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Abstract When waves propagate from deep water to shallow water, they transform. Extended mild slope 
equation includes wave transformations such as refraction, diffraction, shoaling, reflection and dissipations due 
to bottom friction and wave breaking and harbour resonance. Extended mild slope equation can be applied to 
the rapidly varying topographies through higher order bottom effetcs. Nonlinear wave celerity and group 
velocity have been considered in the calculations. In this study, extended mild slope equation has been reduced 
to Helmholtz equation and solved with finite volume method. Numerical model has been tested on semicircular 
shoaling area and compared with the physical experiment measurements given in literarure. Numerical model 
has been applied to the Fethiye Bay in the Mediterranean Sea in Turkey. 
 
 
Key-words: Extended mild slope equation, finite volume method, wave refraction, diffraction, nonlinear wave 
celerity and group velocity 
 
1 Introduction 
 
Waves transform when they propagates from deep 
water to shallow water. The effect of bottom slope is 
considered in the calculations of these 
transformations.  
 
Determining of the transformations of waves is one 
of the important subject in coastal engineering 
studies. Determined wave characteristics of a coastal 
region have been used in design of coastal structures 
and decision and support systems in coastal 
engineering.  
 
Using the diagrams based on wave ray method and 
linear gravity wave theory is the first solutions of 
wave propagation problems. In seventies, computer 
use had been begun in linear refraction problems.  
 
Berkhoff proposed mild slope equation to simulate 
wave refraction diffraction together to overcome the 
problems of the linear theory on caotic regions, but 
this equation is valid only over mild sloped 
topographies. This model is vertically integrated 
model for periodical wave movement and it is an 
elliptical equation. It includes wave refraction, 
diffraction and reflection. But bottom friction, 
current effects are neglected [1].  

 
Since solution of the elliptical equation is difficult, 
Radder worked on parabolic mild slope equation. 
The waves had been seperated in propagated and 
reflected parts. In parabolic approach, reflection is 
neglected. The advantage of this method is that it 
can be solved with marching system easily [2]. 
Lozano and Liu used parabolic approach and 
applied to two physical problems. First problem is 
the observation of refraction-diffraction effects on a 
mildly sloped bathymetry after installing semi-
infinite thin barrier. Second problem is determining 
of convergence on the stepped topography. 
Parabolic approach gave realistics results as wave 
ray method is not valid for these problems [3].  
 
Booij solved the mild slope equation as a function 
bottom slope. This was a two dimensional unsteady 
solution since the waves are periodically and the 
model is vertically integrated [4].  
 
Kirby and Dalrymple solved the parabolic equation 
for the propagating Stokes waves with the multi-
scaled perturbation method [5]. They solved 
combined refraction-diffraction of weakly nonlinear 
waves with the parabolic equation, too. Ursell 
parameter was used for the definition of weakly 
nonlinear waves [6] 
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An other approach for solving mild slope equation is 
hyperbolic approach where the elliptical mild slope 
equation has been trasformed in transient mild slope 
equation and the solution does not depend on time 
[7, 8, 9]. The advantages of this approach are that 
the solution is more quickly and reflection is 
considered. 
 
Li and Anastasiou solved the elliptical mild slope 
equation with the multi grid system so less nodal 
points are enough and CPU time has decreased. 
Current effects, shoaling, refraction and wave 
breaking had been considered together [10].  
 
If bottom profile includes random and various holes 
and bumps, bottom curvature and square of bottom 
slope must be taken into account. Some researchers 
developed the mild slope equation for rapidly 
varying topographies. One of these researchers is 
Kirby who applied modified mild slope equation to 
the waves travelling on sinusodial bottom 
topographies for observing the reflection [11]. 
 
Massel worked on the transformations of waves 
propagating on the various bottom topographies 
[12]. A general equation was developed for the 
linear waves in shallow and transition regions. 
Galerkin- Eigenfunction method was applied. This 
equation includes higher order of bottom effects so 
it is applicable on bottom topographies where rapid 
changes are but this equation does not taken wave 
breaking into account.  
 
Chamberlain and Porter solved modified mild slope 
equation [13]. The results were compared with the 
equations applied on the two dimensional 
topographies. They underlined the need of using 
modified mild slope equation if sea bottom 
morphologically consist of sand waves. Modified 
mild slope equation includes general mild slope 
equation and extended mild slope equation proposed 
by Kirby [11].  
 
Massel and Chamberlain & Porter developed 
extended mild slope equation [12, 13]. It implies 
bottom curvature and bottom slope so it can be 
applied to the rapidly varying topography.  
 
Suh et al., solved two different time dependent wave 
equation using different theoretical approaches 
(Green formulation method and Lagrangian 
formulations) [14]. First formulation transforms in 
the equation propesed by Smith and Sprinks and 
second formulation transform in the time dependent 
mild slope equation developed by Radder and 

Dingemans when higher order bottom effects are 
neglected [15, 16]. For monochromatic waves, 
developed mild slope equation reduces into wave 
refraction-diffraction equation proposed by Massel 
[12], if there are only propagating waves. If 
reflection is considered they transform in the 
modified mild slope equation suggested by 
Chamberlain and Porter [13]. If the higher order 
bottom effects are neglected, the equations convert 
general mild slope equation of Berkhoff [1].  
 
Lee et al., modeled extended mild slope equation 
with hyperbolic approach. Developed model 
includes bottom curvature and square of bottom 
slope. They decided that square of bottom slope can 
be neglected in deep water but not in transition and 
shallow region. Bottom curvature can be neglected 
in deep and shallow water but its effects have an 
important role in transition region [17]. 
Tang and Quellet, adapted nonlinear mild slope 
equation to multifrequency waves. The linear part of 
this equation includes mild slope equation and 
nonlinear part includes Boussinesq equation. This 
equation can be applied to nonlinear waves on 
changing depths. The equation was firstly simplified 
with parabolic approach and after that solved with 
Crank Nicolson Method [18].  
 
Hsu and Wen extended the parabolic model 
suggested by Li taking total energy factor into 
account and modifiying traditional radiation 
boundary conditions. This model is valid in breaker 
zone, too [19, 20].  
 
Saied and Tsanis considered the modified dispersion 
relationship, so the nonlinear effects were taken into 
account [21].  
 
The extended mild slope equation proposed by Maa 
et al. has been examined in this study [22]. This 
equation includes wave refraction, diffraction, 
shoaling, reflection, harbour resonance and bottom 
friction and wave breaking dissipation factors. This 
extended mild slope equation has been reduced to 
Helmholtz equation and solved numerically.  
 
 
2 Theory  
 
In this study, extended mild slope equation has been 
modeled to simulate wave transformations. 
Extended mild slope equation includes wave 
refraction, diffraction, shoaling, reflection, wave 
breaking and bottom friction dissipations and 
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harbour resonance [15, 19, 22]. Extended mild slope 
equation can be applied to rapidly varying 
topographies because higher order bottom effects 
like bottom curvature ans square of bottom slope 
have been taken into account. The extended mild 
slope equation proposed by Maa et al. is given in the 
equation (1) [22]. 
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1f  is the bottom curvature coefficient,  is the 

coefficient of square of bottom slope, h is water 
depth, ∇ is horizontal operator, φ is velocity 
potential function, k  is wave number, 

2f

σ is wave 
frequancy, L  is wave length,  is wave celerity, 

 is group velocity,  is bottom slope,  is 

bottom curvature,  is bottom friction dissipation 
factor,  is energy dissipation factor after 
breaking.  is the sum of bottom friction 
dissipation factor and energy dissipation factor after 
breaking.  

C
gC h∇ h2∇
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An alternative method to solve extended mild slope 
equation is solving the equation after reducing to the 
Helmholtz equation. General Helmholtz equation 
has been given in the equation (5). The difference 
between general Helmholtz equation and reduced 
extended mild slope equation given in the equation 
(6) is effective wave number including higher order 
bottom effects, wave breaking and bottom friction 
dissipations.  
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To determine the bottom friction factor, the velocity 
in boundary layer must be defined with the 
consideration of momentum equation and boundary 
conditions.  
 
Bottom friction dissipation factor has been 
calculated with the equation (7). Here, fw is wave 
friction factor and σ  is wave frequency.  
 

khng
af

f w
b 3

2

sinh3
4 σ
π

=    (7) 

 
Jonsson and Carlsen recommended the equation (8) 
to obtain wave friction factor [23].  
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a1m is semi distance of the movement of the fluid 
particle on bottom and kN is the Nikuradse 
roughness coefficient. After emprical studies, mf 
had been calculated as -0.08 by Jonsson and Carlsen 
[23]. If a1m/kN is less than 2, wave friction factor fw 
is 0.24. Otherwise the value calculated in the 
equation (8) is used in the numerical solution. 
 
Wave breaking dissipation factor has been 
calculated with the equation (9) [22, 24]. Γ  and K 
are emprical constants and Γ=0.4, K=0.15. 
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Breaker index ( bγ ) is calculated with the 
formulation of Isobe [25] given in the equation (10). 
γ  is the ratio betweeen wave amplitude and water 
depth(γ=a/h).  
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The use of the breaker index proposed by Isobe and 
the wave breaking dissipation factor suggested by 
Dally et al. together give the minumum error as 
given in literature [24, 25]. The details can be found 
in the paper of Hsu and Wen [26]. So it is aimed to 
achieve more realistic results in breaker zone.  
 
γ and γb are calculated in each step and compared. If 
γ  is less than bγ , fd is equalized to zero. Otherwise 
fd is calculated with the equation (9). 
 
 
2.1. Nonlinear Celerity and Group Velocity 
 
Nonlinear celerity and group velocity should be 
considered to obtain more accurate results in wave 
propagation problem. Nonlinear effects come into 
prominence especially in the shallow regions where 
refraction is dominant. Kirby and Dalrymple 
suggested a method that is valid either in shallow 
region or in deep water [27]. This method transform 
into the equation proposed by Behrendt [28] in 
shallow water regions and into second order Stokes 
formulation in deep water. Dispersion relationship is 
used to obtain nonlinear celerity and group velocity 
[29]. The dispersionship equation has been given in 
equation (11) and the parameters of this equation 
have been shown in equations (12), (13), (14) and 
(15). After calculation of dispersion relationship, 
nonlinear wave celerity and group velocity can be 
easily determined with the equation (16) and (17). 
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3 Boundary Conditions 
 
Physical boundary conditions must be considered 
while investigating wave transformation in coastal 
engineering problems. There are four types of 
boundary conditions: Radiation boundary condition, 
partial reflective boundary condition, transmissive 
boundary condition and full reflective boundary 
condition. But generally full reflective, partial 
reflective and radiation boundary conditions are 
taken into account in mild slope equation problems. 
Chen et al. defined partial and full reflective 
boundary conditions with the equation (18) [30]. 
Here, KR is reflection coefficient, β  is the phase 
difference between incident and approaching waves, 
θ  is the angle between boundary normal ( )nx  and 

incident wave,  is the wave amplitude on the 
boundary.  
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First term on right of the equation (18) was 
proposed by Isaacson and Qu [31]. It indicates 
partial reflective boundary condition of incident 
waves with different approaching angles. Second 
term on right points out the effect of wave height 
gradient on boundary [30]. But this term based on 
linear theory, therefore it is not valid anymore when 
breaking occurs. It can be ignored. So partial 
reflection boundary condition can be written 
generally as given in equation (19) [31]. 
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* ααα i+=  is complex tranmission coefficient 
and related to enegry transfer on boundary, wave 
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height, wave phase and reflection coefficient. 1α  
and 2α  are calculated with the equations (20) and 
(21), respectively. 
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Equations (20) and (21) show the relationship 
between transmission coefficient, reflection 
coefficient, the approach angle and phase difference 
between propagating and reflected waves which is 
generally neglected in the solutions of mild slope 
equation.  
 
Reflection coefficient and phase difference are equal 
to 1 and 0, respectively, when there is a full 
reflection. Reflection coefficient and wave phase 
difference are 0 in radiation boundary condition. So 

 is equal to 0 in full reclection condition and i in 
radiation boundary condition. 
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Total potential function on the boundary of incident 
and reflected waves is given in the equation (22).  
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Initial values of velocity potential of a wave with 
the height (H) and period (T) is calculated using the 
equation (16) with linear theory.  
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Wave number vector is related to wave phase.  
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Phase function (s) is determined with the equation 
(21) and wave angle is a function of wave phase. 
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After calculation of initial values, the iteration 
process begins. Until the error between calculated 
and foregoing velocity potential in whole mesh 
reaches a tolerable value, the iteration is continued. 
An other important point is the consistency in 
calculation of wave phase with the limitations of 
computer programming language.  
 
 
4 Numerical Model 
 
Extendend mild slope equation reduced to 
Helmholtz equation has been solved by finite 
volume method. Finite volume (control volume) 
method is based on numerical integration. Finite 
volume method is applied in three steps: Grid 
generation, discretization and solution of equations. 
In recent years, finite volume method is widely used 
in fluid mechanics and coastal engineering problems 
[32, 33, 34]. The most important part of finite 
volume method is the discretization of the equations 
and adapting them into boundary conditions. The 
discrete forms of the extended mild slope equation 
reduced to Helmholtz equation have shown in 
equation (30) and (31) [35]. 
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A* is cross-sectional area of the control volume, 

VΔ  is the volume, φ  is average value of source φ  
over the control volume. P means nodal point, e, w, 
n, s indicate east, west, north and south, 
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respectively. Equation (31) is built for every nodal 
point in solution mesh and than solved the obtained 
matrix.  
5 Applications 
 
Numerical model has been checked firstly with the 
physical experiment given in literature by Whalin 
[36]. The refraction and diffraction phenomena had 
been studied together over the semicircular shoaling 
area.  
 
Secondly, the numerical model has been applied to 
Fethiye Bay in the Mediterranean coast of Turkey.  
 
The details of these application have been given in 
subtitles 5.1. and 5.2. 
 
 
5.1. An Application of the Model over 
Semicircular Shoaling Area 
 
Whalin, studied on the nonlinear refraction and 
diffraction over semicircular shoaling area and 
tested these effects physically. The topography of 
physical model was determined with the equations 
(32), (33), (34) and (35) where the values are in 
centimeters [36]. 
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In Fig. 1, the bathymetry of the tank has been 
shown.  
 

 

Fig 1. Bathymetry of the tank (h(m)) 
 
The tank centerline is at y=3.048m. The depths are 
between 0.4572m and 0.1524m. Linear wave theory 
is not valid anymore on caotic regions where the 
wave rays intersect and wave heights diverges 
infinitely. Diffraction becomes dominant, therefore 
refraction and diffraction must be examined 
together.  
 
In Fig. 2, the results of the numerical model has 
been compared with the experiment measurements 
and the numerical model proposed by Madsen & 
Sorensen [36, 37]. The wave amplitudes given in 
centimeters along the centerline has been shown in 
the Fig. 2. The wave period is T=3sec and incoming 
wave amplitude is a=0.0068m. Wave approaching 
angle is zero.  
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Fig. 2. Wave amplitude distribution along the 
centerline 
 
 
5.2. An Application of the Model to Fethiye 

Bay 
 
Fethiye is a district of Muğla city. It located in the 
coordinates 360 37’ 10.86’’N and 290 05’ 24.09’’E. 
Fethiye Bay is located in the west of Mediterranean 
coasts of Turkey. It is especially important due to 
sailing tourism. Muğla map is shown in Map 1 and 
the location of Fethiye in Muğla city is given in 
Map2.  
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Map 1. Mugla Map [38] 
 

 
Map 2. Fethiye Map [39] 
 
The location of application area has been shown in 
Map 3 [40]. Bathymetry of application area has been 
given in Fig. 3. Significant deep water wave height 
is H0=3m and wave period is T=8sec in this coastal 
region. Dominant wind directions are S and SW in 
Fethiye Bay [41]. Wave height distributions 
approaching from S and SW have been shown in 
Fig. 4 and Fig. 5, respectively. Waves converge on 
the shoals and are refracted onto shoals causing 
convayence of energy.  
 
 

 
 
Map 3. The location of application area in Fethiye 
Bay 

0 500 1000 1500 2000

y (m)

0

500

1000

1500

2000

2500

3000

3500

x 
(m

)

 
Fig. 3: Bathymetry (Depths are in meters) 
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Fig. 4: Wave height distribution (in meters)  
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Fig. 5: Wave height distribution (in meters) 
 
 
Conclusion 
 
Determining the wave transformations when waves 
propagating from deep water to shallow water is an 
important subject for the solution of coastal 
engineering problems as decision and design tool. 
General mild slope equation is not valid on rapidly 
varying topographies. Researchers developed 
extended mild slope equation to overcome this 
limitation of general mild slope equation. Therefore 
the higher order bottom effects like square of 
bottom slope and bottom curvature were added in 
mild slope equation. Another important part of 
extended mild slope equation is dissipation factor. 
The dissipation factor defines the losses due to 
bottom friction and wave breaking. Therefore 
extended mild slope equation is examined in this 
study. The extended mild slope equation, including 
wave refraction, diffraction, shoaling, reflection, 
dissipation of bottom friction and wave breaking 
and harbor resonance, has been solved numerically 
to simulate wave transformations while propagating 
from deep water to shallow water. Nonlinear wave 
celerity and group velocity are taken into account to 
obtain more accurate results. After reducing the 

extended mild slope equation to Helmholtz 
equation, it has been solved with finite volume 
method. The numerical model was checked with the 
experiment on semicircular shoaling area given in 
literature and applied to Fethiye Bay in Turkey. So 
it is decided that the present model can be used as a 
powerful design tool for simulating propagation 
over complex bathymetries. In future, current 
effects, harbor resonance and spectral approach for 
irregular waves can be examined and included in the 
numerical model. 
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