Embedding a family of 2D meshes into Möbius cubes

Chia-Jui Lai
Dahan Institute of Technology
Department of Finance and Banking
Hualien, Taiwan 970
R.O.C.
lai@ms01.dahan.edu.tw

Jheng-Cheng Chen
National Hualien University of Education
Graduate institute of learning technology
Hualien, Taiwan 970
R.O.C.
p_p971@hotmail.com

Abstract

Möbius cubes are an important class of hypercube variants. This paper addresses how to embed a family of disjoint 2D meshes into a Möbius cube. Two major contributions of this paper are: (1) For $n \geq 1$, there exists a $2 \times 2^{n-1}$ mesh that can be embedded in the n-dimensional Möbius cube with dilation 1 and expansion 1. (2) For $n \geq 4$, there are two disjoint $4 \times 2^{n-3}$ meshes that can be embedded in the n-dimensional 0 -type Möbius cube with dilation 1 . The results are optimal in the sense that the dilations of the embeddings are 1 . The result (2) mean that a family of two 2D-mesh-structured parallel algorithms can be operated on a same crossed cube efficiently and in parallel.

Key-Words: Möbius cubes, mesh embedding, dilation, expansion, interconnection network.

1 Introduction

An interconnection network plays a critical role of a multi-computer because the system performance is deeply dependent on network latency and throughput. There are a lot of mutually conflicting requirements in designing the topology of interconnection networks. It is almost impossible to design a network which is optimum in all perspectives. Processors of a multiprocessor system are connected according to a given interconnection network. The topological structure of an interconnection network can be modeled by a graph whose vertices represent components of the network and whose edges represent links between components. An embedding of one guest graph, G, into another host graph, H, is a one-to-one mapping ϕ from the vertex set of G to the vertex set of H. An edge of G corresponds to a path of H under ϕ. Many application, such as architecture simulations and processor allocations, can be modeled as graph embedding $[1,2,3,4,7,8,9,13,14,15,17,18,22,23,24,25$, 26, 29, 30].

There are two natural measures of the cost of a graph embedding, namely, the dilation of the embedding: the maximum distance in H between the images of vertices that are adjacent in G; and the expansion of the embedding: the ratio of the size of H to the size of G. For any two vertices x and y in G, let $d_{G}(x, y)$ denote the distance from x to y in G, i.e., the length of a shortest path between x and y in G. The dilation of embedding ϕ is defined as $\operatorname{dil}(G, H, \phi)=$ $\max \left\{d_{H}(\phi(x), \phi(y)) \mid(x, y) \in E(G)\right\}$. The mean-
ing of dilation for an embedding is the performance of communication delay when the graph H simulates the graph G. Obviously, $\operatorname{dil}(G, H, \phi) \geq 1$. In order to measure the processor utilization of the embedding, the expansion is defined as $\exp (G, H, \phi)=$ $|V(H)| /|V(G)|$. The smaller the dilation and expansion of an embedding is that the more efficient the communication delay and processor utilization when the graph H simulates the graph G.

The hypercube is a popular interconnection network with many attractive properties such as regularity, symmetry, small diameter, strong connectivity, recursive construction, partition ability, and relatively low link complexity [19]. It has been used in a wide variety of parallel systems such as Intel iPSC, the nCUBE [10], the Connection Machine CM-2 [21], and SGI Origin 2000 [20]. A hypercube network of dimension n contains up tp 2^{n} nodes and has n edges per node. If unique n-bit binary address are assigned to the nodes of hypercube, then an edge connects two nodes if and only if their binary addresses differ in a single bit position. Because of its elegant topological properties and the ability to emulate a wide variety of other frequently used networks, the hypercube has been one of the most popular interconnection networks for parallel computer/communication systems. Thus, there are several variations of the hypercube have been proposed in the literature. Möbius cubes form a class of hypercube variants that give better performance with the same number of edges and vertices. The paths, cycles, trees, and meshes are the common interconnection structures used in parallel com-

Issue 5, Volume 7, May 2008

WSEAS TRANSACTIONS on MATHEMATICS
puting. Embedding of these structures into Möbius cubes have been studied in $[5,6,11,12,27,28]$. However, there has been no research so far on embeddings of meshes in Möbius cubes in the literature. In this paper, we consider embedding of meshes in Möbius cubes. The main results obtained in this paper are: (1) For $n \geq 1$, there exists a $2 \times 2^{n-1}$ mesh that can be embedded in the n-dimensional Möbius cube with dilation 1 and expansion 1. (2) For $n \geq 4$, there are two disjoint $4 \times 2^{n-3}$ meshes that can be embedded in the n-dimensional 0-type Möbius cube with dilation 1. The results are optimal in the sense that the dilation 1.

The rest of this paper is organized as follows. In the next section, some fundamental definitions and notions are introduced. Section 3 shows that there exists a $2 \times 2^{n-1}$ mesh embedding in the n-dimensional Möbius cube. Section 4 proposes that two disjoint $4 \times 2^{n-3}$ meshes are embedded in n-dimensional 0 type Möbius cubes with dilation 1. The last section contains discussions and conclusions.

2 Preliminaries

Let the interconnection network be modeled by an undirected graph $G=(V, E)$ where the set of vertices $V(G)$ represents the processing elements of the network and the set of edges $E(G)$ represents the communication links. Throughout this paper, for the graph theoretic definitions and notations we follow [16]. Let $G=(V, E)$ be an undirected graph. Two vertices are adjacent when they are incident with a common edge. A simple path (or path for short) is a sequence of adjacent edges $\left(v_{0}, v_{1}\right),\left(v_{1}, v_{2}\right), \ldots,\left(v_{m-1}, v_{m}\right)$, written as $\left\langle v_{0}, v_{1}, v_{2}, \ldots, v_{m}\right\rangle$, in which all the vertices $v_{0}, v_{1}, \ldots, v_{m}$ are distinct except possibly $v_{0}=v_{m}$. The distance between x and y in G is denoted by $d_{G}(x, y)$, which is the length of a shortest path between x and y in G. A cycle C is a special path with at least three vertices such that the first vertex is the same as the last one. A cycle of length k is called a k-cycle. Let S be a subset of $V(G)$. The subgraph of G induced by S is the subgraph that has S as its vertex set and contains all edges of G having two end vertices in S. Two subgraphs of G are node-disjoint (or disjoint for short) if they have no common vertex.

The n-dimensional Möbius cube $M Q_{n}$, proposed first by Cull and Larson [5], consists of 2^{n} vertices and each vertex has a unique n-component binary vector for an address. Each vertex has n neighbors as follows. A vertex x denoted by a binary string of length $n, x_{n} x_{n-1} \ldots x_{1}$, connects to its i th neighbor, denoted by $N_{i}(x)$, for $1 \leq i \leq n-1$,

$$
N_{i}(x)=x_{n} x_{n-1} \ldots x_{i+1} \bar{x}_{i} x_{i-1} \ldots x_{1} \text { if } x_{i+1}=0
$$

or

$$
N_{i}(x)=x_{n} x_{n-1} \ldots x_{i+1} \bar{x}_{i} \bar{x}_{i-1} \ldots \bar{x}_{1} \text { if } x_{i+1}=1
$$

For $i=n$, since there is no bit on the left of x_{n}, $N_{n}(x)$ can be defined as the nth neighbor of x can be denoted as $\bar{x}_{n} x_{n-1} \ldots x_{1}$ or $\bar{x}_{n} \bar{x}_{n-1} \ldots \bar{x}_{1}$. If we assume that the $(n+1)$ th bit of every vertex of $M Q_{n}$ is 0 , we call the network a 0 -type n-dimensional Möbius cube, denoted by $0-M Q_{n}$; and if we assume that the $(n+1)$ th bit of every vertex of $M Q_{n}$ is 1 , we call the network a l-type n-dimensional Möbius cube, denoted by $1-M Q_{n}$. Either $0-M Q_{n}$ or $1-M Q_{n}$ may be denoted by $M Q_{n}$. The example of $0-M Q_{4}$ and 1$M Q_{4}$ are shown in Fig 1.

For example, let $u=01011$ be a vertex of 0 $M Q_{5}$. The 4-,3-,2-,1-, and 0-neighbors of u are given by 11011, 00011, 01100, 01001, and 01010, respectively. The symbol $N(u)$ is used to denote the set of neighbors of u and $N(01011)=$ $\{11011,00011,01100,01001,01010\}$. Similarly, let $u=01011$ be a vertex of $1-M Q_{5}$. The $4-, 3-, 2-, 1-$, and 0 -neighbors of u are given by 10100, 00011, 01100, 01001, and 01010, respectively.

Figure 1: (a) A 0-type 4-dimensional Möbius cube. (b) A 1-type 4-dimensional Möbius cube.

Therefore, $M Q_{n}$ is an n-regular graph and can
Issue 5, Volume 7, May 2008

WSEAS TRANSACTIONS on MATHEMATICS
be recursively defined as follows: Both $0-M Q_{1}$ and $1-M Q_{1}$ are complete graph K_{2} with one vertex labeled 0 and the other $1.0-M Q_{n}$ and 1$M Q_{n}$ are both composed of a sub-Möbius cube $M Q_{n-1}^{0}$ and a sub-Möbius cube $M Q_{n-1}^{1}$. Each vertex $X=0 x_{n-1} x_{n-2} \ldots x_{2} x_{1} \in V\left(M Q_{n-1}^{0}\right)$ connects to $1 x_{n-1} x_{n-2} \ldots x_{2} x_{1} \in M Q_{n-1}^{1}$ in $0-M Q_{n}$ and to $1 \bar{x}_{n-1} \bar{x}_{n-2} \ldots \bar{x}_{2} \bar{x}_{1}$ in $1-M Q_{n}$. For convenience, we say that $M Q_{n-1}^{0}$ and $M Q_{n-1}^{1}$ are two subMöbius cubes of $M Q_{n}$, where $M Q_{n-1}^{0}$ (respectively, $M Q_{n-1}^{1}$) is an $(n-1)$-dimensional 0-type Möbius cube (respectively, 1-type Möbius cube) which includes all vetices $0 x_{n-1} x_{n-2} \ldots x_{2} x_{1}$ (respectively, $\left.1 x_{n-1} x_{n-2} \ldots x_{2} x_{1}\right), x_{i} \in\{0,1\}$. An edge (u, v) in $E\left(M Q_{n}\right)$ is of dimension i if $u=N_{i}(v)$. In addition, we define the edge set of dimension i of $M Q_{n}$ to be $E_{i}\left(M Q_{n}\right)=\left\{(x, y) \in E\left(M Q_{n}\right) \mid y=N_{i}(x)\right\}$. Indeed, there are 2^{n-1} elements in $E_{i}\left(M Q_{n}\right)$ for all $1 \leq i \leq n$. Every n-dimension edge is called to be a crossing edge between $M Q_{n-1}^{0}$ and $M Q_{n-1}^{1}$ of $M Q_{n}$.

Lemma 1 Let x and y be two vertices of an n dimensional 0-type Möbius cube $0-M Q_{n}$ with $n \geq 3$, and $y=N_{i}(x)$. Then $d_{0-M Q_{n}}\left(N_{n}(x), N_{n}(y)\right)=1$ if $1 \leq i \leq n-2$ and $d_{0-M Q_{n}}\left(N_{n}(x), N_{n}(y)\right)=2$ if $i=n-1$.

Proof. Let $x=x_{n} x_{n-1} \ldots x_{i+1} x_{i} x_{i-1} \ldots x_{1}$ where $x_{j} \in\{0,1\}$ for $1 \leq j \leq n$. Since y is an i th neighbor of $x, y=x_{n} x_{n-1} \ldots x_{i+1} \bar{x}_{i} x_{i-1} \ldots x_{1}$ if $x_{i+1}=0$ or $y=x_{n} x_{n-1} \ldots x_{i+1} \bar{x}_{i} \bar{x}_{i-1} \ldots \bar{x}_{1}$ if $x_{i+1}=1$.
Case 1: $i=n-1$.
Suppose that $x_{n}=0$. Then, $N_{n}(x)=$ $1 x_{n-1} x_{n-2} \ldots x_{1}$ and $N_{n}(y)=1 \bar{x}_{n-1} x_{n-2} \ldots x_{1}$. By definition, $d_{0-M Q_{n}}\left(N_{n}(x), N_{n}(y)\right)>1$ for $n \geq$ 3. If $x_{n-1}=0, N_{n-2}\left(N_{n}(y)\right)=1 \bar{x}_{n-1} \bar{x}_{n-2} \ldots \bar{x}_{1}$. Thus, $N_{n-1}\left(N_{n-2}\left(N_{n}(y)\right)\right)=1 x_{n-1} x_{n-2} \ldots x_{1}$. Hence $d_{0-M Q_{n}}\left(N_{n}(x), N_{n}(y)\right)=2$. If $x_{n-1}=1$, $N_{n-2}\left(N_{n}(x)\right)=1 x_{n-1} \bar{x}_{n-2} \ldots \bar{x}_{1}$. Hence $N_{n-1}\left(N_{n-2}\left(N_{n-1}(x)\right)\right)=1 \bar{x}_{n-1} x_{n-2} \ldots x_{1}$. Therefore, $d_{0-M Q_{n}}\left(N_{n}(x), N_{n}(y)\right)=2$.

Suppose that $x_{n}=1$. Then, $N_{n}(x)=$ $0 x_{n-1} x_{n-2} \ldots x_{1}$ and $N_{n}(y)=0 \bar{x}_{n-1} \bar{x}_{n-2} \ldots \bar{x}_{1}$. By definition, $d_{0-M Q_{n}}\left(N_{n}(x), N_{n}(y)\right) \quad>1$ for $n \geq 3$. If $x_{n-1}=0, N_{n-2}\left(N_{n}(y)\right)=$ $0 \bar{x}_{n-1} x_{n-2} \ldots x_{1}$. It is observed that $N_{n-1}\left(N_{n-2}\left(N_{n}(y)\right)\right)=0 x_{n-1} x_{n-2} \ldots x_{1}$. As a result, $d_{0-M Q_{n}}\left(N_{n}(x), N_{n}(y)\right)=2$. If $x_{n-1}=1, N_{n-2}\left(N_{n}(x)\right)=0 x_{n-1} \bar{x}_{n-2} \ldots \bar{x}_{1}$. Hence $N_{n-1}\left(N_{n-2}\left(N_{n}(x)\right)\right)=0 \bar{x}_{n-1} \bar{x}_{n-2} \ldots \bar{x}_{1}$. Therefore, $d_{0-M Q_{n}}\left(N_{n}(x), N_{n}(y)\right)=2$.
Case 2: $1 \leq i \leq n-2$.
Suppose that $x_{i+1}=0 . \quad N_{n}(x)=$ $\bar{x}_{n} x_{n-1} \ldots x_{i+2} 0 x_{i} \ldots x_{1}$ and $\quad N_{n}(y)=$
$\bar{x}_{n} x_{n-1} \quad \ldots x_{i+2} 0 \bar{x}_{i} x_{i-1}^{\text {Chia-Jui Lai, Jheng-Cheng, Chen }}$ vious that $N_{i}\left(N_{n}(y)\right)=N_{n}(x)$. Hence $d_{0-M Q_{n}}\left(N_{n}(x), N_{n}(y)\right)=1$.

Suppose that $x_{i+1}=1 . \quad N_{n}(x)=$ $\bar{x}_{n} x_{n-1} \ldots x_{i+2} 1 x_{i} \ldots x_{1}$ and $N_{n}(y)=\bar{x}_{n} x_{n-1}$ $\ldots x_{i+2} 1 \bar{x}_{i} \ldots \bar{x}_{1}$. It is obvious that $N_{i}\left(N_{n}(y)\right)=$ $N_{n}(x)$. Hence $d_{0-M Q_{n}}\left(N_{n}(x), N_{n}(y)\right)=1$. The lemma is proved.

Lemma 2 Let x and y be two vertices of an n dimensional 1-type Möbius cube $1-M Q_{n}$ with $n \geq 3$, and $y=N_{i}(x)$. Then $d_{1-M Q_{n}}\left(N_{n}(x), N_{n}(y)\right)=1$ if $i=1$ and $d_{1-M Q_{n}}\left(N_{n}(x), N_{n}(y)\right)=2$ if $2 \leq i \leq$ $n-1$.

Proof. Let $x=x_{n} x_{n-1} \ldots x_{i+1} x_{i} x_{i-1} \ldots x_{1}$ where $x_{j} \in\{0,1\}$ for $1 \leq j \leq n$. Since y is an i th neighbor of $x, y=x_{n} x_{n-1} \ldots x_{i+1} \bar{x}_{i} x_{i-1} \ldots x_{1}$ if $x_{i+1}=0$ or $y=x_{n} x_{n-1} \ldots x_{i+1} \bar{x}_{i} \bar{x}_{i-1} \ldots \bar{x}_{1}$ if $x_{i+1}=1$.
Case 1: $2 \leq i \leq n-1$.
Suppose that $x_{i+1}=0 . \quad N_{n}(x)=$ $\bar{x}_{n} \bar{x}_{n-1} \ldots \bar{x}_{i+2} 1 \bar{x}_{i} \ldots \bar{x}_{1}$ and $N_{n}(y)=\bar{x}_{n}$ $\bar{x}_{n-1} \ldots \bar{x}_{i+2} \quad 1 x_{i} \bar{x}_{i-1} \ldots \bar{x}_{1}$. By definition, $d_{1-M Q_{n}}\left(N_{n}(x), N_{n}(y)\right)>1$ for $n \geq 3$. If $x_{i}=$ $0, N_{i-1}\left(N_{n}(x)\right)=\bar{x}_{n} \bar{x}_{n-1} \ldots \bar{x}_{i+2} 1 \bar{x}_{i} x_{i-1} \ldots x_{1}$. Hence $N_{i}\left(N_{i-1}\left(N_{n}(x)\right)\right)=\bar{x}_{n} \bar{x}_{n-1} \ldots \bar{x}_{i+2} 1 x_{i} \bar{x}_{i-1}$ $\ldots \bar{x}_{1}$. Hence $d_{1-M Q_{n}}\left(N_{n}(x), N_{n}(y)\right)=2$. If $x_{i}=$ 1, $N_{i-1}\left(N_{n}(y)\right)=\bar{x}_{n} \bar{x}_{n-1} \bar{x}_{n-2} \ldots \bar{x}_{i+2} 1 x_{i} x_{i-1}$ $\ldots x_{1}$. Hence $N_{i}\left(N_{i-1}\left(N_{n}(y)\right)\right)=N_{n}(x)$. Therefore, $d_{1-M Q_{n}}\left(N_{n}(x), N_{n}(y)\right)=2$.

Suppose that $x_{i+1}=1 . \quad N_{n}(x)=$ $\bar{x}_{n} \bar{x}_{n-1} \quad \ldots \bar{x}_{i+2} 0 \bar{x}_{i} \ldots \bar{x}_{1}$ and $N_{n}(y)=$ $\bar{x}_{n} \bar{x}_{n-1} \ldots \bar{x}_{i+2} \quad 0 x_{i} x_{i-1} \ldots x_{1}$. By definition, $d_{1-M Q_{n}}\left(N_{n}(x), N_{n}(y)\right)>1$ for $n \geq 3$. If $x_{i}=$ $0, N_{i-1}\left(N_{n}(x)\right)=\bar{x}_{n} \bar{x}_{n-1} \ldots \bar{x}_{i+2} 0 \bar{x}_{i} x_{i-1} \ldots x_{1}$. Hence $N_{i}\left(N_{i-1}\left(N_{n}(x)\right)\right)=N_{n}(y)$. Hence $d_{1-M Q_{n}}\left(N_{n}(x), N_{n}(y)\right)=2$. If $x_{i}=1$, $N_{i-1}\left(N_{n}(y)\right)=\bar{x}_{n} \bar{x}_{n-1} \ldots \bar{x}_{i+2} 0 x_{i} \bar{x}_{i-1} \ldots \bar{x}_{1}$. Hence $N_{i}\left(N_{i-1}\left(N_{n}(y)\right)\right)=N_{n}(x)$. Therefore, $d_{1-M Q_{n}}\left(N_{n}(x), N_{n}(y)\right)=2$.
Case 2: $i=1$.
$N_{n}(x)=\bar{x}_{n} \bar{x}_{n-1} \ldots \bar{x}_{3} \bar{x}_{2} \bar{x}_{1}$ and $N_{n}(y)=$ $\bar{x}_{n} \bar{x}_{n-1} \ldots \bar{x}_{3} \bar{x}_{2} x_{1}$. It is obvious that $N_{1}\left(N_{n}(y)\right)=$ $N_{n}(x)$. Hence $d_{1-M Q_{n}}\left(N_{n}(x), N_{n}(y)\right)=1$.

According to Lemma 1 and Lemma 2, there exists a 4-cycle of $\left\langle x, N_{1}(x), N_{1}\left(N_{n}(x)\right), N_{n}(x), x\right\rangle$ for any vertex x in $M Q_{n}$. However, not every 4 -cycle in one sub-Möbius cube $M Q_{n-1}^{i}$ of $M Q_{n}$ is corresponding to a 4-cycle in the other sub-Möbius cube $M Q_{n-1}^{1-i}$. Finding a 4-cycle in one sub-Möbius cube $M Q_{n-1}^{i}$ of $M Q_{n}$ such that it is corresponding to a 4-cycle in $M Q_{n-1}^{1-i}$ is important for embedding of $2 \times 2^{n-1}$ mesh in $M Q_{n}$. The following lemma discusses how to find that 4-cycle.

WSEAS TRANSACTIONS on MATHEMATICS
Lemma 3 For $n \geq 3$, assume that $\langle a, b, c, d, a\rangle$ is a 4 -cycle in $M Q_{n-1}^{i}$ of $M Q_{n}$ satisfying $(a, b),(c, d) \in$ $E_{1}\left(M Q_{n}\right)$ and $(b, c),(a, d) \in E_{2}\left(M Q_{n}\right)$. Then $N_{n}(a), N_{n}(b), N_{n}(c)$, and $N_{n}(d)$ forms a 4-cycle in $M Q_{n-1}^{1-i}$ of $M Q_{n}$. Moreover, $\left(N_{n}(a), N_{n}(b)\right)$, $\left(N_{n}(c), N_{n}(d)\right) \in E_{1}\left(M Q_{n}\right)$, and $\left(N_{n}(a), N_{n}(c)\right)$, $\left(N_{n}(b), N_{n}(d)\right) \in E_{2}\left(M Q_{n}\right)$ or $\left(N_{n}(a), N_{n}(d)\right)$, $\left(N_{n}(b), N_{n}(c)\right) \in E_{2}\left(M Q_{n}\right)$.

Proof. It is clearly that the lemma holds for $n=$ 3. Assume that $n \geq 4$. Let $a=a_{n} a_{n-1} \ldots a_{3} a_{2} a_{1}$. Thus $b=a_{n} a_{n-1} \ldots a_{3} a_{2} \bar{a}_{1}$. According to the value of a_{3}, the proof is divided into two cases: (1) $a_{3}=0$ and (2) $a_{3}=1$.
Case 1: $a_{3}=0$.
Note that $a=a_{n} a_{n-1} \ldots 0 a_{2} a_{1}$, $b=a_{n} a_{n-1} \ldots 0 a_{2} \bar{a}_{1}, \quad c=a_{n} a_{n-1} \ldots 0 \bar{a}_{2} \bar{a}_{1}$, and $d=a_{n} a_{n-1} \ldots 0 \bar{a}_{2} a_{1}$. Suppose that the $M Q_{n}$ is a 0-type Möbius cube. Since $n \geq 4, N_{n}(a)=\bar{a}_{n} a_{n-1} \ldots 0 a_{2} a_{1}, N_{n}(b)=$ $\bar{a}_{n} a_{n-1} \ldots 0 a_{2} \bar{a}_{1}, \quad N_{n}(c)=\bar{a}_{n} a_{n-1} \ldots 0 \bar{a}_{2} \bar{a}_{1}$, and $N_{n}(d)=\bar{a}_{n} a_{n-1} \ldots 0 \bar{a}_{2} a_{1}$. Therefore, $\left(N_{n}(a), N_{n}(b)\right),\left(N_{n}(c), N_{n}(d)\right) \in E_{1}\left(M Q_{n}\right)$ and $\left(N_{n}(b), N_{n}(c)\right),\left(N_{n}(a), N_{n}(d)\right) \in E_{2}\left(M Q_{n}\right)$. Consequently, $\left\langle N_{n}(a), N_{n}(b), N_{n}(c), N_{n}(d), N_{n}(a)\right\rangle$ is a 4-cycle in the sub-Möbius cube $M Q_{n-1}^{1-i}$ of $M Q_{n}$.

Suppose that the $M Q_{n}$ is a 1-type Möbius cube. Hence $N_{n}(a)=\bar{a}_{n} \bar{a}_{n-1} \ldots \bar{a}_{4} 1 \bar{a}_{2} \bar{a}_{1}, N_{n}(b)=$ $\bar{a}_{n} \bar{a}_{n-1} \ldots \bar{a}_{4} 1 \bar{a}_{2} a_{1}, N_{n}(c)=\bar{a}_{n} \bar{a}_{n-1} \ldots \bar{a}_{4} 1 a_{2} a_{1}$, and $N_{n}(d)=\bar{a}_{n} \bar{a}_{n-1} \ldots \bar{a}_{4} 1 a_{2} \bar{a}_{1}$. Therefore, $\left(N_{n}(a), N_{n}(b)\right),\left(N_{n}(c), N_{n}(d)\right) \in E_{1}\left(M Q_{n}\right)$ and $\left(N_{n}(a), N_{n}(c)\right),\left(N_{n}(b), N_{n}(d)\right) \in E_{2}\left(M Q_{n}\right)$. Consequently, $\left\langle N_{n}(a), N_{n}(c), N_{n}(d), N_{n}(b), N_{n}(a)\right\rangle$ is a 4-cycle in the sub-Möbius cube $M Q_{n-1}^{1-i}$ of $M Q_{n}$.
Case 2: $a_{3}=1$.
Note that $a=a_{n} a_{n-1} \ldots 1 a_{2} a_{1}$, $b=a_{n} a_{n-1} \ldots 1 a_{2} \bar{a}_{1}, c=a_{n} a_{n-1} \ldots 1 \bar{a}_{2} \bar{a}_{1}$, and $d=a_{n} a_{n-1} \ldots 1 \bar{a}_{2} a_{1}$. Suppose that the $M Q_{n}$ is a 0-type Möbius cube. Since $n \geq 4, N_{n}(a)=\bar{a}_{n} a_{n-1} \ldots 1 a_{2} a_{1}, N_{n}(b)=$ $\bar{a}_{n} a_{n-1} \ldots 1 a_{2} \bar{a}_{1}, \quad N_{n}(c)=\bar{a}_{n} a_{n-1} \ldots 1 \bar{a}_{2} \bar{a}_{1}$, and $N_{n}(d)=\bar{a}_{n} a_{n-1} \ldots 1 \bar{a}_{2} a_{1}$. Therefore, $\left(N_{n}(a), N_{n}(b)\right),\left(N_{n}(c), N_{n}(d)\right) \in E_{1}\left(M Q_{n}\right)$ and $\left(N_{n}(a), N_{n}(c)\right),\left(N_{n}(b), N_{n}(d)\right) \in E_{2}\left(M Q_{n}\right)$. Consequently, $\left\langle N_{n}(a), N_{n}(c), N_{n}(d), N_{n}(b), N_{n}(a)\right\rangle$ is a 4-cycle in the sub-Möbius cube $M Q_{n-1}^{1-i}$ of $M Q_{n}$.

Suppose that the $M Q_{n}$ is a 1-type Möbius cube. Hence $N_{n}(a)=\bar{a}_{n} \bar{a}_{n-1} \ldots \bar{a}_{4} 0 \bar{a}_{2} \bar{a}_{1}, \quad N_{n}(b)=$ $\bar{a}_{n} \bar{a}_{n-1} \ldots \bar{a}_{4} 0 \bar{a}_{2} a_{1}, N_{n}(c)=\bar{a}_{n} \bar{a}_{n-1} \ldots \bar{a}_{4} 0 a_{2} a_{1}$, and $N_{n}(d)=\bar{a}_{n} \bar{a}_{n-1} \ldots \bar{a}_{4} 0 a_{2} \bar{a}_{1}$. Therefore, $\left(N_{n}(a), N_{n}(b)\right),\left(N_{n}(c), N_{n}(d)\right) \in E_{1}\left(M Q_{n}\right)$ and $\left(N_{n}(b), N_{n}(c)\right),\left(N_{n}(a), N_{n}(d)\right) \in E_{2}\left(M Q_{n}\right)$. Consequently, $\left\langle N_{n}(a), N_{n}(b), N_{n}(c), N_{n}(d), N_{n}(a)\right\rangle$ is a 4-cycle in the sub-Möbius cube $M Q_{n-1}^{1-i}$ of $M Q_{n}$.

Figure 2: Illustration for ladder-edges and borderedges of 2D mesh with size $2 \times m$.

Figure 3: Illustration for $0-M Q_{n}$.

3 Embedding of $2 \times 2^{n-1}$ meshes in $M Q_{n}$

Definition $1 A n \times m$ mesh $M_{n \times m}$ can be denoted by an $n \times m$ matrix

$$
\left(\begin{array}{cccc}
\alpha_{11} & \alpha_{12} & \cdots & \alpha_{1 m} \\
\alpha_{21} & \alpha_{22} & \cdots & \alpha_{2 m} \\
\cdots & \cdots & \cdots & \cdots \\
\alpha_{n 1} & \alpha_{n 2} & \cdots & \alpha_{n m}
\end{array}\right)
$$

where $V\left(M_{n \times m}\right)=\left\{\alpha_{i j} \mid 1 \leq i \leq n\right.$, and $1 \leq j \leq$ $m\},\left(\alpha_{i j}, \alpha_{i, j+1}\right) \in E\left(M_{n \times m}\right)$ for $1 \leq i \leq n$ and $1 \leq j \leq m-1$, and $\left(\alpha_{k l}, \alpha_{k+1, l}\right) \in E\left(M_{n \times m}\right)$ for $1 \leq k \leq n-1$ and $1 \leq l \leq m$.

The edge $\left(\alpha_{1 i}, \alpha_{2 i}\right)$ in a mesh $M_{2 \times m}$ is called to be the i th ladder-edge for $1 \leq i \leq m$; two edges $\left(\alpha_{1 j}, \alpha_{1, j+1}\right)$ and $\left(\alpha_{2 j}, \alpha_{2, j+1}\right)$ are called to be the j th pair of border-edge for $1 \leq j \leq m-1$. Let $M_{2 \times m}\left(i, j ; M Q_{n}\right)=\left\{M_{2 \times m} \mid\left(\alpha_{1 k}, \alpha_{2 k}\right) \in\right.$ $E_{i}\left(M Q_{n}\right)$ for $1 \leq k \leq m$ and there exists an integer $1 \leq l \leq m-1$ such that $\left(\alpha_{1 l}, \alpha_{1, l+1}\right)$ and $\left(\alpha_{2 l}, \alpha_{2, l+1}\right)$ are in $E_{j}\left(M Q_{n}\right)$. \}, i.e., if $M_{2 \times m} \in$ $M_{2 \times m}\left(i, j ; M Q_{n}\right)$, all ladder-edges of $M_{2 \times m}$ are in $E_{i}\left(M Q_{n}\right)$ and there exists a pair of border-edges,

Figure 4: Illustration for $1-M Q_{n}$.
$\left(\alpha_{1 l}, \alpha_{1, l+1}\right)$ and $\left(\alpha_{2 l}, \alpha_{2, l+1}\right)$ for some $1 \leq l \leq m-$ 1 , such that $\left(\alpha_{1 l}, \alpha_{1, l+1}\right),\left(\alpha_{2 l}, \alpha_{2, l+1}\right) \in E_{j}\left(M Q_{n}\right)$. In this section, we propose that a $2 \times 2^{n-1}$ mesh can be embedded with dilation 1 and expansion 1 in an n dimensional Möbius cube. According this result, we show that a $4 \times 2^{n-2}$ mesh cab be embedded with dilation 2 and expansion 1 in $M Q_{n}$.

Lemma 4 For any two dimension 1 edges e_{1} and e_{2} that form a 4-cycle in $M Q_{3}$, there exists a 2×4 mesh in $M_{2 \times 4}\left(1,2 ; M Q_{3}\right)$ where e_{1} is the first ladder-edge and e_{2} is the last ladder-edge of the mesh, or e_{1} is the last ladder-edge and e_{2} is the first ladder-edge of the mesh.

Proof. Since $0-M Q_{3}$ and $1-M Q_{3}$ are isomorphic, we only consider $0-M Q_{3}$. Note that $E_{1}\left(0-M Q_{3}\right)=\{(000,001),(010,011),(100,101)$, $(110,111)\}$ and $E_{2}\left(0-M Q_{3}\right)=\{(000,010)$, $(001,011),(100,111),(101,110)\}$. Let e_{1} and e_{2} be in $E_{1}\left(0-M Q_{3}\right)$ and both of them lie on the same 4 -cycle in $0-M Q_{3}$. Hence $\left\{e_{1}, e_{2}\right\} \subset$ $\{\{(000,001),(101,100)\}, \quad\{(000,001),(011,010)\}$, $\{(100,101),(110,111)\},\{(010,011),(111,110)\}\}$. Let M_{1}, M_{2}, M_{3}, and M_{4} be four 2×4 meshes in $0-M Q_{3}$ as follows.

$$
\begin{aligned}
& M_{1}=\left(\begin{array}{llll}
000 & 010 & 110 & 101 \\
001 & 011 & 111 & 100
\end{array}\right) \\
& M_{2}=\left(\begin{array}{llll}
000 & 100 & 111 & 011 \\
001 & 101 & 110 & 010
\end{array}\right) \\
& M_{3}=\left(\begin{array}{llll}
100 & 000 & 010 & 110 \\
101 & 001 & 011 & 111
\end{array}\right)
\end{aligned}
$$

$$
M_{4}=\left(\begin{array}{llll}
010 & 000 & 100 & 111 \\
011 & 001 & 101 & 110
\end{array}\right)
$$

One can see that all ladder-edges of M_{i} are in $E_{1}\left(0-M Q_{3}\right)$ for $1 \leq i \leq 4$. It is observed that the 3th pair of border-edges in M_{1} and M_{4} are in the set $E_{2}\left(0-M Q_{3}\right)$, and the 2th pair of border-edges in M_{2} and M_{3} are in the set $E_{2}\left(0-M Q_{3}\right)$.

Lemma 5 Assume that $n \geq 3$. For any two dimension 1 edges e_{1} and e_{2} that form a 4-cycle in $M Q_{n}$, there exists a $2 \times 2^{n-1}$ mesh in $M_{2 \times 2^{n-1}}\left(1,2 ; M Q_{n}\right)$ such that e_{1} is the first ladder-edge and e_{2} is the last ladder-edge of the mesh, or e_{1} is the last ladder-edge and e_{2} is the first ladder-edge of the mesh.

Proof. The proof is by induction on n. By Lemma 4, the lemma holds for $n=3$. Assume that the lemma is true for every integer $3 \leq m<n$. We now consider $m=n$ as follows. Let $e_{1}=(a, b)$ and $e_{2}=(c, d)$ be two dimension 1 edges and $\langle a, b, c, d, a\rangle$ is a 4-cycle in $M Q_{n}$. By the relative position of e_{1} and e_{2}, the proof is divided into two parts: (1) e_{1} and e_{2} are in the same sub-Möbius cube $M Q_{n-1}^{i}$ and (2) $e_{1} \in E\left(M Q_{n-1}^{i}\right)$ and $e_{2} \in E\left(M Q_{n-1}^{1-i}\right)$ for $i=0,1$.
Case 1: $e_{1}, e_{2} \in E\left(M Q_{n-1}^{i}\right)$ for $i=0,1$.
By the induction hypothesis, there exists a $2 \times$ 2^{n-2} mesh $M_{2 \times 2^{n-2}}^{0} \in M_{2 \times 2^{n-2}}\left(1,2 ; M Q_{n-1}^{i}\right)$ such that e_{1} is the first ladder-edge and e_{2} is the last ladderedge of $M_{2 \times 2^{n-2}}^{0}$, or e_{1} is the last ladder-edge and e_{2} is the first ladder-edge of $M_{2 \times 2^{n-2}}^{0}$. Without loss of generality, we may assume that $M_{2 \times 2^{n-2}}^{0}=$

$$
\left(\begin{array}{cccccc}
a=\alpha_{1} & \cdots & \alpha_{j} & \alpha_{j+1} & \cdots & \alpha_{2^{n-2}}=c \\
b=\beta_{1} & \cdots & \beta_{j} & \beta_{j+1} & \cdots & \beta_{2^{n-2}}=d
\end{array}\right)
$$

where $\left(\alpha_{k}, \beta_{k}\right) \in E_{1}\left(M Q_{n}\right)$ for all $1 \leq k \leq 2^{n-2}$ and $\left(\alpha_{j}, \alpha_{j+1}\right),\left(\beta_{j}, \beta_{j+1}\right) \in E_{2}\left(M Q_{n}\right)$ for some $1 \leq j \leq 2^{n-2}-1$.

Since $\left(\alpha_{j}, \beta_{j}\right),\left(\alpha_{j+1}, \beta_{j+1}\right) \in E_{1}\left(M Q_{n}\right)$, $\left(\alpha_{j}, \alpha_{j+1}\right),\left(\beta_{j}, \beta_{j+1}\right) \in E_{2}\left(M Q_{n}\right)$, and $\left\langle\alpha_{j}, \alpha_{j+1}\right.$, $\left.\beta_{j+1}, \beta_{j}, \alpha_{j}\right\rangle$ is a 4 -cycle in $M Q_{n-1}^{i}$. By Lemma 3, $N_{n}\left(\alpha_{j}\right), N_{n}\left(\beta_{j}\right), N_{n}\left(\alpha_{j+1}\right)$, and $N_{n}\left(\beta_{j+1}\right)$ forms a 4-cycle in $M Q_{n-1}^{1-i}$. Let $e_{3}=\left(N_{n}\left(\alpha_{j}\right), N_{n}\left(\beta_{j}\right)\right)$ and $e_{4}=\left(N_{n}\left(\alpha_{j+1}\right), N_{n}\left(\beta_{j+1}\right)\right)$. Subsequently, $e_{3}, e_{4} \in$ $E_{1}\left(M Q_{n}\right)$ and they form a 4-cycle in $M Q_{n-1}^{1-i}$. By the induction hypothesis, there exists a $2 \times 2^{n-2}$ mesh $M_{2 \times 2^{n-2}}^{1} \in M_{2 \times 2^{n-2}}\left(1,2 ; M Q_{n-1}^{1-i}\right)$ such that e_{3} is the first ladder-edge and e_{4} is the last ladder-edge of $M_{2 \times 2^{n-2}}^{1}$, or e_{3} is the last ladder-edge and e_{4} is the

Figure 5: Illustration of Lemma 4
first ladder-edge of $M_{2 \times 2^{n-2}}^{1}$. Without loss of generality, one may assume that $M_{2 \times 2^{n-2}}^{1}=$
$\left(\begin{array}{cccccc}\alpha_{j}=\mu_{1} & \cdots & \mu_{k} & \mu_{k+1} & \cdots & \mu_{2^{n-2}}=\alpha_{j+1} \\ \beta_{j}=\nu_{1} & \cdots & \nu_{k} & \nu_{k+1} & \cdots & \nu_{2^{n-2}}=\beta_{j+1}\end{array}\right)$
where all ladder-edges are in $E_{1}\left(M Q_{n}\right)$ and $\left(\mu_{k}, \mu_{k+1}\right),\left(\nu_{k}, \nu_{k+1}\right) \in E_{2}\left(M Q_{n}\right)$ for some $1 \leq$ $k \leq 2^{n-2}-1$.

Next, replace the 4 -cycle of $\left\langle\alpha_{j}, \alpha_{j+1}, \beta_{j+1}\right.$, $\left.\alpha_{j+1}, \alpha_{j}\right\rangle$ in $M_{2 \times 2^{n-2}}^{0}$ with the mesh $M_{2 \times 2^{n-2}}^{1}$. We have a disered $2 \times 2^{n-1}$ mesh in $M_{2 \times 2^{n-1}}\left(1,2 ; M Q_{n}\right)$ such that (a, b) is the first ladder-edge and (c, d) is the last ladder-edge of the mesh.
Case 2: $e_{1} \in E\left(M Q_{n-1}^{i}\right)$ and $e_{2} \in E\left(M Q_{n-1}^{1-i}\right)$ for $i=0,1$.

Note that $e_{1}=(a, b)$ and $e_{2}=(c, d)$, and $\langle a, b, c, d, a\rangle$ is a 4-cycle. Since e_{1} and e_{2} are in different sub-Möbius cubes of $M Q_{n}, N_{n}(a)=d$ and $N_{n}(b)=c$. Let $u=N_{2}(a)$ and $v=N_{2}(b)$. Hence $(u, v) \in E_{1}\left(M Q_{n-1}^{i}\right)$ because $(a, b) \in E_{1}\left(M Q_{n}\right)$ and $\langle a, u, v, b, a\rangle$ is a 4-cycle in $M Q_{n-1}^{i}$. By the induction hypothesis, there exists a $2 \times 2^{n-2}$ mesh $M_{2 \times 2^{n-2}}^{0} \in M_{2 \times 2^{n-2}}\left(1,2 ; M Q_{n-1}^{i}\right)$ such that (a, b) is the first ladder-edge and (u, v) is the last ladderedge of the mesh, or (a, b) is the last ladder-edge and (u, v) is the first ladder-edge of the mesh. Without loss of generality, we may assume that $M_{2 \times 2^{n-2}}^{0}=$

$$
\left(\begin{array}{cccccc}
a=\alpha_{1} & \cdots & \alpha_{j} & \alpha_{j+1} & \cdots & \alpha_{2^{n-2}}=u \\
b=\beta_{1} & \cdots & \beta_{j} & \beta_{j+1} & \cdots & \beta_{2^{n-2}}=v
\end{array}\right)
$$

where all ladder-edges are in $E_{1}\left(M Q_{n}\right)$ and $\left(\alpha_{j}, \alpha_{j+1}\right),\left(\beta_{j}, \beta_{j+1}\right) \in E_{2}\left(M Q_{n}\right)$ for some $1 \leq$ $j \leq 2^{n-2}-1$.

Since $\langle a, u, v, b, a\rangle$ is a 4-cycle in $M Q_{n-1}^{i}$, and $(u, v),(a, b) \in E_{1}\left(M Q_{n-1}^{i}\right)$ and $(a, u),(b, v) \in$ $E_{2}\left(M Q_{n-1}^{i}\right)$, by Lemma 3, $c, d, N_{n}(u)$, and $N_{n}(v)$
forms a 4-cycle in $M Q_{n-1}^{1-i}$ of $M Q_{n}$. In addition, $(c, d),\left(N_{n}(u), N_{n}(v)\right) \in E_{1}\left(M Q_{n}\right)$. By the induction hypothesis, there exists a $2 \times 2^{n-2}$ mesh $M_{2 \times 2^{n-2}}^{1}$ $\in M_{2 \times 2^{n-2}}\left(1,2 ; M Q_{n-1}^{1-i}\right)$ such that $\left(N_{n}(u), N_{n}(v)\right)$ is the first ladder-edge and (c, d) is the last ladderedge of $M_{2 \times 2^{n-2}}^{1}$, or (c, d) is the first ladder-edge and $\left(N_{n}(u), N_{n}(v)\right)$ is the last ladder-edge of $M_{2 \times 2^{n-2}}^{1}$. Without loss of generality, we may assume that $M_{2 \times 2^{n-2}}^{1}=$

$$
\left(\begin{array}{cccccc}
N_{n}(u)=\mu_{1} & \cdots & \mu_{k} & \mu_{k+1} & \cdots & \mu_{2^{n-2}}=c \\
N_{n}(v)=\nu_{1} & \cdots & \nu_{k} & \nu_{k+1} & \cdots & \nu_{2^{n-2}}=d
\end{array}\right)
$$

where all ladder-edges are in $E_{1}\left(M Q_{n-1}^{i-1}\right)$ and $\left(\mu_{k}, \mu_{k+1}\right),\left(\nu_{k}, \nu_{k+1}\right) \in E_{2}\left(M Q_{n-1}^{1-i}\right)$ for some $1 \leq$ $k \leq 2^{n-2}-1$.

Therefore, we have a desired $2 \times 2^{n-1}$ mesh as follows.

$$
\left(\begin{array}{ccccc}
a=\alpha_{1} & \cdots & u & N_{n}(u)=\mu_{1} & \cdots
\end{array} \mu_{2^{n-2}}=c\right)
$$

The proof is completed.

Theorem 1 For any integer $n \geq 1$, there exists a $2 \times$ 2^{n-1} mesh in $M Q_{n}$.

Proof. It is trivial that the theorem holds for $n=1,2$. By Lemma 5, the theorem holds for $n \geq 3$. Hence, the proof is completed.

As a result, we have the following corollary.

Corollary 1 For any integer $n \geq 1, a 2 \times 2^{n-1}$ mesh can be embedded in $M Q_{n}$ with dilation 1 and expansion 1 .

WSEAS TRANSACTIONS on MATHEMATICS

Figure 6: Illustration for two 4×2 meshes in $0-M Q_{4}$

4 Embedding two disjoint $4 \times 2^{n-3}$ meshes

Applying the $2 \times 2^{n-3}$ mesh embedding of $M Q_{n-2}$ in the last section, we provide $4 \times 2^{n-3}$ mesh embeddings in the $0-M Q_{n}$. As $n=4$, one can observe the following lemma.

Lemma 6

$$
M_{1}=\left(\begin{array}{cc}
0000 & 0001 \\
0010 & 0011 \\
0110 & 0111 \\
0101 & 0100
\end{array}\right)
$$

and

$$
M_{2}=\left(\begin{array}{ll}
1000 & 1001 \\
1010 & 1011 \\
1101 & 1100 \\
1110 & 1111
\end{array}\right)
$$

are two 4×2 meshes in $M Q_{4}$.
Let $V_{i, j}=\left\{a_{n} a_{n-1} \ldots a_{1} \mid a_{n}=i, a_{n-1}=j\right\}$ where $i, j \in\{0,1\}$. Hence $V\left(M Q_{n}\right)=V_{0,0} \cup V_{0,1}$ $\cup V_{1,0} \cup V_{1,1}$ and $V_{i, j} \cap V_{k, l}=\emptyset$ if $V_{i, j} \neq V_{k, l}$. It is without difficult to prove that the induced subgraph $M Q_{n-2}^{i, j}$ of $M Q_{n}$ is isomorphic to $j-M Q_{n-2}$ where $i, j \in\{0,1\}$. According to the definition of $M Q_{n}$, we have that each vertex $00 a_{n-3} \ldots a_{1}$ in the subgraph $M Q_{n-2}^{0,0}$ of $0-M Q_{n}$ connects to $10 a_{n-3} \ldots a_{1}$ in the subgraph $M Q_{n-2}^{1,0}$ by a dimension n edge; and each vertex $01 a_{n-3} \ldots a_{1}$ in the subgraph $M Q_{n-2}^{0,1}$ of $0-M Q_{n}$ connects to $11 a_{n-3} \ldots a_{1}$ in the subgraph $M Q_{n-2}^{11}$ by a dimension n edge. With these properties we propose the following two lemmas.

Figure 7: Illustration for two 4×2 meshes in $1-M Q_{4}$

Lemma 7 For $n \geq 5$, there is a $4 \times 2^{n-3}$ mesh

$$
M=\left(\begin{array}{cccc}
00 \alpha_{1} & 00 \alpha_{2} & \cdots & 00 \alpha_{2^{n-3}} \\
00 \beta_{1} & 00 \beta_{2} & \cdots & 00 \beta_{2^{n-3}} \\
10 \beta_{1} & 10 \beta_{2} & \cdots & 10 \beta_{2^{n-3}} \\
10 \alpha_{1} & 10 \alpha_{2} & \cdots & 10 \alpha_{2^{n-3}}
\end{array}\right)
$$

in the $0-M Q_{n}$ where

$$
\left(\begin{array}{cccc}
\alpha_{1} & \alpha_{2} & \cdots & \alpha_{2^{n-3}} \\
\beta_{1} & \beta_{2} & \cdots & \beta_{2^{n-3}}
\end{array}\right)
$$

is a $2 \times 2^{n-3}$ mesh of an $0-M Q_{n-2}$.
Proof. For $n \geq 5$, let $M Q_{n-2}^{i, j}$ be a subgraph of $M Q_{n}$ induced by $V_{i, j}$ for $i, j \in\{0,1\}$. Note that $M Q_{n-2}^{0,0}$ and $M Q_{n-2}^{1,0}$ are both isomorphic to $0-M Q_{n-2}$, and $M Q_{n-2}^{0,1}$ and $M Q_{n-2}^{1,1}$ are both isomorphic to $1-M Q_{n-2}$. By Lemma 1 , there exists a $2 \times 2^{n-3}$ mesh of

$$
M=\left(\begin{array}{cccc}
\alpha_{1} & \alpha_{2} & \cdots & \alpha_{2^{n-3}} \\
\beta_{1} & \beta_{2} & \cdots & \beta_{2^{n-3}}
\end{array}\right)
$$

in the $0-M Q_{n-2}$. Then,

$$
M_{00}=\left(\begin{array}{cccc}
00 \alpha_{1} & 00 \alpha_{2} & \cdots & 00 \alpha_{2^{n-3}} \\
00 \beta_{1} & 00 \beta_{2} & \cdots & 00 \beta_{2^{n-3}}
\end{array}\right)
$$

and

$$
M_{10}=\left(\begin{array}{cccc}
10 \alpha_{1} & 10 \alpha_{2} & \cdots & 10 \alpha_{2^{n-3}} \\
10 \beta_{1} & 10 \beta_{2} & \cdots & 10 \beta_{2^{n-3}}
\end{array}\right)
$$

are $2 \times 2^{n-3}$ meshes in $M Q_{n-2}^{0,0}$ and $M Q_{n-2}^{1,0}$ of $0-M Q_{n}$, respectively. Since each vertex of M_{00} are in $V_{0,0}$ and each vertex of M_{10} are in $V_{1,0}$, $V\left(M_{00}\right) \cap V\left(M_{10}\right)=\emptyset$. Indeed, $\left(00 \alpha_{j}, 00 \alpha_{j+1}\right)$, $\left(00 \beta_{j}, 00 \beta_{j+1}\right),\left(10 \alpha_{j}, 10 \alpha_{j+1}\right)$, and $\left(10 \beta_{j}, 10 \beta_{j+1}\right)$

WSEAS TRANSACTIONS on MATHEMATICS
are edges of $0-M Q_{n}$ for all $1 \leq j \leq 2^{n-3}-1$. Furthermore, $N_{n}\left(00 \alpha_{k}\right)=10 \alpha_{k}$ and $N_{n}\left(00 \beta_{k}\right)=10 \beta_{k}$ for all $1 \leq k \leq 2^{n-3}$. Thus,

$$
M^{\prime}=\left(\begin{array}{cccc}
00 \alpha_{1} & 00 \alpha_{2} & \cdots & 00 \alpha_{2^{n-3}} \\
00 \beta_{1} & 00 \beta_{2} & \cdots & 00 \beta_{2^{n-3}} \\
10 \beta_{1} & 10 \beta_{2} & \cdots & 10 \beta_{2^{n-3}} \\
10 \alpha_{1} & 10 \alpha_{2} & \cdots & 10 \alpha_{2^{n-3}}
\end{array}\right)
$$

is a $4 \times 2^{n-3}$ mesh in the $0-M Q_{n}$.
Lemma 8 For $n \geq 5$, there is a $4 \times 2^{n-3}$ mesh

$$
M=\left(\begin{array}{cccc}
01 \gamma_{1} & 01 \gamma_{2} & \cdots & 01 \gamma_{2^{n-3}} \\
01 \delta_{1} & 01 \delta_{2} & \cdots & 01 \delta_{2^{n-3}} \\
11 \delta_{1} & 11 \delta_{2} & \cdots & 11 \delta_{2^{n-3}} \\
11 \gamma_{1} & 11 \gamma_{2} & \cdots & 11 \gamma_{2^{n-3}}
\end{array}\right)
$$

in the $0-M Q_{n}$ where

$$
\left(\begin{array}{llll}
\gamma_{1} & \gamma_{2} & \cdots & \gamma_{2^{n-3}} \\
\delta_{1} & \delta_{2} & \cdots & \delta_{2^{n-3}}
\end{array}\right)
$$

is a $2 \times 2^{n-3}$ mesh of a $1-M Q_{n-2}$.
Proof. For $n \geq 5$, let $M Q_{n-2}^{i, j}$ be a subgraph of $M Q_{n}$ induced by $V_{i, j}$ for $i, j \in\{0,1\}$. Note that $M Q_{n-2}^{0,0}$ and $M Q_{n-2}^{1,0}$ are both isomorphic to $0-M Q_{n-2}$, and $M Q_{n-2}^{0,1}$ and $M Q_{n-2}^{1,1}$ are both isomorphic to $1-M Q_{n-2}$. By Lemma 1, there exists a $2 \times 2^{n-3}$ mesh of

$$
M=\left(\begin{array}{cccc}
\gamma_{1} & \gamma_{2} & \cdots & \gamma_{2^{n-3}} \\
\delta_{1} & \delta_{2} & \cdots & \delta_{2^{n-3}}
\end{array}\right)
$$

in the $1-M Q_{n-2}$. Then,

$$
M_{01}=\left(\begin{array}{cccc}
01 \gamma_{1} & 01 \gamma_{2} & \cdots & 01 \gamma_{2^{n-3}} \\
01 \delta_{1} & 01 \delta_{2} & \cdots & 01 \delta_{2^{n-3}}
\end{array}\right)
$$

and

$$
M_{11}=\left(\begin{array}{cccc}
11 \gamma_{1} & 11 \gamma_{2} & \cdots & 11 \gamma_{2^{n-3}} \\
11 \delta_{1} & 11 \delta_{2} & \cdots & 11 \delta_{2^{n-3}}
\end{array}\right)
$$

are $2 \times 2^{n-3}$ meshes in $M Q_{n-2}^{0,1}$ and $M Q_{n-2}^{1,1}$ of $0-M Q_{n}$, respectively. Since each vertex of M_{01} are in $V_{0,1}$ and each vertex of M_{11} are in $V_{1,1}$, $V\left(M_{01}\right) \cap V\left(M_{11}\right)=\emptyset$. Indeed, $\left(01 \gamma_{j}, 01 \gamma_{j+1}\right)$, $\left(01 \delta_{j}, 01 \delta_{j+1}\right),\left(11 \gamma_{j}, 11 \gamma_{j+1}\right)$, and $\left(11 \delta_{j}, 11 \delta_{j+1}\right)$ are edges of $0-M Q_{n}$ for all $1 \leq j \leq 2^{n-3}-1$. Furthermore, $N_{n}\left(01 \gamma_{k}\right)=11 \gamma_{k}$ and $N_{n}\left(01 \delta_{k}\right)=11 \delta_{k}$ for all $1 \leq k \leq 2^{n-3}$. Thus,

$$
M^{\prime}=\left(\begin{array}{cccc}
01 \gamma_{1} & 01 \gamma_{2} & \cdots & 01 \gamma_{2^{n-3}} \\
01 \delta_{1} & 01 \delta_{2} & \cdots & 01 \delta_{2^{n-3}} \\
11 \delta_{1} & 11 \delta_{2} & \cdots & 11 \delta_{2^{n-3}} \\
01 \gamma_{1} & 01 \gamma_{2} & \cdots & 01 \gamma_{2^{n-3}}
\end{array}\right)
$$

is a $4 \times 2^{n-3}$ mesh in the $0-M Q_{n}$.

Theorem 2 For any integer $n \geq 4$, there are two disjoint $4 \times 2^{n-3}$ meshes in an $0-M Q_{n}$.

Proof. By Lemma 6, the theorem holds for $n=4$. For $n \geq 5$, by Lemma 7, 8 , there are two $4 \times 2^{n-3}$ meshes M_{1} and M_{2} in $0-M Q_{n}$. One can observe that for any vertices $a_{n} a_{n-1} \ldots a_{1}$ in $M_{1}, a_{n} a_{n-1}=00$ or $a_{n} a_{n-1}=10$ and for any vertices $b_{n} b_{n-1} \ldots b_{1}$ in $M_{2}, b_{n} b_{n-1}=01$ or $b_{n} b_{n-1}=11$. Therefore, M_{1} and M_{2} are disjoint, i.e., $V\left(M_{1}\right) \cap V\left(M_{2}\right)=\emptyset$.

As a result, we have the following corollary.
Corollary 2 For $n \geq 4$, there exists $a \times 2^{n-3}$ mesh that can be embedded with dilation 1 and expansion 2 in the 0 -type n-dimensional Möbius cube $0-M Q_{n}$. In addition, two node-disjoint $4 \times 2^{n-3}$ meshes can be embedded in an $0-M Q_{n}$ covering all vertices of the $0-M Q_{n}$.

5 Conclusions

Möbius cubes are important variants of hypercubes. The n-dimensional Möbius cube, $M Q_{n}$, has several better properties than the n-dimensional hypercube, Q_{n}, for example, the diameter of $M Q_{n}$ is about one half that of Q_{n} and graph embedding capability of $M Q_{n}$ is better than Q_{n}. Embedding of paths and cycles in Möbius cubes have been studied by several researchers. However, there has been no research so far as we known to study meshes embedding of Möbius cubes. In this paper, we focus on the issue for meshes embedding of Möbius cubes. The major findings in this paper are follows:
(1) For $n \geq 1$, a $2 \times 2^{n-1}$ mesh can be embedded in the n-dimensional Möbius cube with dilation 1 and expansion 1.
(2) For $n \geq 4$, two disjoint $4 \times 2^{n-3}$ meshes can be embedded into n-dimensional 0 -type Möbius cubes with dilation 1 .

The results are optimal because the dilations of the embeddings are equal to 1 .

Acknowledgements: The authors would like to express their gratitude to the anonymous reviewers for their valuable comments and suggestions which improve the paper a lot.

References:

[1] L. Auletta, A. A. Rescigno, and V. Scarano, Embedding graphs onto the supercube, IEEE Transaction on Computers 44, 1995, pp. 593-597.

WSEAS TRANSACTIONS on MATHEMATICS
[2] Y. A. Ashir and I. A. Stewart, Fault-tolerant embedding of hamiltonain circuits in k-ary n cube, SIAM Journal on Discrete Mathematics 15, 2002, pp. 317-328.
[3] M. M. Bae and B. Bose, Edge disjoint Hamiltonian cycles in k-ary n-cubes, IEEE Transaction on Computers 52, 2003, pp. 1271-1284.
[4] M. Y. Chan and S. J. Lee, On the existence of hamiltonian circuits in faulty hypercubes, SIAM Journal on Discrete Mathematics 4, 1991, pp. 511-527.
[5] P. Cull and S. M. Larson, The Möbius Cubes, IEEE Transaction on Computers 44, 1995, pp. 647-659.
[6] J. Fan, Hamilton-connectivity and cycleembedding of the Möbius Cubes, Information Processing Letters 82, 2002, pp. 113-117.
[7] J. Fan, X. Lin, and X. Jia, Optimal path embedding in crossed cube, IEEE Transaction on Parallel and Distributed System 16, 2005, pp. 11901200.
[8] J. Fan and X. Jia, Embedding meshes into crossed cubes, Information Sciences 177, 2007, pp. 3151-3160.
[9] W. C. Fang, C. C. Hsu and C. M. Wang, On the fault-tolerant embeddings of complete binary trees in the mesh interconnection networks, Information Sciences 151, 2003, pp. 51-70.
[10] J. P. Hayes and T. N. Mudge, Hypercube supercomputer, Proc. IEEE 17, 1989, pp. 1829-1841.
[11] S. Y. Hsieh and C. H. Chen, Pancyclicity on Möbius cubes with maximal edge faults, Parallel Computing 30, 2004, pp. 407-421.
[12] S. Y. Hsieh and N. W. Chang, Hamiltonian path embedding and pancyclicity on the Möbius cube with faulty nodes and faulty edges, IEEE Transaction on Computers 55, 2006, pp. 854-863.
[13] H. C. Hsu, T. K. Li, J. M. Tan, and L. H. Hsu, Fault Hamiltonicity and fault Hamiltonian connectivity of the arrangement graphs, IEEE Transaction on Computers 53, 2004, pp. 39-53.
[14] K. S. Hu, S. S. Yeoh, C. Chen, and L. H. Hsu, Node-pancyclicity and edge-pancyclicity of hypercube variants, Information Processing Letters 102, 2007, pp. 1-7.
[15] H. S. Hung, J. S. Fu, and G. H. Chen, Fault-free hamiltonian cycles in crossed cubes with conditioanal link faults, Information Sciences 177, 2007, pp. 5664-5674.
[16] F. T. Leighton, Introduction to Parallel Algorithms and Architecture: Arrays, Trees, Hypercubes, Morgan Kaufmann, San Mateo, 1992.
[17] T. K. Li, M. C. Yang, J. M. Tan, and L. H. Hsu, On embedding cycle in faulty twisted cubes, Information Sciences 176, 2006, pp. 676-690.
[18] J. Park, H. Kim and H. Lim, Many-to-many disjoint path covers in hypercube-like interconnection networks with faulty elements, IEEE Transaction on Parallel and Distributed System 17, 2006, pp. 136-140.
[19] Y. Saad and M. H. Schultz, Topological properties of hypercubes, IEEE Transaction on Computers 37, 1988, pp. 867-872.
[20] SGI. Origin2000 Rackmount Ower's Guide, 007-3456-003. http://techpubs.sgi.com/, 1997.
[21] L. W. Tucker and G. G. Robertson, Architecture and applications of connection machine, IEEE Transaction on Computers 21, 1988, pp. 26-38.
[22] C. H. Tsai, Linear arrays and rings embedding in conditional faulty hypercubes, Theoretical Computer Science 314, 2004, pp. 431-443.
[23] C. H. Tsai and Y. C. Lai, Conditional faulttolerant edge-bipancyclicity of hypercubes, Information Sciences 177, 2007, pp. 5590-5597.
[24] M. Wagh and O. Guzide, Mapping cycles and trees on wrap-around butterfly graphs, SIAM Journal on Computers 35, 2006, pp. 741-765.
[25] P. J. Yang, S. B. Tien, and C. S. Raghavendra, Embedding of rings and meshes onto faulty hypercubes using free dimensions, IEEE Transaction on Computers 43, 1994, pp. 608-613.
[26] M. C. Yang, T. K. Li, Jimmy J. M. Tan, and L. H. Hsu, Fault-tolerant cycle-embedding of crossed cubes, Information Processing Letters 88, 2003, pp. 149-154.
[27] M. C. Yang, T. K. Li, Jimmy J. M. Tan, and L. H. Hsu, Fault-tolerant pancyclicity of the Möbius Cubes, IEICE Trans. Fundamentals E88-A, 2005, pp. 346-352.
[28] WSEAS TRANSACTIONS on MATHEMATICS cyclicity of Möbius cubes with faulty nodes, Microprocessors and Microsystems 30, 2006, pp. 165-172.
[29] Q. Zhu, J. M. Xu, and M. Lu, Edge fault tolerance analysis of a class of networks, Applied Mathematics and Computation 172, 2006, pp. 111-121.
[30] Q. Zhu, J. M. Xu, X. Hou, and M. Xu, On reliability of the floded hypercubes, Information Sciences 177, 2007, pp. 1782-1788.

