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of disjoint 2D meshes into a Mobius cube. Two major contributions of this pape(lgreéorn > 1, there exists a
2 x 2"~ mesh that can be embedded in theimensional Mobius cube with dilation 1 and expansioii2).For
n > 4, there are two disjoint x 2”3 meshes that can be embedded inthdimensional 0-type Mobius cube

with dilation 1. The results are optimal in the sense that the dilations of the embeddings are 1. The result (2) mean
that a family of two 2D-mesh-structured parallel algorithms can be operated on a same crossed cube efficiently and

in parallel.
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1 Introduction

An interconnection network plays a critical role of
a multi-computer because the system performance is
deeply dependent on network latency and throughput.
There are a lot of mutually conflicting requirements in
designing the topology of interconnection networks.
It is almost impossible to design a network which is
optimum in all perspectives. Processors of a multi-

processor system are connected according to a given

interconnection network. The topological structure of
an interconnection network can be modeled by a graph
whose vertices represent components of the network

ing of dilation for an embedding is the performance
of communication delay when the graphsimulates
the graphG. Obviously, dil(G,H,¢) > 1. In or-
der to measure the processor utilization of the em-
bedding, the expansion is definedeas (G, H, ¢) =
|[V(H)|/|V(G)|. The smaller the dilation and expan-
sion of an embedding is that the more efficient the
communication delay and processor utilization when
the graphH simulates the grapty’.

The hypercube is a popular interconnection net-
work with many attractive properties such as regu-
larity, symmetry, small diameter, strong connectiv-
ity, recursive construction, partition ability, and rel-

and whose edges represent links between components.(,mvdy low link complexity [19]. It has been used in

An embedding of one guest grap, into another
host graph,H, is a one-to-one mapping from the
vertex set ofG to the vertex set off. An edge of
G corresponds to a path &f under¢. Many appli-
cation, such as architecture simulations and proces-

a wide variety of parallel systems such as Intel iPSC,
the nCUBE [10], the Connection Machine CM-2 [21],
and SGI Origin 2000 [20]. A hypercube network of
dimensionn contains up tR" nodes and has edges
per node. If uniquer-bit binary address are assigned

sor allocations, can be modeled as graph embedding {5 the nodes of hypercube, then an edge connects two

11,2, 3,4,7,8,9, 13, 14, 15, 17, 18, 22, 23, 24, 25,
26, 29, 30].

There are two natural measures of the cost of a
graph embedding, namely, tlidation of the embed-
ding: the maximum distance i between the images
of vertices that are adjacent (&; and theexpansion
of the embedding: the ratio of the size &f to the
size of G. For any two verticesx andy in G, let
dq(z,y) denote the distance fromtoy in G, i.e., the
length of a shortest path betweerandy in G. The
dilation of embedding is defined aslil(G, H, ¢) =
max{dg(¢(z),d(y)) | (x,y) € E(G)}. The mean-
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nodes if and only if their binary addresses differ in a
single bit position. Because of its elegant topologi-
cal properties and the ability to emulate a wide vari-
ety of other frequently used networks, the hypercube
has been one of the most popular interconnection net-
works for parallel computer/communication systems.
Thus, there are several variations of the hypercube
have been proposed in the literature. Mobius cubes
form a class of hypercube variants that give better per-
formance with the same number of edges and vertices.
The paths, cycles, trees, and meshes are the com-
mon interconnection structures used in parallel com-

Issue 5, Volume 7, May 2008



'WSEAS TRbAN ACTIONFORMATHEMATICS ) L
puting. Embedding of these structures into Mobius
cubes have been studied in [5, 6, 11, 12, 27, 28]. How-
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ever, there has been no research so far on embeddings V(%) = TnTn—1 ... Tip1TiTio1 ... T1 if 241 = 1.

of meshes in Mobius cubes in the literature. In this
paper, we consider embedding of meshes in Mobius
cubes. The main results obtained in this paper @re:
Forn > 1, there exists & x 2"~1 mesh that can be
embedded in the-dimensional Mobius cube with di-
lation 1 and expansion 1(2) Forn > 4, there are
two disjoint4 x 2"~3 meshes that can be embedded in
the n-dimensional 0-type Mobius cube with dilation
1. The results are optimal in the sense that the dilation
1.

The rest of this paper is organized as follows. In
the next section, some fundamental definitions and
notions are introduced. Section 3 shows that there ex-
ists a2 x 2"~ mesh embedding in the-dimensional
Mobius cube. Section 4 proposes that two disjoint
4 x 2"=3 meshes are embeddedsirdimensional 0-
type Mobius cubes with dilation 1. The last section
contains discussions and conclusions.

2 Preliminaries

Let the interconnection network be modeled by an
undirected grapli = (V, E) where the set of vertices
V(G) represents the processing elements of the net-
work and the set of edges(G) represents the com-
munication links. Throughout this paper, for the graph
theoretic definitions and notations we follow [16]. Let
G = (V, E) be an undirected graph. Two vertices are
adjacent when they are incident with a common edge.
A simple path(or pathfor short) is a sequence of ad-
jacent edgesvg, v1), (v1,v2), - -, (Vm—1, V), Writ-
ten as(vg, vy, vs,...,vy), I Which all the vertices
Vg, V1, - - - , Uy, are distinct except possiblyy = vy,.
The distancebetweenx andy in G is denoted by
da(z,y), which is the length of a shortest path be-
tweenz andy in G. A cycleC is a special path with
at least three vertices such that the first vertex is the
same as the last one. A cycle of lengths called a
k-cycle. LetS be a subset of/(G). The subgraph
of G inducedby S is the subgraph that h&s as its
vertex set and contains all edgestéhaving two end
vertices inS. Two subgraphs ofy arenode-disjoint
(or disjoint for short) if they have no common vertex.
Then-dimensional Mobius cub&/(Q,,, proposed
first by Cull and Larson [5], consists Bf vertices and
each vertex has a uniquecomponent binary vector
for an address. Each vertex haseighbors as fol-
lows. A vertexz denoted by a binary string of length
n, TnTn_1 - .. T1, CONNECtS to itsth neighbor, denoted
by N;(x),for1 <i<n-—1,

Nl(ac) = TpTp—1 .. Tit1TiTi—1 ... 21 1T ;401 = 0.
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Fori = n, since there is no bit on the left af,,
N, (x) can be defined as theh neighbor ofr can be
denoted ag,,x,,—1 ... %1 Of TpTp_1...T1. If we as-
sume that thén + 1)th bit of every vertex of\/Q,, is
0, we call the network 8-typen-dimensional Mobius
cube, denoted by 04/Q),,; and if we assume that the
(n + 1)th bit of every vertex ofA/Q,, is 1, we call
the network &l-typen-dimensional Mobius cube, de-
noted by 1A1(Q),,. Either 0/ (Q,, or 1-M(),, may be
denoted byM@,. The example of &4/ (4 and 1-
MQ, are shown in Fig 1.

For example, letx = 01011 be a vertex of O-
MQs. The 4-,3-,2-,1-, and 0-neighbors af are
given by 11011, 00011, 01100, 01001, and 01010,
respectively. The symbolV(u) is used to de-
note the set of neighbors af and N(01011)
{11011,00011,01100,01001,01010}. Similarly, let
u = 01011 be a vertex of 1AM Q5. The 4-,3-,2-,1-
, and 0-neighbors of, are given by10100, 00011,
01100, 01001, and01010, respectively.

Figure 1: (a) A O-type 4-dimensional Mobius cube.
(b) A 1-type 4-dimensional Mobius cube.

Therefore,M Q,, is ann-regular graph and can
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be recursively defined as ﬁfows Both /0,

and 1A/, are complete grapli, with one ver-
tex labeled 0 and the other 1. MQ, and 1-
MA@, are both composed of a sub-Mobius cube
MQY_, and a sub-Mobius cub#/QL ;. Each ver-
tex X = 0xp_1Tpn_o...2011 € V(MQg_l) con-
nects tolz, 17, o...zex1 € MQL_; in 0-MQ,
and t01%,,_1T,_o...ToTy in 1-MQ,. For conve-
nience, we say that/ Q% _, andM Q. _, are twosub-
Mobius cubesf M Q,,, whereM Q" _, (respectively,
MQ}L ) is an(n — 1)-dimensional O-type Mobius
cube (respectively, 1-type Mobius cube) which in-
cludes all veticedx,,_1z,_o...xzox; (respectively,
1Tp—1Tp—2o...x2w1), x; € {0,1}. An edge(u,v)

in E(MQ,,) is of dimensioni if u = N;(v). In addi-
tion, we define the edge set of dimensiarf M Q,, to

be E,(MQ,) = {(x,y) € E(MQ,) |y = Ni(x)}.
Indeed, there arg"~! elements inE;(MQ,,) for all

1 < i < n. Everyn-dimension edge is called to
be acrossing edgéetween)/ QY _, and MQ}_; of
M@Q,.

Lemmal Let x and y be two vertices of am-
dimensionab-type Mobius cube Q37 Q,, withn > 3,
andy = N;(z). Thendp_rrq,, (Nn(x), Nn(y)) =1
if 1 <i<n-—2anddo—nmq, (Nn(z), Np(y)) = 21if
t=mn—1.

Proof. Letz =x,zp—1...2;112:2—1 ... x1 Where
zj € {0,1} for 1 < j < n. Sincey is anith neighbor
ofx,y = zpxpn_1...Ti+1Ti%i—1 ... x1 f 2,090 = 0
ory =xpnTp—1...Ci+1T;Ti—1...21 if Tit1 = 1.
Case lii=n—1.

Suppose thatz,, Then, N,(z)
lr,_12p—_2...21 and N, (y) = 1ZTp_1Zp_9...21.
By def|n|t|on do—m@Q, (Nn(x), Np(y)) > 1 for n >
3. 1If ITn—-1 = 0 Nn 2(N (y)) = 11‘n 1 Tp—2...21.
Thus, N,,_ 1(N ( ( ))2 1(£n 1Tp—2...21.

Hencedo—_nrq, (Nn(z), Np(y)) = 2. If 2,1 = 1,
Nyp—2(Np(z)) = lz,T _2...51. Hence
Np—1(Np—2(Np-1(2))) = 1ZTp_1Tp—2...21.
Thereforedo_rrq,, (Nn(x), Nn(y)) = 2.

Suppose thatr, = 1. Then, N,(z) =
0zp—1%p—o...2x1 and N, (y) = 0T,_1%Tpn_2...71.
By definition, do_arQ, (Nn(z), Nn(y)) > 1
forn > 3. If 2,1 = 0, Np_2(Nu(y)) =
0Tp_1Tpn_o...21. It is observed that
Nn 1(Nn 2( ( ))) = Oxn_lwn_g...wl.
As a result, dy_rq, (Np(z), No(y)) = 2. If
Tp_1 = 1, N,_ 2( n(l’) = 0xp_1Tp_2...7%1.
Hence N,,_ 1(N (Nn(l’))) = 0Tp_1Tn_2 x1.
Thereforedy_ 1, (Nn(x), Nu(y)) =
Case2:1<i<n-—2.

Suppose thatx;.; = 0. Np(z) =
TnTn—1-.-Tit20z;...2z1  and  N,(y) =
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TpTn_1 - T 20T 251 . X1 I ob-
vious that N, N;(Np(y)) = Ny(z). Hence
do—11Q,, (Nn(x), Nu(y)) = 1.

Suppose thatz;; = L. Np(z) =
TpTp—1---Tivalx; ... 21 and N( ) = ZTpTp—1
.. Tiy2lT; ... T1. It is obvious thatN;(N,(y)) =
Ny (z). Hencedy_rq, (Nn(x), Nn(y)) = 1. The
lemma is proved. O

Lemma?2 Let z and y be two vertices of am-
dimensionall -type Mobius cube 13/Q),, withn > 3,
andy = N;(z). Thendi_nqQ,, (Nn(x), Np(y)) =1
ifi=1andd;_ JV[Qn(N ( ),Nn( )) =2if2<i<
n— 1.

Proof. Letz =x,z,-1...%;112:2—1 . .. x1 Where
zj € {0,1} for 1 < j < n. Sincey is anith neighbor
ofx,y = zpxpn_1... 201 Tixi_1 ... 21 1f 2,00 =0
ory =xpnTp—1...Ci+1T;Ti—1...21 if Tit1 = 1.
Casel:2<i<n-—1.

Suppose thatx; 0. Ny (x)
TnTp—1 .- -Tit2lT; ... 71 and N,(y) T
Tp—1 . Tiro 1l Tio1 ... T By definition,
di-mQ,(Nn(x), Np(y)) > 1forn > 3. If z;
0, N,_l(Nn(ac)) = TpTn—1 ---Tig21T32-1 ... 27,
HenceNi(Ni_l(Nn(x))) Tn Tiypola; T

n—1 -
... T1. Henced;_ g, (Nn(z), Np(y ))—2 If z; =
I, Nio1(No(y)) = TnTp-1Tp—2 ...Tiyolaiwiq
..z1. HenceN;(N,_ ( w(y))) = Nyp(x). There-
fore, di_nq, (Nn (), Nn(y)) = 2.

Suppose thatz;;; = 1. Np(z) =
TpTn—1 T;420%; 71 and N,(y) =
TnTp—1 ---Tiy2 Oxyxi_q...27. By definition,
di—mQ,(Nn(x), Np(y)) > 1forn > 3. If z; =
0, N,_l(Nn(ac)) = TpTp—1 ---Ti420T;x5—1 ... 1.
Hence N;(N;—1(Nn(z))) = Nu(y). Hence
di-mq,(Nn(2), No(y)) = 2. If 2 = 1,
N;_ 1( ( )) = TpTp-1 -.--Ti+202Ti—1...71.
Hence N;(N;_1(Nyn(y))) = Np(z). Therefore,
di1- 1@, (Nn (@), Na(y)) = 2.

Case 2:i = 1.

Nn(l') = TpTp—1-...T3ToT; and Nn(y) =

TnTn—1 -..T3Taxy. Itis obvious thatV, (IV,,(y)) =

Ny (z). Hencedi— 1, (Nn(z), Ny (y)) = 1. O
According to Lemma 1 and Lemma 2, there exists
a4-cycle of(x, Ni(x), N1(N,(x)), Ny (z), z) for any
vertexz in M@Q,. However, not every-cycle in one
sub-Mobius cube\/Q?,_, of MQ, is corresponding
to a4-cycle in the other sub-Mobius cube Q! ~"
Finding a 4-cycle in one sub-Mdbius cubdqQ’,
of MQ,L such that it is corresponding to a 4- cycle in
MQ!~" isimportant for embedding @fx 2"~ mesh
in MQn The following lemma discusses how to find
that4-cycle.
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Lemma 3 For n > 3, assume thata, b, c,d, a) is a

4-cycle inMQi_, of MQ, satisfying(a, b), (c,d) € T
E\(MQy) and (b,c), (a,d) € E2(MQy). Then
Nyp(a), N,(b), Ny(c), and N,(d) forms a 4-cycle border-ddge \ees

in MQ.~" of MQ,. Moreover, (N,(a), N,,(b)),
(Nn(c), Np(d)) € E1(MQy), and (N, (a), Nn(c)),
(Nn(b),Np(d)) € Eo(MQy) or (Ny(a), Ny(d)),
(N, (b), Np(c)) € Ea(MQy,).

ladder—-gdge i

Figure 2: lllustration for ladder-edges and border-

Proof. It is clearly that the lemma holds for = edges of 2D mesh with sizex m.

3. Assume thatr > 4. Leta = a,ay,_1...asa2a1.
Thusb = ana,_1 ...azasa,. According to the value
of a3, the proof is divided into two casegl) az = 0 0-MQ,
and(2) as = 1. roeem e I |
Case l:ag = 0. | P |
Note that a = Ann_1 . ..0asaq,
b = apap_1...0a0a1, ¢ = apap_1...0a2a1,
and d = apap—1...0a2a. Suppose that
the M@, is a O-type Mobius cube. Since
n > 4, Nn(a) = anQp—1 ... Oasgaq, Nn(b) =
anQp—1 - .- 0agaq, Nn(C) =  Qpap—1...0aqa1,
and N,(d) = anap—1...0a20a1. Therefore, | P |
(Nu(a), Na (D)), (Nu(c), Nu(d)) € Ei(MQ,) and
(N (b), N (), (N (a), No(d)) € E2(MQ,). Con- 0-MO, P
sequently,(N,,(a), N, (b), Ny, (c), Ny (d), Ny, (a)) is a
4-cycle in the sub-Mobius cude/ Q" of MQ,,.
Suppose that tha/(Q),, is a 1-type Modbius cube.

Figure 3: lllustration for 047Q),,.

Hence N, (a) = @nan_1...a4l1a2a1, N,(b) =

Tl @101, No(€) = G- Talazan, 3 Embedding of2 x 2"~! meshes in
and N, (d) = auQp_1...a4lasa;. Therefore, MQ

(Nn(a), Nn(b)), (Nn(c), n(d)) € Ey(MQy) and "

(Na(a), Nu(€)), (N (b), Nn(d)) € Ea(MQn). C_on— Definition 1 An x m meshM,, «,,, can be denoted by

sequently(N,,(a), Ny (¢), Nu(d), Ny (b), Ny (a)) is a

: A s ann x m matrix
4-cycle in the sub-Mobius cub®/ @, ", of MQ),,.

Case 2:a3 = 1. a1; o1y o am
Note that «a = anln_1 ... lasaq, Q9] Qo9 o Qom
b = anap—_1...lagay, ¢ = apap—1...lasas,
and d = apap—1...1laza. Suppose that Ul Qno - Qs
the MQ, is a O-type Mobius cube. Since
n > 4, Nn(a) = @Gnan-y ... laga, Np(b) = whereV (Myxm) = {a;j | 1 <i<n,andl < j <
Qnln—1 - .. lasay, Nn(c) =  QpQp_-1...lasay, ’I’)’L}, (O‘ij()%j—i-l) c E(Mnxm) for1 < i < n and
and N,(d) = anap—1...1a2a;.  Therefore, 1<j<m—1,and(au, arp1y) € E(Myxm) for

(Nn(a), Nn(b)), (Nn(c), Nn(d)) € Ei(M@y,) and 1<k<n-landl <l<m.
(Nn(a), Nn(c)), (Nn(b), Nn(d)) € E2(MQy). Con-

sequently,(N, (a )aNn(C),Nn(d),Nn(b),N (a))is a The edge(ay;, az;) in a meshMa,., is called
4-cycle in the sub-Mobius cub®/ Q" of MQ,.. to be theith ladder-edgefor 1 < i < m; two
Suppose that thé/(Q),, is a 1-type Mdbius cube. edges(av;, a1 j+1) and(as;, ag j41) are called to be
Hence N, (a) = @,an—1...a40a2a;, N,(b) = the jth pair of border-edgefor 1 < ;7 < m — 1.
nfin 1 . .- 0400201, Nn(c) = @nan-1...a40a2a1, Let Mo (i, 5; MQpn) = {Maxm | (cak, o) €
and N, (d) = Qpap_1...a40a2a;. Therefore, E;(MQ@,) for 1 < k < m and there exists an in-
(Nn(a), Np(b)), (Nn(c), n(d)) € Ei(MQ,) and tegerl < I < m — 1 such that(ay;, a,41) and
(N ( ) ( )) ( ( ) (d)) € E2(MQn) Con- (0421,042714_1) are |nEJ(MQn) }, i.e., if Moy, €
sequently(Ny,(a), Ny (b), Np(c), Nn(d), Nu(a)) is a Maym (i, j; MQy), all ladder-edges oM, are in
4-cycle in the sub-Mobius cubMQ};Zl of MQ,. O E;(M@,) and there exists a pair of border-edges,
ISSN: 1109-2769 Issue 5, Volume 7, May 2008
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Figure 4: lllustration for 14/Q),,.

(0ag, 0 141) and(ay, ap41) for somel <1 <m —
1, such that{ayy, g 141), (o, a2,141) € Ej(MQy).
In this section, we propose thaRax 2"~! mesh can
be embedded with dilation 1 and expansion 1 iman

dimensional Mobius cube. According this result, we

show that at x 22 mesh cab be embedded with di-
lation 2 and expansion 1 if/ Q.

Lemma 4 For any two dimension 1 edges and e,
that form a 4-cycle in/Q3, there exists & x 4 mesh
in Max4(1,2; MQ3) wheree; is the first ladder-edge
ande; is the last ladder-edge of the mesh,egris the
last ladder-edge and; is the first ladder-edge of the
mesh.

Proof. Since 0A/Q3 and 1M ()3 are iso-
morphic, we only consider 0/Qs;. Note that
E1(0-MQ3) = { (000,001), (010,011), (100,101),

(110,111) } and E2(0-MQs3) = { (000,010),

(001,011), (100,111), (101,110) }. Let e; and

ez be in E1(0-M@Q3) and both of them lie on
the same 4-cycle in 04/Q3. Hence {ej,es} C

{{(000,001), (101,100)}, {(000,001),(011,010)},

{(100,101), (110,111)}, {(010,011),(111,110)}}.

Let My, My, M5, and M, be four2 x 4 meshes in
0-M @5 as follows.

Af — (000 010 110 101
=1 001 o011 111 100
Af — (000 100 111 011
27\ 001 101 110 010
A — 100 000 010 110
3=\ 101 o001 o011 111

ISSN: 1109-2769
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A7 — (010 000 100 111
47\ 011 001 101 110

One can see that all ladder-edges\df are in
E1(0-MQ3) for 1 < i < 4. Itis observed that the
3th pair of border-edges in/; and M, are in the set
E5(0-MQ3), and the2th pair of border-edges i/,
andMs are in the sefs (0-MQ3). 0

Lemma 5 Assume that > 3. For any two dimen-
sion 1 edgeg; and e, that form a 4-cycle il @,
there exists & x 2"~ mesh iNMy,5n—1(1,2; MQ,,)
such thate; is the first ladder-edge ane, is the last
ladder-edge of the mesh, ey is the last ladder-edge
andes is the first ladder-edge of the mesh.

Proof. The proof is by induction on. By Lemma 4,
the lemma holds for = 3. Assume that the lemma is
true for every intege8 < m < n. We now consider
m = n as follows. Lete; = (a,b) andey = (¢, d) be
two dimension 1 edges and, b, ¢, d, a) is a 4-cycle in
MQ@,. By the relative position of; andes, the proof
is divided into two parts(1) e; ande, are in the same
sub-Mobius cube\/ Q% and(2) e; € E(MQ?,_;)
ande; € E(MQL™") fori=0,1.

Case liey,es € E(MQ: ;) fori=0,1.

By the induction hypothesis, there exist® a
22 meshM? ,._» € Myyon—2(1,2; MQ},_,) such
thate; is the first ladder-edge and is the last ladder-
edge ofMSXQn,2, ore; is the last ladder-edge amd

is the first ladder-edge ongzn,Q. Without loss of
generality, we may assume thet ,, , =

a=aap - Q Oon—2 = C
b=/ - B Pon-2 =d
where (ag, By) € E1(MQ,,) forall1 < k < 272
and ((Jéj,()éj+1), (ﬁj,ﬁj_H) S EQ(MQH) for some

1<j<om2 1.

Since (o, 53;), (@j+1,8+1) € E1(MQn),
(o, aj11), (B, Bj+1) € Ea(MQp), and{a;, aj41,
Bj+1, Bj, ¢y) is a 4-cycle inM@Q;,_,. By Lemma 3,
Nn(()éj), Nn(ﬁj),an(Oéj_i_l), andNn(ﬁjH) forms a
4-cycle inMQ™". Letes = (N,(aj), N,(5;)) and
es = (Nn(jt1), Nn(Bjt1)). Subsequentlyss, es €
E1(MQ,,) and they form a 4-cycle id/Q-~". By
the induction hypothesis, there exist3 a2"~2 mesh
M} oo € Myyon—2(1,2; MQL~")) such thate; is
the first ladder-edge and, is the last ladder-edge of
M21 or eg is the last ladder-edge anrq is the

Qj+1

Bj+1

xX2n—21
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Figure 5: lllustration of Lemma 4

first ladder-edge of/;, .. Without loss of gener-
ality, one may assume thM%

<

where all ladder-edges are irfy(M@,) and
(Hks p41), (Vs V1) € E(MQy) for somel <
k<2n? 1.

Next, replace the 4-cycle ofo; ,aj41, Bjt1,
@1, ) in MY ., with the meshMy, .., .. We
have a disere@x 2"~ mesh inMy,on-1(1,2; MQ,,)
such that(a, b) is the first ladder-edge ard, d) is the
last ladder-edge of the mesh. 4
Case 2:¢; € E(MQ},_,) andey € BE(MQL™) for
i=0,1.

Note thate; = (a,b) andes = (c,d), and
(a,b,c,d,a) is a 4-cycle. Since; andes are in dif-
ferent sub-Mobius cubes d¥/Q,,, N, (a) = d and
N,(b) = c. Letu = Ny(a) andv = Na(b). Hence
(u,v) € E1(MQ¢_,) becaus€a,b) € E1(MQ,)
and (a,u,v,b,a) is a 4-cycle inMQ? _,. By the
induction hypothesis, there exists2ax 2"~2 mesh
M3 n—2 € Myyon—2(1,2; MQ?_) such that(a, b)
is the first ladder-edge and:,v) is the last ladder-
edge of the mesh, dr, b) is the last ladder-edge and
(u,v) is the first ladder-edge of the mesh. Without
loss of generality, we may assume thdf ., . =

a = (X1 Oéj Oéj_H

< b=/ Bi Bin )

where all ladder-edges are irE(MQ@,) and

(0, aj41), (B, Bj+1) € Ea2(MQ,) for somel <
j<oan? 1. ,

Since(a,u,v,b,a) is a 4-cycle inM@Q?,_,, and
(u,v), (a,b) € El(MQil_l) and (a,u), (b,v) €

Ey(MQE ), by Lemma 3¢, d, N,,(u), and N, (v)
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forms a 4-cycle inM Q™" of MQ,. In addition,
(¢,d), (Np(u), Np(v)) € E1(MQy,). By the induc-
tion hypothesis, there exist2a 2"~2 meshi/y, .,

€ Myyon—2(1,2; MQL™") such that( N, (u), N, (v))

is the first ladder-edge an@, d) is the last ladder-
edge ofM} or (¢,d) is the first ladder-edge and

2x2n—21
(Nn(u), Ny (v)) is the last ladder-edge ¥/, .., ..

Without loss of generality, we may assume that
M,

won—2 —

Ny (u) = p1 Pk Mkt fon—2 = ¢
Np(v) =11 Vg Vkil Von—2 = d
where all ladder-edges are i, (MQ'") and

(t1er t1r1)s (Wi Vit1) € Fa(MQL™Y) for somel <
E<2on—2_1.

Therefore, we have a desir@dx 2"—! mesh as
follows.

(

Theorem 1 For any integern > 1, there exists & x
2"~ mesh inMQ,,.

a = 1

b=p

The proof is completed.

Proof. It is trivial that the theorem holds for

n = 1,2. By Lemma 5, the theorem holds far> 3.

Hence, the proof is completed. O
As a result, we have the following corollary.

Corollary 1 For any integem > 1, a2 x 2"~ mesh
can be embedded W (),, with dilation 1 and expan-
sion 1.
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Figure 6: lllustration for twel x 2 meshes i — M Q4

4 Embedding two disjoint 4 x 273
meshes
Applying the2 x 2"~3 mesh embedding af/Q,,_»

in the last section, we providex 2"~2 mesh embed-
dings in the 03/Q),,. Asn = 4, one can observe the

Figure 7: lllustration for twal x 2 meshes in — M Q4

Lemma 7 Forn > 5, there is ad x 23 mesh

following lemma.

Lemma 6

0000
0010
0110
0101

and

1000
1010
1101
1110

My =

are two4 x 2 meshes i/ Q4.

0001
0011
0111
0100

1001
1011
1100
1111

00c; 00as 00agn—3
M- 0061 00832 0089n-3
| 1081 108, 1069n—3
101 109 10cign-3
in the 0 Q,, where
a1 9 Qlgn—3
B Be Bon-3

isa2 x 2”3 mesh of an Q/Q,,_».

Proof. =~ Forn > 5, let MQ;’, be a subgraph
of M@, induced byV;; for i,5 € {0,1}. Note
that MQ"°, and MQ", are both isomorphic to
0-MQy_s, and MQ%", and MQ}', are both iso-
morphic to 1M @, _». By Lemma 1, there exists a
2 x 2"~3 mesh of

LetVi; = {anan-1...a1 | an = i,ap—1 = j}
wherei, j € {0,1}. HenceV(MQ@,) = Voo U Vo1
@] Vl,O @] V1,1 and VZ’J N VkJ = 0 if Vi,j #+ VkJ. It
is without difficult to prove that the induced subgraph
M@’ , of MQ, is isomorphic toj-MQ,,_o where
i,7 € {0,1}. According to the definition of\/Q,,,
we have that each vertéd0a,,_3...a; in the sub-
graph M Q%" of 0-M@Q,, connects tal0a,_s. .. a1
in the subgraph/Q'°, by a dimensiom edge; and
each vertex0la,_s...a; in the subgraphv/Q%’,
of 0-M @,, connects td la,_s...ay in the subgraph
MQL! , by a dimensiom edge. With these properties
we propose the following two lemmas.

ISSN: 1109-2769
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a1 9 Qlon—3
M =
( B B2 Ban-3 )
in the 0/ Q,,_o. Then,
Mo — 00cv; 00co 00cgn—3
07\ 008, 0083 0039n—3
and
Mo — 1001 10a2 10aign-3
1071 108, 108, 108gn-3

are 2 x 23 meshes inMQ"°, and MQ.°, of
0-M@Q,, respectively. Since each vertex éffy,
are in Voo and each vertex of\f;o are in Vi,
V(MO()) N V(Ml()) = 0. Indeed,(OOaj,OOajH),
(OOﬁj, 00ﬂj+1), (100@', 1004j+1), and(lOﬂj, 10ﬁj+1)
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are edges of M@, forall 1 < 57 < 2" — 1. Fur-

thermore,N,,(00ay,) = 10a; and N,,(005;) = 1005
forall1 < k < 273, Thus,

00cv; 00as 00agn—3
M/ — 0051 00/82 0052'”73
1061 10835 1089n-3
101 10cg 10cign-3

is a4 x 2”73 mesh in the B/Q,,.

Lemma 8 For n > 5, there is a4 x 2”3 mesh

01"}/1 01"}/2 01’}’2n73
M= 0167 0109 0199n-3
| 1161 1169 1169n-3
11"}/1 11"}/2 11’}/21173
in the 0M Q,, where
Y12 Yon-3
01 69 Oon—3

isa?2 x 2773 mesh of a 13¢/Q,,_».

Proof. Forn > 5, let MQ.’, be a subgraph
of M@, induced byV;; for i, € {0,1}. Note
that MQ"°, and MQ", are both isomorphic to
0-MQy,_2, and MQ%", and MQ}', are both iso-
morphic to 1M @, _». By Lemma 1, there exists a
2 x 2"~3 mesh of

_ [ Mo Yon—3
M = ( 51 0y Son—3 )
inthe 1M @Q,,_o. Then,
M . 0171 0172 01’}/2'”73
L=\ 016, 016, 01003
and
Mt — 11v; 1l 11v9n-3
=116, 116, 118903

are 2 x 23 meshes inMQ"', and MQL", of

0-M@,, respectively. Since each vertex 6ffy;
are in V5, and each vertex of\/;; are in Vjy,
V(M()l) N V(MH) = 0. |nd66d,(01’yj,01’yj+1),
(0165,018541), (1175, 117541), and (116;,116;41)
are edges of M Q,, forall 1 < j < 273 — 1. Fur-
thermore,N,,(01v;) = 117, and N,,(010;) = 116
forall 1 < k <2773, Thus,

01’}’1 01"}/2 01’}’21173
A | 0101 018 0189n-3
116, 116, 1169n-3
01’71 01’72 01721173

is a4 x 23 mesh in the W/ Q,,.
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Theorem 2 For any integem > 4, there are two dis-

joint 4 x 2"=3 meshes in an 04Q,,.

Proof. By Lemma 6, the theorem holds far= 4.
Forn > 5, by Lemma 7, 8, there are twbx 273
meshesV/; and M5 in 0-M(Q,,. One can observe that
for any verticesa,a,—1...a1 in My, apa,—1 = 00
or anan—1 = 10 and for any vertice$,,b,,_1...b1 in
My, bpb,—1 = 01 or b,b,,_1 = 11. Therefore,M;
and M, are disjoint, i.e.V (M1) NV (M) = 0. O
As a result, we have the following corollary.

Corollary 2 For n > 4, there exists d x 2”3 mesh
that can be embedded with dilation 1 and expansion 2
in the O-typen-dimensional Mbius cube Q37 Q),,. In
addition, two node-disjointt x 2”3 meshes can be
embedded in an 04(Q),, covering all vertices of the
0-MQ,,.

5 Conclusions

Mobius cubes are important variants of hypercubes.
The n-dimensional Moébius cube}/Q,,, has several
better properties than the-dimensional hypercube,
Qn, for example, the diameter @i/ Q,, is about one
half that of ),, and graph embedding capability of
MA@, is better thar®),,. Embedding of paths and cy-
cles in Mobius cubes have been studied by several re-
searchers. However, there has been no research so far
as we known to study meshes embedding of Mobius
cubes. In this paper, we focus on the issue for meshes
embedding of Mobius cubes. The major findings in
this paper are follows:

(1) Forn > 1, a2 x 2! mesh can be embedded
in the n-dimensional Mobius cube with dilation
1 and expansion 1.

(2) Forn > 4, two disjoint4 x 2”2 meshes can
be embedded inta-dimensional 0-type Modbius
cubes with dilation 1.

The results are optimal because the dilations of
the embeddings are equal to 1.

Acknowledgements: The authors would like to ex-
press their gratitude to the anonymous reviewers for
their valuable comments and suggestions which im-
prove the paper a lot.
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