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1   Introduction 
 
Information is recognized by many organizations as 
an important asset. Few businesses could function 
effectively without the ability to rely, to some extent, 
on information as a resource: banks need to know the 
details of each account, and hospitals need to access 
patient medical records. Information security is 
concerned with providing assurances about data. 

Broadly speaking, information security is 
frequently classified as the provision of the following 
services: confidentiality (the assurance that data is not 
disclosed to unauthorized parties), integrity (the 
assurance that data is genuine) and availability (the 
assurance that data is readily accessible). 

Communication over open networks is very 
cheap, but represents easy pickings for an adversary 
who wants to intercept, modify, or inject data; data 
stored on networked computers faces similar threats. 
If society is to benefit from the advantages offered by 
electronic data storage and open networks, 
information security must therefore provide 
techniques capable of supplying confidentiality, 
integrity, and availability in this new environment.  

In order to establish a confidential channel 
between two users of such a network, classical single-
key cryptography requires them to exchange a 
common secret key over a secure channel. This may 
work if the network is small and local, but it is 
infeasible in non-local or large networks.  

To simplify the key exchange problem, modern 
public-key cryptography provides a mechanism in 
which the keys to be exchanged do not need to be 
secret. In such a framework, every user possesses a 
key pair consisting of a (non-secret) public key and a 
(secret) private key; only public keys are published.  

They are used to encrypt the messages to be sent 
to the owner of the key or to verify digital signatures 
issued by the owner of the key. Before using 
someone else’s public key to encrypt a message or 
verify a signature, one should make sure that the key 
really belongs to the intended recipient or the 
indicated issuer of the signature.  

Achieving authenticity of public keys can be done 
in several ways. Public key cryptosystems are 
essential for electronic commerce or electronic 
banking transactions; they assure privacy as well as 
integrity of the transactions between two parties. 
Digital signatures are used to sign electronic 
documents and they are also mostly based on public-
key techniques. 

A lot of popular public-key encryption systems 
are based on number-theoretic problems such as 
factoring integers or finding discrete logarithms. The 
underlying algebraic structures are, very often, 
abelian groups; this is especially true in the case of 
the Diffie-Hellman method (DH, see [20]), that was 
the first practical public key technique and introduced 
in 1976. In such a system, when two parties want to 
communicate with each other, the sender encrypts the 
message with the recipient‘s public key and then 
transmits the cipher text to the recipient. Upon 
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receiving the encrypted information, the recipient can 
decrypt the message with his private key. 

The Discrete Logarithm Problem (DLP, see  
[19, 27, 29]) is, together with the Integer Factoring 
Problem (IFP, see [28]) and the Elliptic Curve DLP 
(ECDLP, see [18]), one of the main problems upon 
which public-key cryptosystems are built. Thus, 
efficiently computable groups where the DLP is hard 
to break are very important in cryptography. In recent 
years, cryptographic research has become more and 
more important due to the increasing number of 
application areas related to the field, requiring data 
confidentiality, authentication and integrity. 

The method presented in this paper, generalises 
the DH approach to a group based on the powers of a 
block upper triangular matrix, which is a very flexible 
and practical technique. 

The usual sizes for the keys in the IFP or DLP are 
around 1024 binary digits, existing well known 
algorithms of sub-exponential order that solve these 
problems (see [22, 24, 25]). 

The so called square root algorithms (see  
[23, 31, 32, 34]) reach an order of complexity p  

where p  is the greatest prime factor of the order of 
the group. This is not enough to be used in big and 
arbitrary finite groups, but if this order does not have 
great prime factors, these algorithms can be practical. 
Therefore it is necessary that the order of the group in 
which we are working has great prime factors. 

Our system is capable of increasing the 
computational cost required for a successful attack on 
the generated DLP for equivalent key sizes. 

The rest of the paper is divided as follows:  
section 2 shows some properties necessary for the 
proposed cryptosystem. Section 3 is divided in 
several subsections: a key exchange protocol, an 
encryption scheme and a digital signature scheme. 
Finally, several conclusions about the system are 
given in section 4. 

 
 

2   Preliminaries 
 
Some basic linear algebra properties (see [26, 35]), 
necessary for the purpose of the paper, are presented 
in this section. 

Given p a prime number and ,r s∈` , we denote 
by ( )r s pMat × Z  the matrices of size r s× , with 
elements in pZ , and by ( )r pGL Z  and ( )s pGL Z  the 
invertible matrices of size r r×  and s s× . 

We define 

, ( ), ( ), ( ) .r p s p r s p

A X
A GL B GL X Mat

B
θ ×

⎧ ⎫⎡ ⎤⎪ ⎪= ∈ ∈ ∈⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭0

Z Z Z  

 
Theorem 1. The set θ  has a structure of a non 
abelian group for the product of matrices. 

 
Proof: Given the definition of θ , it is obvious that 
the product operation is closed. 

The identity element is  
 

r

s

I
I

I
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

0
0

, 

 
where rI  and sI , are respectively the identity 
matrices  r r×  and  s s× . 

The inverse of any element
A X

M
B

⎡ ⎤
= ⎢ ⎥
⎣ ⎦0

, is 

 
1 1 1

1
1

A A XB
M

B

− − −
−

−

⎡ ⎤−
= ⎢ ⎥
⎣ ⎦0

. 

 
The associative property is obvious since they are 
square matrices. 

Theorem 2. Let
A X

M
B

θ
⎡ ⎤

= ∈⎢ ⎥
⎣ ⎦0

, we consider the 

subgroup generated by the different powers of M. 
 
Taking h as a non negative integer then 
 

 
( )h h

h
h

A X
M

B
⎡ ⎤

= ⎢ ⎥
⎣ ⎦0

, (1) 

where 

  ( )
1

1

0,

1.
h h

h i i

i

if h
X

A XB if h− −

=

=⎧
⎪= ⎨ ≥⎪⎩
∑

0
 (2) 

 
Also, if 0 ,t h≤ ≤  then 

 
 ( ) ( ) ( )h t h t t h tX A X X B− −= + , (3) 
 ( ) ( ) ( )h h t h h t tX A X X B− −= + . (4) 
 

WSEAS TRANSACTIONS on MATHEMATICS Rafael Alvarez, Francisco-Miguel Martinez,
Jose-Francisco Vicent, and Antonio Zamora

ISSN: 1109-2769

196
Issue 4, Volume 7, April 2008



Proof: The equation (1) is proven using induction on 
h. For h = 0 and h = 1, the result is obvious. It is 
supposed to be true for h-1 and will be demonstrated 
true for h. 

We have 
 

1

1 ( 1) ( )

1

( 1) 1

,

h h

h h h h

h h

h h h

h

M MM

A X A X
B B

A AX XB
B

−

− −

−

− −

=

⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦
⎡ ⎤+

= ⎢ ⎥
⎣ ⎦

0 0

0

 

 
from the induction hypothesis, applying (2) we have 

 
( ) ( 1) 1

1
1 1 1

1

1
1 1

1

1

1
,

h h h

h
h i i h

i

h
h i i h

i

h
h i i

i

X AX XB

A A XB XB

A XB XB

A XB

− −

−
− − − −

=

−
− − −

=

− −

=

= +

= +

= +

=

∑

∑

∑

 

 
obtaining the same expression as in (2). 

 
Also, if  0 t h≤ ≤ , we have  

( ) ( )

( ) ( )

.

h t h t

t t h t h t

t h t

h t h t t h t

h

M M M

A X A X
B B

A A X X B
B

−

− −

−

− −

=

⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦
⎡ ⎤+

= ⎢ ⎥
⎣ ⎦

0 0

0

 

Comparing this result to (1) we obtain (3). Expression 
(4) is proven in the same way. 

As a consequence, in the case t = 1 we have 
 

( ) ( 1) 1h h hX AX XB− −= + , 
( ) 1 ( 1)h h hX A X X B− −= + , 

 
and, taking a, b integers such as 0a b+ ≥ , we have 

  
( ) ( ) ( ) .a b a b a bX A X X B+ = +  (5) 

 

In this scheme, the key space is bound to the order of 
the group generated by the M matrices. For this 
reason, we present the way to guarantee that this 
order is big enough. 

Let 1
0 1 1( ) r r

rf x a a x a x x−
−= + + + +"  a monic 

polynomial in [ ]p xZ  and 

 

0 1 2 2 1

0 1 0 0 0
0 0 1 0 0

0 0 0 1 0
0 0 0 0 1

n n

A

a a a a a− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
− − − − −⎢ ⎥⎣ ⎦

…
…

# # # # # #
…
…
…

 

 
its companion matrix. If ( )f x  is a primitive 

polynomial then the order of  A  is exactly 1np − . 
Consequently, if we work in [ ]p xZ , it is possible to 
easily construct matrices whose order is maximum. 

Odoni, Varadharajan and Sanders (see [30]) 
propose an extended scheme based on the 
construction of the block matrix 

 

1

2

0 0

0 0

0 0 k

A

AA

A

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

"

"
# # " #

"

, 

 
where iA  is the companion matrix of if , being if  
for 1,2, ,i k= … , primitive polynomials of degree in  
for 1,2, ,i k= …  respectively. The order of iA  is 

1inp −  for 1,2, ,i k= … , therefore the order of the 
matrix A  is 1 2( 1, 1, , 1).knn nlcm p p p− − −…  

With the intention of using a matrix of this type in 
public key cryptography, the mentioned authors use 
an invertible matrix P obtaining a new matrix 

1A PAP−=  with the same properties. 
Constructing the matrix M using primitive 

polynomials we can guarantee a certain order. Let 
 

2 1
0 1 2 1

2 1
0 1 2 1

( ) ,

( ) ,

r r
r

s s
s

f x a a x a x a x x

g x b b x b x b x x

−
−

−
−

= + + + + +

= + + + + +

"
"
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p r s o(M)  p r s o(M)
3 32 31 30 19 16 19 39

 48 47 39 32 31 63
 64 63 47 64 63 98
 130 131 145 130 131 298

5 32 31 38 29 31 32 82  
 30 33 39 47 48 97
 64 63 61 60 61 103
 130 131 184 130 131 311

7 24 27 39 31 16 15 40
 32 31 43 32 31 87
 64 63 70 64 63 111
 130 131 213 131 131 342

11 22 21 39 251 12 13 46
 32 31 50 32 31 276
 64 63 77 64 63 457
 130 131 239 130 131 1379

13 31 32 53 257 9 10 40
 47 48 63 32 31 287
 60 61 81 64 63 479
 130 131 247 130 131 1479

Table 1. Order of M, for different values of p, r and s 
 
 

 
be two primitive polynomials in [ ]p xZ , and ,A B the 
corresponding associated matrices; let P, Q be two 
invertible matrices, 1A PAP−=  and 1B QBQ−= . 

With this construction, the order of M is 
 

( ) ( 1, 1),r so M lcm p p= − −  
 

this number will be maximum if we take 
1 and  1r sp p− − relatively prime (see [28]). 

In table 1, where the value that appears in the 
column o(M) represents the number of decimal digits 
(the integer 2128 has 39 digits), it can be observed that 
the values of r and s do not need to be very big to 
optimise the order.  

It is easy to reduce a generic DLP in a cyclic 
group (with order ( )o M ) whose factorization is 
known. It is very important in the election of the 
group that the order is prime or at least with very big 
prime factors. So if ( )o M  is a prime number, it will 
require on the order of m  operations to compute 
the discrete logarithm in groupθ . 

 
3   The algorithms 

 
3.1   Key exchange protocol 

 
We will see now the proposed system of block 
matrices applied to the DH key exchange protocol. 

Let U and V be two interlocutors who wish to 
exchange a key, then 

 
1. U and V agree on p∈Z , 

1 1
1

1

,
A X

M
B

θ
⎡ ⎤

= ∈⎢ ⎥
⎣ ⎦0

 with order m1 

 and 
2 2

2
2

,
A X

M
B

θ
⎡ ⎤

= ∈⎢ ⎥
⎣ ⎦0

 with order m2.   

 
2. U randomly generates two private keys r, s 

with 11 r m≤ ≤ , 21 s m≤ ≤ , computes 

1 2
r sC M M=  and publishes this value. 
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3. V randomly generates two private keys v, w 
with 11 v m≤ ≤ , 21 w m≤ ≤ , computes 

1 2

1 2

1 1 2 2

1 2

1 2

1 1 2 2

,

,

v w

v w

v r s w

v r s w

r v w s

r v w s

F M M

D M CM

M M M M

M M

M M

M M M M

+ +

+ +

=

=

=

=

=

=

 

and publishes this matrix. 
 
4. U calculates 1 2

r sM M− − and 

1 2

1 1 1 2 2 2

1 2 .

r s

r r v w s s

v w

F M DM

M M M M M M

M M

− −

− −

=

=

=

 

 
5. The public key of U and V are respectively C 

and D. 
 

In this way, the key shared by U and V is F, now both 
interlocutors, share a common and secret element. 

An attacker could know p and M, but to obtain the 
shared secret would have to face a problem with a 
complexity similar to that of the DLP (see [19]). 

 
3.2   Data encryption 
 
We have to start from the same public and private 
elements seen previously in the key exchange 
protocol (which we suppose already done). 

The interlocutor U wishes to, privately, send a 
message to V. The message must be coded as a 
matrix ( )r s pMat ×Δ∈ Z . 

 
Encryption: 

 

1. U builds the matrices 1

1

A
T

B
Δ⎡ ⎤

= ⎢ ⎥
⎣ ⎦0

 and F, 

that are invertible since A1, A2, B1 and B2  are 
invertible too. 

2. U computes matrix C TF=  and sends this 
matrix to V. 

 

Decryption: 
 

1. V computes the inverse of the matrix F. 
2. V obtains T  carrying out the product 1CF − . 
3. V recovers the message Δ  selecting, the 

respective block of T . 
 

With this, the functions of encryption and decryption 
of the interlocutor V would be respectively 

 
1. 

2
( )

k
E TFΔ = . 

2. 
2

1( )
k

D C CF T−= = . 

 
With the appropriate quick exponentiation algorithms 
(see [18]), the powers of the matrices can be 
computed efficiently. 

The complexity of the problem that an attacker 
would face is in the order of that of the DLP, acting, 
in effect, as a deterrent for a possible attack. 

 
3.3   Signature scheme 
 
We propose a digital signature scheme that requires 
the original message in order to verify the signature. 

The scheme, that follows, is based on the ElGamal 
(see [21]) digital signature scheme. 

We suppose that the users U and V have 
exchanged the key F, and U has sent the message Δ  
to V, according to the previous protocol. If the 
transmitter U wishes to digitally sign the message Δ  
proceeds in the following way 

 
1. U generates a random number r. 
2. U computes rF . 
3. With T computes rQ T F= − . 
4. The digital signature is ( , )r Q . 

 
If the receiver wishes to verify the digital signature of 
U, he proceeds in the following way 

 
1. V computes rF  and then rQ F T+ =  
2. V extracts the corresponding block of T  

named Y and compares ∆ and Y , turning out 
to be an authentic signature if YΔ = and false 
if YΔ ≠ . 
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4   Integral Kernel 
 

Most protocols in digital business employ symmetric 
cryptography to transfer large quantities of data, 
while asymmetric cryptography is used to swap 
session keys, digital signatures, etc. Additionally, 
hash functions can be used in order to improve 
efficiency and data integrity. 

Our proposal can be integrated with these basic 
components, obtaining a security kernel which can be 
the basis of many protocols. Since cryptographic 
algorithms are extremely diverse in nature, scope and 
requirements, this integration is highly beneficial 
since it allows for cheap mass production, and ease of 
design of new secure systems which could use the 
kernel as a black box. 

The cryptographic kernel is based on the powers 
of a block upper triangular matrix, which is a very 
flexible technique. It can be adjusted to satisfy 
memory and speed requirements and be implemented 
successfully either in hardware or software. Another 
advantage is that the same basic mathematical 
scheme can be used to build private key 
cryptosystems, public key cryptosystems and hash 
functions. Therefore, we only require implementing 
this technique once in order to provide these three 
types of algorithms, integrating a full cryptographic 
kernel in a single low cost device. This is a 
remarkable new concept that shows how useful this 
technique can be in cryptography. 

 
4.1   The Symmetric Component 
 
To cipher large amounts of information efficiently, 
we need a private key cryptosystem. For that purpose, 
we can build a stream cipher using the mathematical 
base of the kernel by taking advantage of its great 
randomness properties as shown previously. We first 
create a good pseudorandom generator and, once we 
have that, we use it as the keystream generator in a 
Vernam cipher scheme, taking the seed of the 
generator as the key of the stream cipher. This 
pseudorandom generator can also be used to generate 
general purpose random numbers such as session 
keys, challenge values, etc. 

For each matrix X(h), for …,3,2=h ,  we 
establish a bit extraction operation which can be as 
simple as adding all the elements of X(h) obtaining a 
new element x(h), for …,3,2=h , in Zp from which 
we take the least significant bit, b(h), of its binary 
expression; or as complex as required and taking as 
many bits per iteration as needed. In this way, we 
have the sequence of bits 

 
…,,, 432 bbb  

 
This sequence is then filtered by the following 
process, improving security and bias: 

 
.0;,4,3,2, )1()1()()( ==⊕= − cicbc iii …  

 
Once we have a proper keystream, ciphering the 

plaintext is as simple as XORing the keystream with 
it bit by bit. In order to decipher we XOR the 
keystream again with the ciphertext and retrieve the 
original plaintext. The seed of the generator is shared 
by both parties so that they can reproduce correctly 
the keystream. 

The algorithm has been compared with the BBS 
pseudorandom generator (see [1]), achieving 
comparable results in terms of the randomness of the 
keystream and being a lot faster (in the order of 103 
times). A comparison with the RC4 stream cipher has 
also yielded comparable results in randomness and 
similar speed in software. Further optimizations are 
being studied and could make the algorithm even 
faster. 

 
4.2   The Asymmetric Component 
 
Defining the operator ⊗  as   

 
)()()( baba XXX +=⊗ , (9) 

 
set },,,,{ )3()2()1()0( …XXXXG =  has a finite 
group structure and its order can be taken as large as 
needed to make our scheme secure. 

The key exchange scheme between two users U 
and V, proposed for our kernel, is: 

 
1. U and V accord values for p, n, A, B and X  
2. U generates a random number k and 

computes Ak, Bk and X(k) 
3. V generates a random number m and 

computes Am, Bm and X(m) 
4. The numbers k and m are respectively the 

private keys of U and V 
5. The pairs (X(k), Bk) and (X(m), Bm) are 

respectively the public keys of U and V 
6. U computes mkmkmk BXXAX )()()( +=+  
7. V computes kmkmkm BXXAX )()()( +=+  
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Figure 1. Electronic cheque payment system 

 
 
 

With this scheme users U and V share matrix X(k+m) in 
G. 

The computation of Ak, Am, Bk, Bm, X(k) and X(m) 
can be done efficiently adapting the existing quick 
exponentiation algorithm in Zp. 

It is computationally infeasible, for an attacker, to 
know the shared key X(m+k) without the previous 
knowledge of k and m, because the problem the 
attacker would be facing is in the order of complexity 
of the discrete logarithm problem. 

The scheme described previously can be adapted 
to perform digital signature using a similar technique 
to the ElGamal cryptosystem. Since the kernel 
requires little resources, it is suitable for low power 
or low cost environments.  

 
4.3   The Hash Component 

 
Taking the mathematical base of the kernel we can 
also build a hash function. We can use the 
pseudorandom generator as a diffusion and 
compression mechanism accumulating its results over 
a fixed length register. The stream cipher proposed 
can be also adapted to perform a hash function in the 
way shown in [29, 35]. 

4.4   Applications 
 

This integral security kernel can be used by any 
digital business protocol requiring security at any 
level, like A/V content distribution systems, 
anonymous peer to peer systems, certified email 
systems, online payment systems, etc. It can be 
implemented on any platform (PC, dedicated 
hardware, PDA, latest generation of cell phones, 
smart cards) and data transport system (Internet, 
wireless networks, satellites, terrestrial digital 
transmissions, etc.), being capable of adapting to the 
technological evolutions in the communications 
sector. Application examples can be seen in [2-9, 11, 
14]. 

It is efficient   and   easy   to   implement   either 
in hardware or software and requires very little 
resources, making possible its implementation in a 
wide spectrum of devices, especially those of low 
cost. In this way, confidentiality (ciphered 
information), integrity (no alteration warranty) and 
authentication (identity verification using digital 
signature) are assured in the communications.  

As an application example of the kernel, we can 
take an electronic cheque payment system involving 
five parties: the client (C) and his bank (BC), the 
merchant (M) and his bank (BM), and a clearing  
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Figure 2. Secure communication scheme. 

 
 
house (H) that reconciles bank transfers and 
processes cheques. 

 
• The client purchases some goods and sends 

the corresponding electronic cheque to the 
merchant. 

• The merchant sends the check to his bank to 
validate and deposit it. 

• The merchant's bank sends the check to the 
clearing house in order to receive payment. 

• The clearing house requests the required 
funds from the client's bank. Then, both 
banks update the corresponding accounts. 

• Once the electronic cheque has been 
validated and correctly processed, the 
merchant proceeds to send the goods to the 
client. 

 
For each of the communication channels established 
between the different parties (see figure 1), we need 
to guarantee confidentiality, authentication, and 
information integrity. For that purpose we require the 
usage of symmetric and asymmetric cryptography, a 

random generator and a hash function (operations 
offered by the proposed kernel).  

In this way, the kernel provides all the means for a 
secure communication between two parties, as shown 
in figure 2: 

 
• First, both parties must establish values for p, 

n, A, B and X. 
• Then, U generates a random k of sufficient 

length, V generates m in the same way. 
• U sends V values X(k) and Bk, V does the same 

sending U the values X(m) and Bm. 
• U computes X(k+m) and V computes X(m+k), 

since both parties reach the same result they 
now share this secret key. 

• U and V can agree on new values for A and 
B. 

• Taking the new A and B, along with X(k+m), 
we have the session key for our secure 
channel, using the kernel's stream cipher. 
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5   Conclusions 
 
With the aim of creating systems that allow 
increasing the computational cost required to break 
certain well known problems, we have presented a 
public key cryptosystem based on a generalization of 
the DLP for block upper triangular matrices with 
elements in pZ , which presents the advantage of 
reducing the required key length for a given level of 
security, this is achieved as a consequence of the 
usage of the quick exponentiation and the algebraic 
properties of θ . 

This cryptosystem provides an efficient protection 
against common attacks without the need for bigger 
key sizes. 

For the development of this cryptosystem we have 
defined a set of matrices θ  constructed using 
primitive polynomials.  Therefore, we can work with 
big groups, requiring neither enormous matrices nor 
high numbers. 

Given two parties, the key exchange protocol 
guarantees that both parties share a secret element of 
set G; the public key cryptosystem defined assures 
data confidentiality and the digital signature scheme 
guarantees authentication and integrity. 
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