
The local analytic solution to some nonlinear diffusion-reaction 
problems 

 
GABRIELLA BOGNÁR ERIKA ROZGONYI 
Department of Analysis Department of Analysis 
University of Miskolc University of Miskolc 

3515 Miskolc-Egyetemváros 3515 Miskolc-Egyetemváros 
HUNGARY HUNGARY 

matvbg@uni-miskolc.hu matre@uni-miskolc.hu 
 
 
Abstract: -The positive radially symmetric solutions to the nonlinear problem 

0)(2 =+�
�
��

�
� ∇∇ − ufuudiv p  in { },: RxxB n

R <∈= R  ,1 np <<  with δγ uuuf +=)(  for 0≥u  are 

considered. We examine the existence of local solutions and give a method for the determination of 
power series solutions. The comparison of the local analytic and entire solutions is given for some 
special values of parameters p , n , γ  and  δ  . 
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1 Introduction 
In a model for diffusion-reaction problem the 
concentration of the steady state satisfies 
 

,in   0)( n
p ufu R⊂Ω=+∆           (1) 

where �
�
��

�
� ∇∇=∆ − uudivu p

p
2  is the p -

Laplacian of ,u  f  is an increasing function. 
The equation above appears in the generalized 
reaction-diffusion theory [12] and in non-
Newtonian fluid theory [10]. 
In the case of compressible fluid flows in a 
homogeneous isotropic rigid porous medium 
the continuity equation is given by 
 

( ) ,0div =+
∂
∂

V
t

�
ρρθ                (2) 

where �  denotes the density of the fluid,  V
�

  
the seepage velocity and θ  the volumetric 
moisture content. 
The linear Darcy’s law is not valid here, since 
the molecular and ion effects have to take into 
account in case of a non-Newtonian fluid. 
Therefore the nonlinear relation  
 

PPCV ∇∇−= −1αρ
�

               (3) 

is valid, where  P   denotes pressure,  C   and  
α   are positive physical constants. 
If we consider the fluid as polytrophic gas then 
we have the relation between the thermal 
pressure P  and the fluid density ρ  as  
 

γρkP =                        (4) 
with positive constant k . Here γ  is called 
polytrophic exponent. We note that for 
isothermal flows 1=γ  ( 0=γ  corresponds to 
the isobaric flows). After changing variables 
and making substitutions in equations (2-4) we 
obtain  

.div 2
�
�
��

�
� ∇∇=

∂
∂ − uu

t
u p  

The case 2>p  is called slow diffusion and the 
case 21 << p , the fast diffusion (see e.g., [20]). 
When reaction term is added to the diffusion 
then equation (1) appears in the steady-state 
case. 
The asymptotic and numerical solution of 
problem (1) has been attracted considerable 
interest in the last decades (see [7], [18], [20]). 
Nonlinear partial differential equation of type 
(1) was considered previously for different 
function .f  In paper [4] we considered function  
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,)1()( 2uuuf qi −−=  i.e., the quasilinear 
differential equation 
 

�pu � ��1�i |u|q�2u � 0, u � u�x�, x � Rn ,  
 

where ,1≥n  1>p  and 1>q , 1,0=i  and 

)div( 2 uuu p
p ∇∇=∆ −  is the so-called 

−p Laplacian ( ) . If ,1=n  then the equation is 
reduced to  
 

( )( ) ,0)()1( =Φ−+′Φ ′ yy q
i

p  

where for  { }qpr ,∈    
 

{ } 
.0for  ,0

0\for  ,:)(
2

��

�
	



=
∈=Φ

−

y

yyyy
r

r
R  

Note that function rΦ  is an odd function. For 
1>n  we restrict our attention to radially 

symmetric solutions. The problem under 
consideration is reduced to  
 

( )( ) ),0(on  ,0)()1( 11 aytyt q
ni

p
n =Φ−+′Φ −′−  

(5) 
where .0>a  A solution of (5) means a function  

( )aCy ,01∈   for which  ( ) ( )aCyt p
n ,011 ∈′Φ−   

and (5) is satisfied. We shall consider the initial 
values  
 

,0)0(
,0)0(

=′
≠=

y

Ay
                      (6) 

for any  R∈A  . 
For the existence and uniqueness of radial 
solutions to (5) we refer to paper [17]. If 1=n  
and ,0=i  then it was showed that the initial 
value problem (5)-(6) has a unique solution 
defined on the whole R  (see [8], and [9]), 
moreover, its solution can be given in closed 
form in terms of incomplete gamma functions 
[9]. If  ,1=n  ,0=i  Lindqvist gives some 

properties of the solutions [16]. If  n � 1   and  
p � q � 2,   then (5) is a linear differential 
equation, and its solutions are well-known: 
if ,0=i  the solution (5)-(6) with 1=A  is the 
cosine function, 

if ,1=i  the solution (5)-(6) with 1=A  is the 
hyperbolic cosine function, and both the cosine 
and hyperbolic cosine functions can be 
expanded in power series. 
In the linear case, when ,2=n  ,2== qp  ,0=i  
the solution of (5)-(6) with 1=A  is ),(0 tJ  the 
Bessel function of first kind with zero order, 
and for 3=n , ,2== qp  0=i  then the solution 
of (5)-(6) with 1=A  is ,/sin)(0 tttj =  called 
the spherical Bessel function of first kind with 
zero order. 
In the cases above, for special values of 
parameters ,n  ,p  ,q  i  we know the solution in 
the form of power series. 
The type of singularities of (5)-(6) was 
classified in [5] in the case when ,0=i  and 

qp = . If ,1=n  then a solution of (5) is not 
singular. 
In paper [4] a method was presented for the 
evaluation of local analytic solution for problem 
(5)-(6) in the neighborhood of zero. Here we 
intend to generalize that method for a more 
general class of equations. 
In this paper we consider the radial symmetric 
solution )( xuu =  for the problem 
 

,in   0  and  0)( Rp Buufu >=+∆       (7) 
 

where  { },: RxxB n
R <∈= R   np <<1  and 

 

��

�
	



<
≥+=

.0for 0
,0for )(

u

uuuuf
δγ

 

 

In the special case ,2=p  problem (7), i.e., the 
semilinear problem with superlinear and 
supercritical exponents was considered by Lin 
and Ni  in [15]. 
For 2≠p  the existence of solutions of (1) has 
been examined in [1] and [19]. Moreover in [1], 
the multiplicity of radially symmetric solutions 
of the Dirichlet boundary value problem was 

proved; namely, that there exists ),( δγ∗∗ = RR  
such that the problem has at least two distinct 

radial solutions if ∗> RR  and at least one radial 

solution provided  .∗= RR   
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We shall study the positive radial solution of  
(7), i.e., the initial value problem (here xr =  ): 

( )

�
�
�

�

��
�

	




≥==

∞

=+��
�

�
��
�

�

′

′
′−′−−

,0)0(    ,0)0(

,,0in          

0)(
211

αuu

ufuurr

r

r
p

r
nn

         (8) 

 

or equivalently, 
 

( )

�
�

�

�
�

	




≥==

∞
=++−

′

′−′−′′−′

.0)0(    ,0)0(

,,0in   

0)()1(
212

αuu

ufuuuup

r

r
p

rr
n

rr
p

r

(9) 

 

We say that )(ruu =  is a positive radial 
solution of (7), if it solves the initial value 
problem associated with (8)  (or (9)) for some 

0≥α , 0)( >ru  for ( )∞∈ ,0r  and 
.0)(lim =

∞→
ru

r
  

We remark that (8) has singularity at zero if  
n � p � 1.  
Our goal is to give the exact solution for the 
initial value problem of (8) (or (9)) for some 
special values of the parameters. Moreover, we 
examine the existence of local solution to the 
initial value problem of (9) and we give a 
method for the determination of the power 
series solution for given values of parameters  

,p  α,n , γ  and δ . We shall compare the 
exact and power series solutions and find the 
error for special values of parameters. 
 
 
2 Positive entire solution  
Positive entire radial solution of 
 

0)( =+∆ ufup                     (10) 
 

is a function )(ruu =  which solves (9) for some 
0>α , 0)( >ru  for ( )∞∈ ,0r  and 

.0)(lim =
∞→

ru
r

 Moreover, we suppose that  

11 −<<− ∗pp γ  and ,1−> ∗pδ  ,
pn

npp −
∗ =  

the exponents γ  and δ  satisfy 

,
1

   and   )1(
1

β
γδ

β
βγ +=−+= p       (11) 

 

where  
 

,,
)1)((

2 �
�

�

�

�
�

�

� −−−∈
p

pn

p

ppnβ           (12) 

 

i.e., ,1
p′
+= δγ  .1−=′

p
pp   

 
Proposition 1. Let ,,,,,, δγβnpp ′  and f  
be as above. Set 

( )

,
1

1

1

β

β �
�
��

�
� −

=

+ p
n

a              (13) 

( )( )
( ) ,

11
1 1

1
−′

��
�

�
��
�

�

−+
+−=

pp

p
p

p
pn

b
β

β
β

       (14) 

β

��
�

�
��
�

�

+
= ′prb

b
aru )( .              (15) 

 

Then u  is a positive entire solution of (10)  
 

From straight forward computations we get 

( )
( ) ( ),)1()(

)()(

1)1)(1(

1

211

pp
pp

p

pnn

prrbn
rb

abp

rururr

′′
+−+′

−

′−−−

+−+
+

′
−

=�
�
��

�
� ′′

ββ
β

β

 

 

moreover, 

( )

( ) .

1

)()(

1)1)(1(

)1)(1(
)1)(1(

1)1)(1(

1
1)1)(1(

)1)(1(

+−+′

′−+
−+

+−+′

+−+
−+

+
+

+

�
�

�

�

�
�

�

�
+

=+

pp

pp
p

pp

p
p

rb

rba

rb

aba

ruru

β

ββ
β

β

βββ
β

δγ

 

 
To fulfill equation (8) we must have  
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( ) nabp

aba

p

p
p

1

1
)1)(1(

)1)(1(

1

−

−+
−+

′=

�
�

�

�

�
�

�

�
+

β

βββ
β

β

 

 

and 
 

( ) ( )

.

)1(

)1)(1(
)1)(1(

11

−+
−+

−−

−

′=′+

p
p

pp

ba

nabpabpp

ββ
β

ββ βββ
 

From here we get for parameters a  and b  the 
same as in (13) and (14). Both constants fit with 
the case 2=p  investigated in [15] for the 

choice ,2
β

βδ +=  .2=p   

For the determination of the exact solution of 
(7) we refer to the paper by Bognár and Drábek 
[1]. 
 
 
3 The existence of local solution 
We shall form problem (9) as the system of 
special Briot-Bouquet differential equations. 
For this type of differential equations we refer 
to the book by E. Hille [13] and E. L. Ince [14]. 
 
Theorem 2. (Briot-Bouquet Theorem) Let us 
assume that for the system of equations 
 

�
�
�

��
�




=

=

)),(),(,(

)),(),(,(

212
2

211
1

ξξξξ

ξξξξ

ξ

ξ

zzu

zzu

d
dz

d
dz

        (16) 

where functions 1u  and 2u  are holomorphic 
functions of ,ξ  ),(1 ξz  and )(2 ξz  near the 
origin, moreover ,0)0,0,0()0,0,0( 21 == uu  
then a holomorphic solution of (16) satisfying 
the initial conditions ,0)0(1 =z  0)0(2 =z  exists 
if none of the eigenvalues of the matrix 
 

�
�
�
�

�

�

�
�
�
�

�

�

∂
∂

∂
∂

∂
∂

∂
∂

)0,0,0(2
2

)0,0,0(1
2

)0,0,0(2
1

)0,0,0(1
1

z
u

z
u

z
u

z
u

 

is a positive integer. 
 
For a proof of Theorem 2 we refer to [6]. 
The differential equation (9) has singularity at 

0=r  for the case 1>n . Theorem 2 ensures the 
existence of formal solutions  

k
k

k

k
k

k
bzaz ξξ

∞

=

∞

=
�� ==

1
2

1
1 and  

for system (16) and it provides the convergence 
of formal solutions. 

Theorem 3. For any  p, �, �, n  as above, the 
initial value problem (9) ,)0( α=u  0)0( =′u  
has an unique analytic solution of the form 

( ))1/()( −= pprQru  in ( )A,0  for small real 
value of A , where Q  is a holomorphic solution 
to  

( )

( )Qr
p
n

Q

QQ
r

pp
Q

p

p
p

p

p

′−

′
+

+
−=′′

+−

−

+−

+

/11

1

1

1/11

1

α

δγ

 

near zero satisfying  

.
1

)0(  ,)0(
1

1
−

�
�

�

�

�
�

�

� +−=′=
p

np
p

QQ
δγ αα

α  

 

Proof. We shall now present a formulation of 
(9) as a system of Briot-Bouquet type 
differential equations (16). Let us take solution 
of (9) in the form  

( ) ( ),,0 ,)( ArrQru ∈= σ  

where ),0(2 aCQ ∈  and 0>σ . Let us take 

( )σrQru =)(  into (9) we obtain 
 

( )

( )
Qr

p
pn

p

r

Q

QQ
rQ

p

p

p

′
−

−−+−−

−′

+−=′′

−

−−

−

σ

σδγ
σ

σ
σ

σ

)1(
1)1(1

)1(

)1(

2

   (17) 

 

and substituting σξ r=  we have 
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( )
.

)1(
1)1(1

)1(
)(

1

1

2

Q
p

pn

pQ

QQ
Q

p

p

p

′
−

−−+−−

−′

+−=′′

−

−−

−

ξ
σ

σ

σ
ξξ

σ
σ

δγ

    (18) 

Here, we introduce function Q  as follows 
 

),()( 10 ξξξ FggQ ++=           (19) 
 

where ),,0(2 aCF ∈    
 

.0)0(,0)0( =′= FF  
 

Therefore we have  
 

Q�0� � g0 , Q��0� � g1 ,  
 

Q���� � g1 � F ����, Q����� � F �����.  
 

From initial condition α=)0(u  we have that  
 

.0 α=g  
 

We reformulate (18) as a system of equations: 
 

),()(

),()(

2

1

ξξ
ξξ

Fz

Fz
′=

=
 

 

with initial conditions 
 

.0)0(

,0)0(

2

1

=
=

z

z
 

 

According to (17) we get that 
 

( )21

1

,,
)1(

)( zzG
p

F
p

p

ξ
σ

ξξ
σ

σ

−
−=′′

−−

 

 

( ) ( ),)(
)1(

1)1(1
1

1 ξξ
σ

σ
Fg

p
pn ′+
−

−−+−− −  

 

[ ] [ ]
2

1

1010

)(

)()(
(.,.,.) −′+

+++++
=

pFg

FggFgg
G

ξ

ξξξξ δγ

 
We generate the system of equations 
 

��

�
�



=
=

′

′

)())(),(,(
)())(),(,(

2212

1211
ξξξξξ
ξξξξξ

zzzu

zzzu  

 

as follows 
 

( )
( ) ( )

.

)(                      

,,))(),(,(

))(),(,(

21)1(
1)1(1

21
)1(

11

212

2211

�
�
�

�

��
�

�




+−

−=

=

−
−−+−

−

−−

ξ

ξξξξ

ξξξξ

σ
σ

σ

σ
σ

ξ

zg

zzGzzu

zzzu

p
pn

pp

p
 

In order to satisfy conditions 0)0,0,0(1 =u  and 
0)0,0,0(2 =u  we must get zero for the power 

of ξ  in the right-hand side of the second 
equation:  

1 �
p�� � 1�

� � 0,
 

i.e.,  

� �
p

p � 1
.

 
To ensure 0)0,0,0(2 =u  we have the 
connection 

( ) ,0
1

00

1
2

11 =+��
�

�
��
�

� −+
−

− δγ gg
p

p
ggn

p
p  

i.e., 

.
1 1

1

00
1

−

�
�

�

�

�
�

�

� +−=
p

n

gg

p
p

g
δγ

      (20) 

Therefore, we obtain 

.
1 1

1

1

−

�
�

�

�

�
�

�

� +−=
p

np
p

g
δγ αα

        (21) 

 

From initial conditions ,0)0( ≠= αu  ,0)0( =′u  
and (19) it follows that .0 α=g   
For 1u  and 2u  we find the following partial 
derivatives at )0,0,0(   
 

,0
)0,0,0(1

1 =
∂
∂

z
u

 

 

,0
)0,0,0(2

1 =
∂
∂
z
u
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( )
,

1 2
1

1
0

1
0

)0,0,0(1

2
−

−−

−

+
−=

∂
∂

pgp

gg

z
u

σ
δγ δγ

 

 

.
)1(

)0,0,0(2

2
p
pn

z
u −−=

∂
∂

 

 

Therefore the eigenvalues of matrix 
 

�
�

�
�
�

�

∂∂∂∂
∂∂∂∂

2212

2111
//
//

zuzu

zuzu
 

 

at )0,0,0(  are 0  and ./)1( ppn −−  Since both 
eigenvalues are non-positive, applying Theorem 
2 we get the existence of unique analytic 
solutions 1z  and 2z  at zero. Thus we get the 
analytic solution  
 

)()( 10 ξξξ FggQ ++=  
 

satisfying (17) with  
 

,)0( 0gQ =  
 

,)0( 1gQ =′  
 

where α=0g  and 1g  is determined in (21). 
 
Corollary 4. From Theorem 3 it follows that 
solution )(ru  for (9) has an expansion near 
zero of the form  

1

0
)( −

∞

=
�= p

kp

k
k

rgru  

satisfying  
,)0( α=u  

and  
.0)0( =′u  

 
 
4 Determination of local solution near 
zero 
This section is devoted to the construction of 
the power series solution for (9) with initial 
conditions  

.0)0(
,0)0(

=′
>=

u
u α

                  (22) 

We seek a solution of the form 

,0  ,)( 1
2

2
1

10 >+++=
�
�

�
�
�

�
−− rrgrggru p
p

p
p

�  
(23) 

 

with coefficients ,R∈kg  �,1,0=k .  
From Section 3 we get the first two coefficients:  
 

,00 >= αg  
and  

.
1 1

1

1

−

�
�

�

�

�
�

�

� +−=
p

np
p

g
δγ αα

 

We assume that  
0)( >ru                          (24) 

and  
0)( <′ ru                         (25) 

in the neighborhood of zero. Since 
 

,
1

2
1

)( 1
21

1
1

�
�

�

�

�
�

�

�
+

−
+

−
=′ −−

�
p
p

p r
p

p
g

p
p

grru  

 

and function 2)( −= psssf  is an odd function  

( ),R∈s   then we can write 
 

[ ] ,)()()( 12 −− ′−−=′′ pp rururu     (26) 
 

,

1
2

1

)()(

1
2

2
1

10

1

1
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2

�
�
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�

�
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=
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�
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�
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�
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�
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�

p
p

p
p

p

p
p

p

rPrPPr

r
p

p
g

p
p

gr

ruru

 

moreover, 
 

=�
�
��

�
� ′′

′−−− )()( 211 rururr pnn  
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where coefficients kP  will be expressed in 

terms of kg  ( �,1,0=k ). Now, )(tuγ  and  

)(tuδ  can be written in the form 

,
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2
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where coefficients kG  and kD  can be 
expressed in terms of kg  ( �,1,0=k ) and ,γ  
δ , respectively 
Substituting them into the equation (9) we 
compare the coefficients of the proper powers 
of r  and we find that  
 

.0for  

 0
1

≥

=++��
�

�
��
�

�

−
+−

k

DG
p
kp

nP kkk         (27) 

 

Applying the J. C. P. Miller formula (see [11]) 
we derive ,kP  kG  and kD  ( �,1,0=k ) in the 
forms 

( )[ ]  ,
1

0

1

jkj
j

k

k gGjjk
k

G −
=

−
−−= � γ

α
     (28) 

 

( )[ ] ,
1

0

1

jkj
j

k

k gDjjk
k
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=

−
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α
   (29) 

 

( )[ ]
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gPjpjkP jkj

j

k

k
1

1
0

1 )1(
)1(

−+−−−= −+
=

−
�  

(30) 
 

for  ,1≥k   and  

.
1

,

,

1

10

00

00

−

��
�

�
��
�

�

−
−=

=

=

p

p
p

gP

gD

gG

δ

γ

 

 

From (27) we obtain coefficients kg  for 
:2≥k   

,0 α=g  
 

,
1 1

1

1
−

�
�

�

�

�
�

�

� +−−=
p

np
p

g
δγ αα

 

 

( )pnnpnp
p

g
p

p

+−
+

�
�

�

�

�
�

�

� +
��
�

�
��
�

� −=
−

−

α
δαγααα δγδγ

2
1 1

3
2

2  

 

�  

Example 1. Let us consider the solution of (9) 
with parameters 

.3233.2
 ,3

 ,8.1
 ,5
 ,2

=
=
=
=
=

α
δ
γ
n

p

 

Using software MAPLE we obtain the 
coefficients of the power series solution 

k
k

k
rgru 2

0
)(

∞

=
�=  

from recursive formulas (27)-(30) as follows 

,3233.20 =g  
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,7101.11 −=g  

,2047.12 =g  

,8505.03 −=g  

,6013.04 =g  

,4254.05 −=g  

3011.06 =g  

�  

Therefore, we have the local analytic solution 
of the form  

42 2047.17101.13233.2)( rrru +−=  

1086 4254.06013.08505.0 rrr −+−     (31) 

�+−+ 1412 21318.03011.0 rr  
 

We keep parameters ,n  γ  and δ  fixed and 
evaluate the power series solution for different 
values of .p  The value of the radial solution of 
(9) at 0  denoted by 0g  will be considered  

( )
β

β

−

��
�

�
��
�

�
−

+
= 1

10 p
n

g  

in each cases (as it was done in Example 1 as 
well). This value is the same as parameter value 
a  in the formula (15) of the exact solution (see 
Section 2). 
 
Example 2. Evaluate the power series solution 
of (9)-(22) with parameters 
 

.7380.1

 ,3

 ,8.1

 ,5

 ,8.1

=
=
=
=
=

α
δ
γ
n

p

 

 

After making calculations from the recursive 
formulas we have the solution in the form 
 

88.244.1 4053.07941.07380.1)( rrru +−=  

2.776.532.4 0619.01145.02137.0 rrr −+−   (32) 

. ...0184.00337.0 08.1064.8 +−+ rr  
 
Example 3. Evaluate the power series solution 
of (9)-(22) with parameters 
 

.2884.3

 ,3

 ,8.1

 ,5

 ,2.2

=
=
=
=
=

α
δ
γ
n

p

 

 

From formulas (27)-(30) we shall obtain the 
solution in the form 

28.564.2 8728.23458.32884.3)( rrru +−=  
20.1356.1092.7 5827.19539.13882.2 rrr −+− (33) 

. ...0191.12732.1 48.1884.15 +−+ rr  
 

We note that in this section we have assumed 
that )(ruu =  satisfies (24) and (25). If we 
assume that  

u�r� � 0  
and 

u ��r� � 0  
in the neighborhood of zero, then we have the 
following modified version of (26) 
 

[ ] ,)()()( 12 −− ′=′′ pp rururu  
 

and  

[ ]

.

1
2

1

)(

1
2

2
1

10

1

1
21

1

�
�
�

�

�

�
�
�

�

�

+++

=
�
�

�

�

�
�

�

�
+

−
+

−

=′

�
�

�
�
�

�
−−

−

−

−

�

�

p
p

p
p

p

p
p

p

rPrPPr

r
p

p
g

p
p

gr

ru

 

In this case the connection between kP  and 

,kG  kD  simplifies to the form 
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0for  

 0
1

≥

=++��
�

�
��
�

�

−
+

k

DG
p
kp

nP kkk        (34) 

 

and moreover, 
 

.
1

,

,

1

10

00

00

−

��
�

�
��
�

�

−
=

=

=

p

p
p

gP

gD

gG

δ

γ

 

 

With these changes we can determine the 
coefficients ,0g  ,1g  ... ,kg  ... of the power 
series solution. 
 
 
5 The comparison of exact and local 
analytic solutions 
In the previous three examples we gave 
approximate solutions to the problem (9) in the 
neighborhood of zero. The parameters ,p  ,n  γ  
and δ  were chosen such a way to fulfill 
conditions (11) in Proposition 1. It means that 
for such specific values entire solution of the 
problem (9)-(22) exists. Now we consider 
problem (9) with the same values of ,n  γ  and 

δ , (i.e., with the same parameter value )
6
5=β  

and with different values of p  (namely 
,8.1=p    ,2    2.2 ). 

Using Proposition 1 the entire solutions for all 
three cases can be determined with the 
calculated parameter values by using (13)-(15). 
In Example 1 the parameters are the following:  

 

2

 ,6/5

 ,8081.0

 ,3233.2

2

=′
=
=
=
=

p

b

a

p

β
 

 

and the exact solution can be given as follows 
 

6
5

28081.0

8081.0
3233.2)( ��

�

�
��
�

�

+
=

r
ru        (35) 

(see Fig. 1). 

  
Fig.1. Entire solution for p=2 

 
Hence, we have the possibility to compare the 
two solutions, i.e., (31) with (35). On Fig. 2. the 
difference between the exact (31) and local 
analytic solutions (35) are represented. 

  
Figure 2. 

 
In Example 2 the parameters are  

 

44.1

 ,6/5

 ,4275.1

 ,7380.1

8.1

=′
=
=
=
=

p

b

a

p

β
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and the exact solution can be given as follows 
 

6
5

44.14275.1

4275.1
7380.1)( ��

�

�
��
�

�

+
=

r
ru      (36) 

 

(see Fig. 3). 

 
Fig.3. Entire solution for p=1.8 

 
The difference between the entire and power 
series solution is exhibited on Fig. 4. 

  
Figure 4. 

 
In Example 3 the parameters are  

,64.2

 ,6/5

 ,3227.0

 ,2884.3

2.2

=′
=
=
=
=

p

b

a

p

β
 

and the exact solution can be given by 

6
5

64.23227.0

3227.0
2884.3)( ��

�

�
��
�

�

+
=

r
ru       (37) 

(see Fig. 5). 

  

Fig. 5. Entire solution for p=2.2 

The difference between solution (33) and (37) is 
illustrated on Fig.6. 

On Fig.1, Fig.3 and Fig. 5 we see that the 
shapes of the solutions of the initial value 
problem (9) differ considerably if we keep the 
parameters the same and only value of p  is 
varying. 
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Figure 6. 

In Fig. 7 the entire solutions of (9) are 
illustrated for the examined three cases. 

 
Figure 7. 

 
 
6 Perturbation analysis 
In this section we intend to discuss the 
influence of change of parameters for the 
analytical solution of initial value problem (8). 
We present the power series solutions for 
different values of parameters ,n  ,p  ,γ  and .δ  
From the four parameters we always fix three 
ones and allow to change only one. For all 
investigated cases we take sublinear and 

superlinear exponents in function ,f  i.e., ,1<γ  
and ,1>δ  and we fix the initial value of the 
solution at zero: 

.2=α  
 
 
6.1 The effect of change in p  
Let us fix parameters ,n  ,γ  and :δ  

 

,2

,8.0

,3

=
=
=

δ
γ
n

 

 

and evaluate the power series solution 
according to Section 4 for  

 

.3 ,2 ,5.1=p  
 

The solutions pu  for different values of p  

have the form: 
 

5.1=p   

,0193.00384.00765.01526.0

3047.06095.02207.12)(

21181512

963
5.1

rrrr

rrrru p

−+−+

−+−==

 
2=p   

,0003.00016.00886.0

4616.02247.09568.02)(

12108

642
2

rrr

rrrru p

+−+

−+−==  

 

 
Figure 8. 
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3=p   

.108781.0

101094053423.00004.0

0086.01159.09222.02)(

96

5.746

5.435.1
3

r

rr

rrrru p

−

−
=

+

−+

−+−=

 
On Figure 8 we demonstrate the figures of 
solutions ,5.1=pu  ,2=pu  3=pu  and the 

influence of different values of p . 
 
 

6.2 The effect of change in δ   
Let us fix parameters ,n  ,γ  and :p   

 

,2
,8.0

,3

=
=
=

p

n

γ  

 

and evaluate the local analytic solution in the 
neighborhood of zero for  

 

.3 ,2 ,1=δ  
 

The solutions δu  for different values of δ  have 
the form 

 

1=δ   

,101850.0

102010.0103429.0

0018.00529.06235.02)(

127

10684

642
1

r

rr

rrrru

−

−−
=

+

−+

−+−=δ

 

 
� � 2   

,104990.0

0003.00016.00088.0

0462.02247.09568.02)(

144

12108

642
2

r

rrr

rrrru

−

=

−

+−+

−+−=δ

 

 
� � 3   

.1362.0

2040.03057.04581.0

6859.00306.16235.12)(

14

12108

642
3

r

rrr

rrrru

−

+−+

−+−==δ

 

 

On Figure 9 the graphs of ,1=δu  ,2=δu  and  

3=δu   are illustrated and we see the effect of δ  
for the shape of the solutions. 

 
Figure 9. 

 
 
6.3 The effect of change in γ  
Let us fix parameters ,n  ,p  and δ  as follows 

 

,5.1
,3
,3

=
=
=

δ
p

n

 

 

and evaluate the power series solution 
according to Section 4 for  

 

.9.0 ,4.0 ,1.0=γ  
 

The solutions γu  for different values of γ  have 

the form 
 
� � 0.1   

,104263.0102102.0

102868.0102463.00017.0

0537.07601.02)(

2/21896

2/155642/9

32/3
1.0

rr

rrr

rrru

−−

−−
=

−−

−−−

+−=γ

 
 
� � 0.4   

,109059.0104301.0

101916.0101395.00014.0

05889.07839.02)(

2/21796

2/155642/9

32/3
4.0

rr

rrr

rrru

−−

−−
=

++

++−

+−=γ
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� � 0.9   

.101465.0104372.0

108063.0101838.00014.0

0731.08339.02)(

2/21897

2/156642/9

32/3
9.0

rr

rrr

rrru

−−

−−
=

−+

++−

+−=γ

 
On Figure 10 we exhibit the figures of ,1.0=γu  

,4.0=γu  and .9.0=γu  We see that the influence 

of change of γ  very small. 

 
Figure 10. 

 
 
6.4 The effect of change in n  
Let us fix parameters n , ,γ  and δ  such as 

 

,2
,8.0
,5.2

=
=
=

δ
γ
p

 

 

and evaluate the local analytic solution in the 
neighborhood of zero for  

 

.6 ,4 ,2=n  
The solutions nu  for different values of n  have 
the form 
n � 2   

,101819.0

102737.0102987.0

103225.00298.0

2184.02119.12)(

3/355

1043/253

3/2025

3/103/5
2

r

rr

rr

rrrun

−

−−

−
=

−

+−

+−

+−=

 

 
n � 4   

,103999.0

106128.0108425.0

101089.00121.0

1122.07634.02)(

3/356

1053/254

3/2025

3/103/5
4

r

rr

rr

rrrun

−

−−

−
=

−

+−

+−

+−=

 

 
n � 6   

.101319.0

102259.0103568.0

105241.0106679.0

0724.05826.02)(

3/356

1053/254

3/20352

3/103/5
6

r

rr

rr

rrrun

−

−−

−−
=

−

+−

+−

+−=

 

 

On Figure 11 we present the figures of ,2=nu  

,4=nu  and .6=nu   

 
Figure 11. 

 
 
7 Conclusion  
For problem (9) the entire solutions can be 
evaluated under restrictions listed in (11). 
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In other cases (and in this case as well) we are 
able to show the existence of local analytic 
solution of initial value problem (9) and to give 
a method for the determination of the 
coefficients for convergent power series 
solution in the neighborhood of zero. We 
calculated the exact entire solutions and the 
power series solutions for different values when 
the parameters. The effect of change of 
parameter values was investigated. 
We remark, that the local solution can be given 
in the neighborhood of any Rr ∈0  and for 
different parameter values of ,p  ,n  ,α  ,γ  .δ   
Our future aim is to investigate the widest class 
of function f  such that there exists locally 
analytic solution to problem (7). 
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