., 1}: α β − +∈ − =k n kk n  

and 2 1 1, ,α β α β −= =n n  

d) 1 2 1, , ,α β β β α α −< > <n n n n   

e) 1[ , ] , {1,2,3,.., },k nx x x k nα β∈ + + ∈  

{ } { }

{ } { }

1 1 -1 1 1

2 2

I I { }, I I ,

I I .

φ α β

α β

−∩ = ∩ = + = +

∩ = + = +

n n n

n n

x x

x x

 

In 2I  respectively in -1In  we can found all the 

polynomial roots but 1x   respectively  nx   can be 

only at the limits of the intervals. 

f) In the interval 1[ , ]k kx xβ β −+ + respectively in 

the interval ( 1)[ , ]n k n kx xα α− − −+ + we can found 

at most the roots 1 2 1{ , ,..., , }k kx x x x−  respectively 

1 2 1{ , ,..., , }n n n k n kx x x x− − + − +  that is at most  ‘k’  roots for  

{ }2,3,.., .k n∈  

Proof:  a) I [ , ], 1,k k k kx x x k nα β∈ = + + = is 
obvious from previous theorem. 
b) For {2,3,.., 2}:∈ −k n  

1
1 1 1

1k k
n k n k

n k n k
β β +

− − −
> ⇔ ∆ ≥ ⋅∆ ⇔

+
 

1
/ ( 1)

1

n k n k
k k

k k

− − −
> ⋅ + ⇔

+
0.>n  

1
1 1 1

1

1
/ ( 1)( ) 0.

1

α α +
−

> ⇔ − ⋅∆ > − ⋅ ∆ ⇔
− + −

−
< ⋅ − + − ⇔ >

− + −

k k
k k

n n k n n k

k k
n k n k n

n k n k

 

Then both relations are true. 

c) 1 1
1 1

obvious,
1 1n

n n n n
α β −

∆ ∆
= ⇔ − = −

− −
 

2
1 2 1 1

obvious.
2 1 1n

n n n n
α β

− ∆
= ⇔− ∆ = −

− + −
 

1, 2, 1α β − += = −k n k k n  also is obvious from the 

theorem notations. 

( )21 1 1
( 1) 1 0

1

α β< ⇔

⇔ − − ⋅∆ ≤ − ⋅∆ ⇔ − ≥
−

d) n n

n n
n n n

  

1 2
1 1 2

( 1) 0
2

n
n n

n n
β β

−
> ⇔ − ∆ > ∆ ⇔ > . 

Also we can prove that: 

1
1 1 2

( 1)
2

α α −
−

= − − ∆ < = − ∆n n
n

n
n n

. 

e) From the point b) and d): 1 1,α α β β+ +> >k k k k   

 for  {1,2,3,.., 1}k n∈ − . Now the first relation is 

immediately. The others result from point c). 
f) We can observe that 1x , 2x  and only these roots,  

can be in 2 1[ , ]x xβ β+ + . Then 1x , 2x   and 3x   and 

only these roots can be in 3 2[ , ]x xβ β+ + and  from 

the same proceed we observe that 1 2 1{ , ,  , , }k kx x x x− …  

and only these roots can be in 1[ , ]k kx xβ β −+ + . 

Similarly, 1 2 ( 1){ , ,   , }n n n k n kx x x x− − + − −…  and only these 

roots can be in the interval ( 1)[ , ].α α− − −+ +n k n kx x  
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Theorem 2.2.2  If  1 2( ) ( , )nP x P b b∈ , for 

1 2 1...n nx x x x−≤ ≤ ≤ ≤ ,  the roots of  P  we have: 

a) 
2

2 3
( )

1
sep P

n n

∆
≤

−
  the equality is realised for 

2
1

1

2 1 3
( )  . ,

1

2
) .

1

2 2

n

k

n

n k
P x x x

n n

x x
n n n

=

 − + ∆
= − −  − 

∆ ∆
≤ − ≤

+   ⋅      

∏

b

 

See [19] and [20] from References. 
Theorem 2.2.3 

a) ( ) {2,3,.., 1} thej n∀ ∈ −  length of the interval 

1[ , ]j jx xβ β −+ +  or   ( 1)[ , ]n j n jx xα α− − −+ +  

is 1
1 1

1
j j

n j j j n j

n j j
β β−

− + ⋅ − − ⋅ −∆
− = ⋅

− ⋅
 

and 1
1

j j
j j

β β−
∆

− <
− ⋅

 . 

b) For 3,≥n is possible that 1 ( )j j sep Pβ β− − ≤ . 

c) A sufficiently condition for having at most one 

root in the interval 1[ , ]j jx xβ β −+ +  is: 

1 1
( )

1

n j j j n j
sep P

n j j

− + ⋅ − − ⋅ −∆
⋅ ≤

− ⋅
. 

Proof: 

a) 1
1 1 1

; ,
1j j

n j n j

n j n j
β β −

− − +
= ⋅ ∆ ⋅ = ⋅ ∆ ⋅

−

( ) {2,3,.., 1} then:j n∀ ∈ −

1
1 1

.
1

β β−
− + ⋅ − − ⋅ −∆

− = ⋅
− ⋅

j j

n j j j n j

n j j
 

n-j+1≥ 1 ;  j≥ 1 ;  j-1≥ 1 ;  n-j≥ 1 for 

{ }2,3,.. 1j n∈ − . Hence 

1 1 ( 1)

( 1)( ) .

n j j j n j n j j

j n j n

− + − − − < − + −

− − − =
 

1So .
1

j j
j j

β β−
∆

− <
− ⋅

 

From the previous theorem, point d) , 

1[ , ]j jx xβ β −+ + respectively

( 1)[ , ]n j n jx xα α− − −+ + are the same length. 

b) If 1 ( )j j sep Pβ β− − ≤ , then from Theorem 2.2.1  

we have 1 2

2 3
( )

1
j j sep P

n n
β β−

∆
− ≤ ≤

−
. 

From the previous point, a), we have : 

1
1

j j
j j

β β−
∆

− <
− ⋅

. Supposing 

2

2 3

11n j jn

∆ ∆
≤

−−
 we can obtain 3n ≥ . 

c) If 1 ( )j j sep Pβ β− − ≤  then in the interval  

1[ , ]j jx xβ β −+ + we can have at most one of the 

polynomial roots. Then from previous point a),  the 
result is immediately. 
Theorem 2.2.4  Let be  1 2( ) ( , )nP x P b b∈ then we 

can introduce the polynomial ( ) ( )Q x P x x= +   and 

( ) ( )rH x x Q x= ⋅  ,   r>0  natural and we have:  

a) ( ) 1 2( , )n rH x P c c+∈  where 1 2, ,c c R∈  

b) If  ( ), {1,2,3,.. }iy i n r∈ +  are the roots of H(x)  

such that: 1 2 2 1n r n r n ry y y y y+ + − + −≤ ≤ ≤…≤ ≤ ,  then: 

( )1y n x= −  is the average of the roots of  H.  The 

discriminant of  H  is r∆ =∆+r( 2
1 22b b− ) or          

r∆ = 2
1 2( 1) 2( )+ − ⋅ − +n r b n r b ,  

c) If we denote: 

1 1
1 1

; ( 1) ;
1

α β
∆

= = + − ∆
+ + − +

r rr
rn r

n r n r n r
 

1 1
( 1) ; ;

1
α β

∆
= − + − ∆ = −

+ + + −
r r r
n r nn r

n r n r n r

 

1 1
,

1

1
; 2, 1, then

r
j r

r
j r

j

n r n r j

n r j
j n

n r j

α

β

−
= − ∆

+ + − +

+ −
= ∆ = −

+

 

the roots of the polynomial   H:  1[ , ]r r
i ny α β∈ ,  

 i=1,n r+  .  

d) In the interval 1[ , ]r r
j jx xβ β −+ + respectively in 

interval ( 1)[ , ]r r
n j n jx xα α− − −+ + we found at most 

the roots 1 2 1{ , ,..., , }j jx x x x−  respectively 

1 2 ( 1){ , , ..., , }+ + − + − + + − −n r n r n r j n r jx x x x  so  ‘j’  roots for   

j∈{2,3,… ,n+r}. 
Proof: a), b)  Obvious  c), d) See Theorem 2.2.1 e) 

for 1 2( )  ( , )r
n rx P x P c c+⋅ ∈ . 

Theorem 2.2.5  With previous notations for 
j∈{2,3,.., n+r-1}: 

i) 1 1
1 1and ,r r r r

j j j jβ β β β− −
− −< <  

ii) 1 1
1 2 1 and ,r r r r
j j j jβ β β β− −
− − −> <  
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iii) 
r
jβ >

1r
jβ
−

   and  1
r
jβ − >

1
1

r
jβ
−
−   for 

{2,3,... 1}j n∈ − , 

iv)  For 0< p r< , p natural, 1β β −
− > r pr
j j .  

For 0>r  if  exist {2,3,... 1}∈ + −j n r  fixed,   

such that 1 1( ) [ , ]r p r p
j j jx β β− −
− −∃ ∈  then: 

1 1 1{ } [ , ] [ , ]r p r pr r
j j j j jx β β β β− −
− − −∈ ∩ , 

v) For {2,3,.. 1}j n r∈ + − , .r r
j

n r
β

∆
<

+
 

supposing  j, n  fixed and not depending at  r 

then: 2
1 2lim 2r

j
r

b bβ
→∞

= − . 

Proof:  

i) 1
r r
j jβ β −< ⇔

1
. r

n r j

n r j

+ −
∆

+
< 

1 1
.

1 r
n r j

n r j

+ − +
∆

+ −
 obvious. 

Similar 1 1
1

r r
j jβ β− −

−< . We observe the analogy with 

previous theorem. 

 

1
1

1

2
1 1 2

1 1

1

1 1
.

1

But ∆ ∆ ( 2 ) 0 and is enough

to prove that:

1 ( ) ( 1) 1 ( 1)
.

1 ( ) 1

r r
j j r

r

r r

n r j

n r j

n r j

n r j

b b

n r j n r j

n r j n r j

β β −
−

−

−

+ − +
> ⇔ ∆ >

+ −

+ − −
> ⋅ ∆

+ −

− = − >

+ − − + − +
> ⋅

+ − + −

ii)

For simplicity we denote  n+r=x and we obtain: 

( 1) ( 1)1 1

11

− − − +
⋅ > ⋅ ⇔

−−

x j x j

x xj j
 

2( )
( 1) ( 1) ( 1) 1x x j j x x j j⇔ − ⋅ − − > − + − ⇔  

3 2 2 2 2

2 3 2 2

( ) 2 2 ( )

( ) ( 1) ( 1)

x j x j j x j x j j xj

j j x j x j

⇔ − − − + − + −

− − > − − − ⇔
 

3 2 2 2( 1) (2 ) 0.x x j x j j j j+ − − + − − + >  
3 2 2But ( 1) [ ( 1)] 0x x j x x j− + = − + >  

because 1, {2,3,..., 1} andx r n j j n= + > + ∈ −  
2 2 2(2 ) ( 1) 0 for 1.x j j j x j x− − > − > >  

1
2 1

r r
j jβ β −
− −<  is immediately from  1

r r
j jβ β −<  

replacing  j  with  j-1. 

iii) 1r r
j jβ β −> ⇔

1
. r

n r j

n r j

+ −
∆

+
>

1
1 1

1 r
n r j

n r j
−

+ − −
⋅ ∆

+ −
⇔  

1( ) ( ) ( 1)

( ) 1
r

r

n r j n r j

n r n r

−+ − + − + ∆
>

+ + − ∆
.  

If we denote n+r=x   we obtain: 

1( 1)

1
r

r

x j x j

x x

−− − + ∆
> ⋅

− ∆
 . 

The next relation is easy to prove when we observe 
the positivity of the denominators.  

 

2
1 1 2

2
1 2

2
1 2

2
1 2

( 2) 2( 1)

( 1) 2( )

( 2) 2( 1) 1
,

( 1) 2

r

r

n r b n r b

n r b n r b

x b x b x

xx b xb

−∆ + − − + −
= =

∆ + − − +

− − − −
= <

− −

 

The sufficiently relation for prove become: 

2 2

( 1) 1

( 1)

( 1)
0

1

x j x j x

xx x

x j x j
j

x x

− − + −
> ⋅ ⇔

−

− − +
⇔ > ⇔ >

−

. 

Now 1
1 1

r r
j jβ β −
− −>  is obvious from previous relation 

replacing   j   with   j-1. 

iv)   From ii) 1
1

r r
j jβ β −
− > and from iii) 

1 , for  0< .r pr
j j p rβ β −− > <  Then 

-
-1
r r p
j j

β β< . 

1 1( , ) ( , ) { }r p r pr r
j j j jβ β β β φ− −

− −∩ ≠ .  

Then from hypothesis we have 1 1[ , ]r p r p
j j jx β β− −
− −∈ .  

Supposing 1 1[ , ]β β− −∉ r r
j j jx  we have a 

contradiction with: 1 1[ , ]r r
j j jx α β− −∈  and the 

supposition is false.  
v)  Results from Theorem 2.2.4  b), c): 

r∆ =∆+r( 2
1 22b b− )= ( 1)n r+ − 2

1 22( )b n r b⋅ − + , 

1 1
,

1
r
j r

j

n r n r j
α

−
= − ∆

+ + − +
 

1
; 2, 1  , thenr

j r
n r j

j n
n r j

β
+ −

= ∆ = −
+

 

1

1
r r
j r

n r

n r n r
β

+ ∆
< ∆ =

+ +
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Supposing  j,n  fixed we obtain:  
 

2 2
1 2 1 2

2
1 2

1
lim lim

( 1) 2( ) 2 ,

lim 2 .

r
j

r r

r
j

r

n r j

n r j

n r b n r b b b

b b

β

β

→∞ →∞

→∞

+ −
= ⋅

+

⋅ + − ⋅ − + = −

= −

 

Observation 2.2.1 From the last theorem i), ii), iii)  

we observe the distribution for numbers r
j
β  as we 

can see in fig.1:  

  
- 1r

j
β                                

- 1

- 1

r

j
β                                                                                                                                                                                                      

                                                                                     

                  
r

j
β                                         

- 1

r

j
β  

fig.1 

Observation 2.2.2 If we find in one of the intervals 
of Theorem 2.2.4  d)  a single root of the 
polynomial, we can redefine the interval using the 

relation 1 1 1{ } [ , ] [ , ]r p r pr r
j j j j jx β β β β− −
− − −∈ ∩ , 

( ) 0, ( ) 0 naturalsr p∀ > ∀ > and taking a large  

r; see Theorem 2.2.5 iv) . 
Application 2.2.1 

          For a polynomial with all real roots and with 

degree  n=3, I [ , ], 1,3,k k k kx x x kα β∈ = + + = and 

the intervals are isolating intervals. 
The proof  is easy to make starting to the Theorem 
2.2.1.  
          In the general case, for a real polynomial, if 

( ) {1, 2, 3} such that ( ) ( ) 0k kk P Pα β∃ ∈ ⋅ >  the 

polynomial will have only one real root and 

( ) {1, 2, 3} so thati∃ ∈ ( ) ( ) 0.i iP Pα β⋅ <  

Therefore we determine the interval which contains 
the root , Ii ix ∈ . 

          In both cases we can redefine the intervals 
containing roots, simply by dividing them and using 
continuous property functions, or using last 
Theorem 2.2.4 iv) and introducing the polynomials  

( ) ( )Q x P x x= +   and ( ) ( )rH x x Q x= ⋅  where  r>0  

natural.  
          Many practice processes use or can be 
modelled with the help of the real roots of the 
polynomials with small degree, see for example 
relation (27) in [21]. 
 

 

2.3 A roots distribution for complex  
polynomials 
Theorem 2.3.1 For an arbitrary complex 

polynomial, 1
1 1 0( ) ... ,n n

n nP x a x a x a x a−
−= + + + +  

with 1,n ≥ 0na ≠  and for {1, 2, ... }p n∈ such that 

1 2 1... 1 ...p p nx x x x x+≥ ≥ ≥ ≥ ≥ ≥  then 

1/ 1/
( )

1

i i

i
n n

PM P
x

a a

   
≤ ≤ ≤   

      
 for  i=1, p  and 

1 1 1 1
0 0 1,

( )

for  1, .

n i n i

i

a a
x

P M P

i p n

− + − +
   

≤ ≤ ≤   
     

= +

 

Proof: From Definition 1.5 and  Proposition 1.3: 

{ }

{ }

1

0

1

max 1, ( ) ,

( ) (1)

min 1,

n

n i

i

n

i

i

a x M P P

a
M P P

x

=

=

⋅ = ≤

= ≤

∏

∏
 

1 2

1

( )
Then ... 1 (2)

( )
Because 1 for 1, then .

p
n

i
n

M P
x x x

a

M P
x i p x

a

⋅ ⋅ ⋅ = ≥

≥ = ≤
 

Supposing  
1 2 1 2

2 1 2
( ) ( )

then ,
   

> ≥ >   
      n n

M P M P
x x x

a a
 

1But ... 1 and then≥ ≥ ≥px x  

1 2 1 2
( )

... ,⋅ ⋅ ≥ ⋅ >p
n

M P
x x x x x

a
 

contradiction with (2).  

Then the supposition is false and 

1 2

2
( )

.
n

M P
x

a

 
≤  
  

 

Using the induction method then 
1

( )
1 , 1, (3)

i

i
n

M P
x i p

a

 
≤ ≤ = 

  
 

Starting for   (2): 0
1 ... 1.

( )p n

a
x x

M P
+ ⋅ ⋅ = ≤  

Because 01 for 1, then
( )i n

a
x i p n x

M P
≤ = + ≥  

Supposing 
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1 2
1 2

0 0
1 1

0
1 1 1

0
1

then
( ) ( )

and then

and ...
( )

contradiction with (2).
( )

n n n

n n p n n

n n

a a
x x x

M P M P

a
x x x x x

M P
a

x x
M P

− +

− + −

−

   
< ≤ <   
      

⋅ < ⋅ ⋅ ⋅ ≤

≤ <

 

The supposition is false  and 

1 2
0

1 ( )−
 

≥  
  

n

a
x

M P
. 

By induction we can prove that 
1

0
1

1 1
0

1 for 1, or
( )

1, for 1, (4)
( )

i

n i

n i

i

a
x i n p

M P

a
x i p n

M P

− +

− +

 
≤ ≤ = − 

  
 

≤ ≤ = + 
  

 

Now because ( )M P P≤   we have the result. 

Corollary 2.3.1  

If 11 ... then ( ) for  1, :n nx x M P a i n> ≥ ≥ = =   

1/1 1 1 1
0 0 ( )

1 ,
( )

in i n i

i
n

a a M P
x

P M P a

− + − +
    

≤ ≤ < =     
          
Proof: 

1

( )
( ) max{1, } , 1.

n

n i n
ni

M P
M P a x a

a
=

= ⋅ = =∏  

We can repeat the procedure above and then 
1 11 1

0 0 1, for  1, .
( )

n in i

i
n

a a
x i n

M P a

− +− +
  

= ≤ < =  
      

 

Proposition 2.3.1 For 1n ,≥  

( ) ( )
1

1 1
ln ln where

2

0,577... is Euler constant. (5)

n

i

n n
i n

γ γ

γ

=

+ < < + +∑
�

 

Proof:  

It is well known, see for that and for other similar 
inequalities [22], that  

( ) 1
1

1
lim ln , where , real,

n

n n nn
i

n c c
i

γ
≥→∞

=

 
 − + =
 
 
∑

lim 0, 0,577... is Euler constant. (6)n
n

c γ
→∞

= �

1 1

1 1 1
ln , ln ,

2

are obtained from the relation above. (7)

n n

n n

i i

u n v n
i n i

γ γ
= =

= − − → = − →∑ ∑
 

1

1

2 2 2

2 1
Then  ln ,

2( 1) 1

1
ln (8)

1 1

2 1
For the functions  ( ) ln ,

2( 1) 1

1
( ) ln , 0.

1 1

1 1
'( ) 0, '( ) 0.

2 ( 1) ( 1)

Because lim ( ) 0, lim ( ) 0. For 

n n

n n

x x

n n
u u

n n n

n
v v

n n

x x
u x

x x x

x
v x x

x x

u x v x
x x x x

u x v x n

+

+

→∞ →∞

+
− = +

+ +

− = +
+ +

+
= +

+ ⋅ +

= + >
+ +

−
= < = >

⋅ + ⋅ ⋅ +

= = >

( )

( )

1 1

1

1

0,

then ( ) 0, ( ) 0.

is strictly increasing, ,

is strictly decreasing, (9)

From (7), and (9) we have the result. 

n n n n

n nn

n nn

u n u u v n v v

u u

v v

γ

γ

+ +

≥

≥

= − > = − <

<

>
  

Observation 2.3.1 In the previous results we 

generalise the inequality: ( )1/
1 /

i
i nx P a≤ ≤  for  

i=1, p , see [23] from references. 

Theorem 2.3.2 For an arbitrary complex 
polynomial with degree  1n ,≥  and the leading 

coefficient na , for {1, 2,... }p n∈ so that 

1 2 1... 1 ...p p nx x x x x+≥ ≥ ≥ ≥ ≥ ≥  then: 

01
ln( ) ln

2( ) ( )

a
n p

n p M P
γ

   
− + + ⋅ ≤   −   

 

0 1 ( )
ln ln ln .

2n n

a n M P

a p n a

  
≤ ≤ + ⋅   

    
 

where 0,577... is Euler constant.γ �  

Proof: From theorem 2.3.1 we have: 

1

1

1

10
1 2

1

0

...
( )

( )
. (10)

n

i p

n

i p

n i

n

i

n n

a
x x x

M P

a M P

a a

= +

= +

− +
∑ 

≤ ⋅ ⋅ ⋅ = 
  

∑ 
= ≤  

  

 

1

1 1
But ln ln where

2

0,577... is Euler constant. (11)

n

i

n n
i n

γ γ

γ

=

+ < < + +∑
�
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1 1

1 1 1
ln( ) ,

1 2( )

(12)

n pn

i p i

n p
n i i n p

γ
−

= + =

= < − + +
− + −∑ ∑

 

1 1 1

1

1 1 1 1
<ln ln

2

1 1
>ln . (13)

2

pn n

i p i i

n

i p

n p
i i i n

n

i p n

γ γ
= + = =

= +

= − + + − −

+

∑ ∑ ∑

∑

 

Then from  (10), (11) and (13) we have  the result. 
Observation 2.3.2 The previous theorem can be 
useful when we try to evaluate ∈p N  the number of 

the roots with modules bigger or equal with one. 
Another similar theorem is the next one.   
Theorem 2.3.3 For a complex polynomial 

1
1 1 0( ) ... , 1,n n

n nP x a x a x a x a n−
−= + + + + ≥   with 

0 0;na  a   ⋅ ≠  where *∈p N such that: 

1 2 1... 1 ...p p nx x x x x+≥ ≥ ≥ ≥ > ≥ , then    

( )
2 ln ,

n

L P
p n

a

 
≤ ⋅   

 
 see  [24], [25] . 

 
 

3. Minimum Roots Separation 
Theorem 3.1 

If 2
0 1 2( ) ... ;nnP x a a x a x a x= + + + + 1 0nn , a≥ ≠ , 

[ ]P C x∈  is square free then: 

a) ( )
2

1/ 2 12( ) | | || ||

n
nsep P n disc P P

+
− −> ⋅ ⋅  

and for [ ]P Z x∈ : ( )sep P

2
12 || ||

n
nn P

+
− −> ⋅ , 

b) For [ ]P Z x∈ : /2 3 /21
( )

2
nn nsep P e n P
−− −> . 

c) ( )(ln 1)( ) (1,| |) s| |di cn n
nsep P mi a Pn +> ⋅ ⋅  

1 ln( 3) 1{(2 ) ( ) } ,n n nn L P− + −⋅  

2 12( ) {2 [ ( ) 1] } .

n
nsep P n L P

+ −> ⋅ +  

To prove  a) see [7], for b) see [26] for c) see [23] 
from references. For others inequalities in this area, 
see [14] . 
Proposition 3.1 Let be 

( ) ( )2, , , : 0, 0, ,n f g h≥ + ∞ → +∞  

2 1( ) 1 ..... ,nf x x x x −= + + + +  

2 2 2 2 2( ) 1 2 3 .....( 1) ,ng x x x n x −= + + + −  

( )
( ) . Then , are monotonically

( )

f x
h x f g

g x
=  

increasing functions, ( )( )( ) ' 'g x x f x= ⋅  and 

1
, 1

1( ) ,

, 1

nx
x

xf x

n x

 −
≠

−= 


=

 

( )
( )

( )

2 1 2

3

2 1

3

2 1 (2 2 1)

1

1
( ) for  1

1

( 1)(2 1)
,                for 1

6

The proof can be done from calculation.

n n

n

n n x n n x

x

n x x
g x x

x

n n n
x

+

−

 − + − − −
 +
 −


− −
= + ≠

−

 − −

=



 
Corollary 3.1 With the previous notations: 

( )2

1 6
( ) , (1)

( 1) 2 1( 1)
h x h

n nn
≥ =

− −−
. 

Proof: We can observe that:  

( ) ( ), , : 0, 0,f g h + ∞ → +∞ , 

2 1

2 2 2 2 2

1 .....
( ) ,

1 2 3 .....( 1)

n

n

x x x
h x

x x n x

−

−
+ + +

=
+ + + −

          (14) 

2 1

2 2 2 2

1 .....
( ) ,

( 1) ( 1) .... ( 1)

n

n

x x x
h x

n n x n x

−

−
+ + +

≥
− + − + + −

 

( )2

1 (1) 6
( ) , (1) .

(1) 2 1( 1)

f
h x h

g n nn
≥ = =

−−
         (15) 

Theorem 3.2  

For 0 1( ) .. , 0;n
n nP x a a x a x a= + + + ≠  R  a  

real numbers such that ,ix R≤  and for  

1 , real for 1, , 2,i ix x i n n< = ≥  
2

n
l
 =   

,   

( ) 2then [1, ], such that:c R∃ ∈   

( )
( )

0 0
2 2 2
0 2 2

1

( ) ( )
...

n n
k

k k

k k

n n n
l

a a

disc P h c sep P
a a a

= =

⋅ −

⋅ ⋅ ≤
+ +

∑ ∑
.  

Proof:  Supposing 1 1...n nx x x−≤ ≤ ≤  and  using the 

functions f, g, h, the Hadamard’s inequality and 
Proposition 1.1 we can obtain: 
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1 2
2 2 2( 1)/2
1 2

1 1 1
1 2

1 1 ... 1

( 1)

n

n n
n

n n n
n

x x x

x x xD

x x x

−

− − −

= −

K

K

M M M

K

,

1 2

1

1 2

11,

 where = and

. (16)

n
k k
j i

k

n n
k
j

kj j i

D S T S x x

T x

−

=

−

== ≠

 
 ≤ ⋅ −
 
 

 
 =
 
 

∑

∑∏
 

2 2

22 3 3 2

(1 ...

... ... ),

For 1 ,   and 2 ,

j i j i

n n n n
j j i i j i

i j j i i

S x x x x

x x x x x x

i j n x x x x x

− − − −

= − ⋅ + + +

+ + + +

≤ < ≤ ≥ + ≤ ⋅

 

 

( )
( )

( )

2

2 2 1
2

and using the triangle inequality we can write:

, (17)

n

i

i
j i i

i

f x

S x x g x T

f x

=≤ − ⋅ =
∏  

From (16) and (17):  

( )

( )

2

2

1

, (18)
i

j i
n

i

i

h x

D x x

f x

=

⋅ ≤ −

∏
 

( )h x  is a continuous function on 2(1, ]R  and 

exist 2[1, ] so that:c R∈  

( ) ( )2
min / 1, = (19)ih x i n h c

 
= 

 
 

Then,  because { 1,1}, 1, ,kx k n∉ − =  

0

0
n

k

k

a

=

≠∑ , ( )
0

1 0
n

k
k

k

a

=

− ≠∑ . 

( )
( )

( )

2

2 1

1 2

1

1

(20)

1

n
n

in
i

i n
i

i

i

x

f x

x

=

=

=

−

=

−

∏
∏

∏
 

Using the Viete’s relations we can observe that  

( ) ( )( )2

1 1

1 1 1 ,
n n

i i i

i i

x x x

= =

− = − +∏ ∏  

( ) ( ) ( )2

1 1 1

1 1 1 , (21)
n n n

i i i

i i i

x x x

= = =

− = − +∏ ∏ ∏  

( )
( )

0 02
2

1

1

1 . (22)

n n
k

k kn
k k

i

i n

a a

x
a

= =

=

⋅ −

− =

∑ ∑
∏  

( ) ( )

{ }

2

22
1

11 1

2

, 1 1
, ,

1 | ... ..

...

n

n nn
nn

i i n i
ji i

i j

n

nn

i
j k i
j k j k i j k

x x x x x

x

== =
≠

= =
< < ∉

 
 
 − = − +
 
 
 

 
 
 + + +
 
 
 

∑∏ ∏

∑ ∏

 

( ) ( ) ( )1 2 2 2
11 ... .. 1

n nn n n
i nx x x

−+ − + + + − ≤  

( )

{ }

2

2
1

, 1 1
, ,

... .. ...

n

nn
n

i n i
j k i

j k i j k

x x x x

= =
< ∉

 
 
 ≤ + +
 
 
 

∑ ∏  

( )
2 2 2

2 0 2 2
2

1

...
1

where  = . (23)
2

n n nn
n l

i n
i n

a a a
x

a

n
l

=

+ +
− ≤

 
  

∏
 

From (20), (22), (23): 

( )
( )

2 2 2
2 0 2 2

1 2 2

0 0

...
(24)

1

n n nn
l

i n n
ki n

n k k
k k

a a a
f x

a a a
= −

= =

+ +
≤

⋅ −

∏
∑ ∑

 

From (18), (19), (24): 

( )
( )2 2

0 0
2 2 2
0 2 2

1

...

where 1 . (25)

n n
kn

n k k

k k
j in n n

l

a a a

D h c x x
a a a

i j n

−

= =

⋅ −

⋅ ⋅ ≤ −
+ +

≤ < ≤

∑ ∑
 

( )
-1n
n

disc P
D

a
=  (see Proposition 1.1).  

Using (25) we obtain the result. 
Theorem 3.3  For  1, 0,nn a≥ ≠  

( ) 1
1 1 0... [ ],n n

n nP x a x a x a x a C x−
−= + + + + ∈  
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if exist {1, 2, ... }p n∈ such that 

1 2 1... 1 ...p p nx x x x x+≥ ≥ ≥ ≥ ≥ ≥  then: 

( )

( )1
ln 1

2

1 2

( )
 ( ) .

|| ||1

p n
pn

n n
n

disc P a
sep P

Pa n n

γ
 
+ + ⋅ − 

 
−

 
≥ ⋅  

 −  
a)

 

( )

1 2

1

1 2
1

If ( ) ( , ) then

( )
( ) .

1

n

n
n

in n
in

P x P b b

disc P
sep P

a n n
γ

−

−
=

∈

 
≥  

 ⋅ −  
∏

b)

 

1 1where  , , 1n n
i i i

n n

a a

na na
γ α β− −− −

+ +=max{ }.  

Proof : a) From the previous theorem relation (12):   
1 22

2
2

1

( )
( ) (26)

( )

n
i

i j i

i i

f x
D x x f x

g x=

 
 ≤ − ⋅ ⋅
 
 
∏  

2

2
2

1

( )
Then (27)

( )
( )

i
i j

n
i

i

i

f xD
x x

g x
f x

=

− ≥ ⋅

∏
 

2
2

2

( )
( ), ( ) min{ ( ) / 1, }, (28)

( )

i
i

i

f x
h c h c h x i n

g x
≥ = =  

From Corollary 3.1 

2

1 1
( ) , ( ) .

1( 1)
h x h c

nn
≥ ≥

−−
                       (29) 

( )
-1

Then
n

n

disc P
D

a
=                                  (30) 

2 2 2

1 1 1

( ) ( ) ( )
pn n

i i i

i i i p

f x f x f x

= = = +

= ⋅∏ ∏ ∏  

2 2 2

1 1 1

2 2 2

1 1

( ) (1),

( ) . (31)

pn n
n

i i

i i i p

pn
nn

i i

i i

f x n x f

f x n x

−

= = = +

−

= =

≤ ⋅

≤

∏ ∏ ∏

∏ ∏

 

Now using Theorem 2.3.1 we obtain: 

( )
1

2 2
2

1 1

1
2 1

2

1

( )
( ) ,

( )
( ) .

p

i

n ipn
n

i
ni i

nn in
i

ni

M P
f x n

a

M P
f x n

a

=

−

= =

− ⋅

=

   ≤      

∑ 
≤  

  

∏ ∏

∏

 

( )
1

1
2 1

2

1

( )
( ) .

p

i

nn in
i

ni

M P
f x n

a

=
− ⋅

=

∑ 
≤  

  
∏  

( )1
2 ln 1

22

1

( )
( ) (32)

p nn pn
i

ni

M P
f x n

a

γ
 
+ + ⋅ − 

 

=

 
≤ ⋅   

 
∏  

Then from (27), (29), (30) and (32) we obtain the 
result. 

2 2 2 2

1 1 1

 ( ) 1 ,
pn n

n
i i

i i i p

f x n x n
−

= = = +

≤ ⋅ ⋅∏ ∏ ∏b)  

2 2 2 2 2

1 1 1

1 1

( )

for , , 1 (33)

γ

γ α β

− −

= = =

− −

≤ ⋅ ≤ ⋅

 − − + + 
  

∏ ∏ ∏

=max

pn n
n nn n

i i i

i i i

n n
i i i

n n

f x n x n

a a

na na

 

see Theorem 2.2.1. Replacing (32) with (33) in the 
demonstration to the first point, we have the result. 
Theorem 3.4  For 1, 0,nn a≥ ≠  

( ) 1
1 1 0... [ ],n n

n nP x a x a x a x a C x−
−= + + + + ∈  

If 1 2 1 11 ... ....i i n nx x x x x x− −> ≥ ≥ ≥ ≥ ≥ ≥ ≥  then  

( )1 2

( )
( ) .

1
−

≥
−n n

n

disc P
sep P

a n n
 

Proof:  
 We follow the steps to the previous theorem, 
replacing (32) with the relation  

2

1

( )
n

n
i

i

f x n

=

≤∏ .                                             (34) 

Observation 3.1  

In the previous theorems we can use the relation: 
( ) 1, for [ ]disc P P Z x≥ ∈   we obtain similar results 

for integers polynomials. 
 

 

4 Isolating the roots. Conclusions 
Remark 4.1  If we compare the results from the 
sections 2.1 with our result from 2.2 one of the 
advantage of the second approach, as we can see in 
Theorem 2.2.1 f), is that we can predict the roots 
and the maximum number of the roots which can be 

in the intervals 1[ , ]k kx xβ β −+ + respectively in 

the intervals ( 1)[ , ]n k n kx xα α− − −+ + and we can 

give the lengths of the intervals. Also we can 
redefine the intervals containing roots. See 
Theorem 2.2.5 iv), v), creating another polynomial 

and knowing that for ( ) ( )Q x P x x= +   and  
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( ) ( ),rH x x Q x= ⋅   r>0 natural exist  p >0  natural so 

that ( ) 1jx −∃ ∈ 1[ , ]r p r p
j jβ β− −

− . Then we have: 

1
r pr

j jβ β −
− > , 1 1 1{ } [ , ] [ , ]r p r pr r

j j j j jx β β β β− −
− − −∈ ∩ .  

           Our results, Theorem 2.3.1, using Mahler’s 
Measure, represent natural inequalities for bounding 
every module’s root of the polynomial and giving 
the roots repartition for complex polynomials.  
           Using these, in a natural way, we obtain a 
new theorem with the best inequalities from the 
method presented, Theorem 2.3.2, about the 
numbers of the roots that are outside of the unit 
circle. We can compare the theorem with one of  
Szego’s theorem.  
Remark 4.2 

a) For comparing our result from Theorem 3.2,  of 
the minimum roots separation, for the polynomial 

having the roots1 , for 1,ix i n< = , with the others, 

we can take as we can see in Corollary 3.1, 
1

( )
1

h c
n

≥
−

.                                                         (35)        

Then  

   

( )
0 0
2 2 2 2 2
0 2 2

1

... ( ) ( )

n n
k

k k
k k

n n n n n
l

a a
C C

a a a L P L P

= =

⋅ −

≥ =
+ +

∑ ∑
,  

2

n
l
 =   

, C>0 particularly, convenient .               (36)       

From the theorem, we can prove for n, a natural 
great number:                       

( )
1

( ) ( )
1 ( )n

C
disc P sep P

n n L P
⋅ ⋅ ≤

⋅ −
.              (37) 

Our result contains 3/ 2n− while in all the others 

papers appear,  ( )s nn−  where s(x) is a real 
continuous function. But the polynomial have all 

roots real and positive and   ( )1 , 1,ix R i n< ≤ ∀ = . 

To obtain a result where the roots are not positive, 
we can apply the theorem for the polynomial 

1( ) ( ),Q x P R x R x= − > , where sep (Q)=sep(P). 

b) Now we can observe from the previous relation 

For the integer polynomials we have ( ) 1,disc P ≥  

taking  r and R as we can see in Corollary 1.1 then 

( )2log ln ( )
( )

R r
O O n L P

sep P

 −
= 

 
                        (38)    

is the order for the number of successive splitting of 

the interval [ ], [ , ]R r r R− − ∪  until we accomplish 
the root pre-isolation. 
We can precise the evaluation known in the general 

case for the successive number of splitting: 

[ ]( )2log ln ( )
( )

R r
O O n n L P

sep P

 −
= ⋅ 

 
                 (39) 

for more details  see [8], [27], [28], [29]. 
c) The cost for isolating the roots, in the case of the 
complex polynomials, which is the number of the 
arithmetic operations needed, is dominated to the 
number of successive divisions multiplied by the 
cost of Sturm’s series assessment see [1],  [8], [27], 
[29], [30] or by the cost of polynomial evaluation, in 
a point, see [28], or by others numbers of  
operations see [2]. For the polynomials with all 
roots real, we make, the divisions of the  intervals: 

1[ , ]j jx xβ β −+ + and ( 1)[ , ]n j n jx xα α− − −+ + to the 

previous section and we obtain the minimum  
operations of splitting, then we apply Sturm’s 
Theorem  or other methods, for isolating the roots.  
Remark 4.3   

In Theorem 3.3, Theorem 3.4 we give new results 
about minimum roots separation for complex 
polynomials and for polynomials with all real roots. 
One of idea is to use the bounds for  modules of the 
roots, given in Theorem 2.3.1. 
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