WSEAS TRANSACTIONS on MATHEMATICS Gabriella Bognar and Erika Rozgonyi

The local analytic solution to some nonlinear diffusion-reaction

problems
GABRIELLA BOGNAR ERIKA ROZGONYI
Department of Analysis Department of Analysis
University of Miskolc University of Miskolc
3515 Miskolc-Egyetemvaros 3515 Miskolc-Egyetemvaros
HUNGARY HUNGARY
matvbg@uni-miskolc.hu matre@uni-miskolc.hu

Abstract:  -The  positive radially symmetric  solutions to the nonlinear problem
div(|Vu|p_2Vu)+ f(u)=0 in By ={xe R" : |x< R} 1<p<n, with fu)=u” +u® for u>0 are

considered. We examine the existence of local solutions and give a method for the determination of
power series solutions. The comparison of the local analytic and entire solutions is given for some
special values of parameters p,n, y and J .
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1 Introduction is valid, where P denotes pressure, C and
In a model for diffusion-reaction problem the o are positive physical constants.
concentration of the steady state satisfies If we consider the fluid as polytrophic gas then
we have the relation between the thermal
Apu+f(U)=0inQc R", (1) pressure P and the fluid density p as
where  Apu= div(|Vu|p_2Vuj is the p- P=ko? (4)
Laplacian of u, f is an increasing function. ~ WIith positive constant k. Here 7 is called
The equation above appears in the generalized polytrophic exponent. We note that for
reaction-diffusion theory [12] and in non- isothermal flows 7 =1 (7 =0 corresponds to
Newtonian fluid theory [10]. the isobaric flows). After changing variables
In the case of compressible fluid flows in a and making substitutions in equations (2-4) we
homogeneous isotropic rigid porous medium obtain
the continuity equation is given by B_U _ div(|Vu|p_2Vu).
00 . [ 7 ot . e
Ha—+d|v(,ov): 0, 2 The case p >2 is called slow diffusion and the
t _ ) . case 1< p < 2, the fast diffusion (see e.g., [20]).
where p denotes the density of the fluid, V When reaction term is added to the diffusion
the_ seepage velocity and € the volumetric then equation (1) appears in the steady-state
moisture content. case.
The linear Darcy’s_law is not valid here, since The asymptotic and numerical solution of
the moleqular and ion effects have to_ take m_to problem (1) has been attracted considerable
account in case of a non-Newtonian fluid. interest in the last decades (see [7], [18], [20]).
Therefore the nonlinear relation Nonlinear partial differential equation of type
- a-1 (1) was considered previously for different
pV = _C|VP| VP ®) function f. In paper [4] we considered function
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f(u) = (-2 |u|q_2u, i.e., the quasilinear

differential equation
ApU+ (=1)"|u|92u =0, u = u(x), x € R",

where n>1, p>1 and g>1, i=0,1 and
Apu=div(vuP?vu) s the

p — Laplacian ( ). If n=1, then the equation is
reduced to

[@,(y)) + D@y =0,
where for re {p,q}

so-called

0, fory=0.
Note that function &, is an odd function. For

n>1 we restrict our attention to radially
symmetric solutions. The problem under
consideration is reduced to

-2
cIDr(y)::{|y|r y, forye R\{0}

(t”"lcp IO(y’)) + (—1)itn_1<1>q (y)=0, on (0, a)
(%)
where a > 0. A solution of (5) means a function
ye cY(0, a) for which t”‘lcpp(y’)e cl(o, a)

and (5) is satisfied. We shall consider the initial
values

y(0)=A=#0,

6
y'(0)=0, ©
forany AeR .
For the existence and uniqueness of radial
solutions to (5) we refer to paper [17]. If n=1
and i=0, then it was showed that the initial
value problem (5)-(6) has a unique solution
defined on the whole R (see [8], and [9]),
moreover, its solution can be given in closed
form in terms of incomplete gamma functions

[9]. If n=1 i=0, Lindgvist gives some
properties of the solutions [16]. If n=1 and

P=d=2 then (5) is a linear differential
equation, and its solutions are well-known:

if =0, the solution (5)-(6) with A=1 is the
cosine function,
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if i=1, the solution (5)-(6) with A=1 is the
hyperbolic cosine function, and both the cosine
and hyperbolic cosine functions can be
expanded in power series.

In the linear case, when n=2, p=q=2, i=0,
the solution of (5)-(6) with A=1is Jy(t), the
Bessel function of first kind with zero order,
and for n=3, p=q=2, i=0 then the solution
of (5)-(6) with A=1is jo(t) =sint/t, called
the spherical Bessel function of first kind with
zero order.

In the cases above, for special values of
parameters n, p, ¢, i we know the solution in

the form of power series.

The type of singularities of (5)-(6) was
classified in [5] in the case when i=0, and
p=q. If n=1 then a solution of (5) is not

singular.

In paper [4] a method was presented for the
evaluation of local analytic solution for problem
(5)-(6) in the neighborhood of zero. Here we
intend to generalize that method for a more
general class of equations.

In this paper we consider the radial symmetric

solution u=u(x) for the problem

Apu+ f(u)=0 and u>0 in Bg, @)

where BR={X€ R" :|x|<R} l1<p<n and

¥ )
F(u) = u’+u® foru=0,
0 foru<O.

In the special case p=2, problem (7), i.e., the

semilinear problem with superlinear and
supercritical exponents was considered by Lin
and Ni in [15].

For p=2 the existence of solutions of (1) has

been examined in [1] and [19]. Moreover in [1],
the multiplicity of radially symmetric solutions
of the Dirichlet boundary value problem was

proved; namely, that there exists R* = R*(y,9)
such that the problem has at least two distinct

radial solutions if R > R" and at least one radial
solution provided R =R".
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We shall study the positive radial solution of
(7), i.e., the initial value problem (here r=|x| ):

Jp-2 .Y
rl_”(r”_l‘ur‘ urj +f(u)=0

in  (0,), €))
ur(0)=0, u(0)=a>0,
or equivalently,
,1p— p-2 .,
(p—l)‘ur‘ urr+” 1‘ r‘ u+ f(u)=0
in (0,00), )
ur(0)=0, u(0)=a=0.

We say that u=u(r) is a positive radial
solution of (7), if it solves the initial value
problem associated with (8) (or (9)) for some

a20, u(r)>0 for re(0,.) and
lim u(r)=0.

I —oo

We remark that (8) has singularity at zero if
n>p+1.

Our goal is to give the exact solution for the
initial value problem of (8) (or (9)) for some
special values of the parameters. Moreover, we
examine the existence of local solution to the
initial value problem of (9) and we give a
method for the determination of the power
series solution for given values of parameters
p, n,a, y and &. We shall compare the
exact and power series solutions and find the
error for special values of parameters.

2 Posgtive entire solution

Positive entire radial solution of
Apu+ f(u)=0 (10)

is a function u =u(r) which solves (9) for some

a>0, u(r)>0 for re(0,») and
limu(r)=0. Moreover, we suppose that
—o0

p—l<y<p -1 and &>p" -1, p*:nnTpp,

the exponents y and ¢ satisfy

ISSN: 1109-2769

384

Gabriella Bognar and Erika Rozgonyi

Bl 0y and s=y+ L
Y= (p-1 an 7+ﬁ

11
7 (11)

where

pefe9pn )

ie., 7:%,

Proposition 1. Let p, p’, n, B, 7, 6, and f
be as above. Set
1

a= - i (13)
-1
((/ﬂlip )
, 1
b= (n_(ﬂ+1) p)p (ﬂ pJp_l’ (14)
(B+1) p (p-1
b s
u(r):a[ j . (15)
b+rP

Then u is a positive entire solution of (10)

From straight forward computations we get

rl_”(r - u(r)),:
[gpan

)(,B+1)( p-1)+1

(n(b+r )— (,B+1)prp)

s

moreover,
u7(r)+u5(r) =

(B+1)(p-1)

1

(b+rID

(A+)(p-1)
a B pBD(p-Dp

(b o pf)(ﬂ+1)( p-1)+1

, )(ﬁ+1)( p-1)+1

+

To fulfill equation (8) we must have

Issue 6, Volume 7, June 2008



WSEAS TRANSACTIONS on MATHEMATICS

(B+D(p-D)

1
a IB b(ﬂ+1)(p1)[1+ aﬂ}

= (ﬂp’abﬂ )p_ln

B+Dplaans P = (gans P

(B+)(p-1)
_a B pBN(p-D
From here we get for parameters a and b the
same as in (13) and (14). Both constants fit with
the case p=2 investigated in [15] for the
B2
B
For the determination of the exact solution of

(7) we refer to the paper by Bognar and Drabek
[1].

and

choice 8 = , p=2.

3 Theexistence of local solution

We shall form problem (9) as the system of
special Briot-Bouquet differential equations.
For this type of differential equations we refer
to the book by E. Hille [13] and E. L. Ince [14].

Theorem 2. (Briot-Bouquet Theorem) Let us
assume that for the system of equations

Eat=uEn(6).2,())
(16)

ETE =026 (9. 22(9))

where functions u; and u, are holomorphic
functions of &, z(&), and z,(£) near the
origin, moreover y(0,0,0)=u,(0,0,0)=0,
then a holomorphic solution of (16) satisfying
the initial conditions z;(0) =0, z,(0)=0 exists
if none of the eigenvalues of the matrix

| m
%l0,0,0) 9221(0,0,0)
wl

% 0,0,00 922l(0,0,0)
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is a positive integer.

For a proof of Theorem 2 we refer to [6].

The differential equation (9) has singularity at
r =0 for the case n>1. Theorem 2 ensures the
existence of formal solutions

7=y aéandz, = Y b
k=1 k=1
for system (16) and it provides the convergence

of formal solutions.

Theorem 3. For any P, 7, 6, N as above, the
initial value problem (9) u(0)=«, u’(0)=0
has an unique analytic solution of the form
u(r):Q(rp/(p_l)) in (0, A) for small real
value of A, where Q is a holomorphic solution
to

_p+l 5
r P Q”+Q
Q/ p—l

, -1
p(+1/p)P*t

n - ,
_ r (1+1/ p)Q
po
near zero satisfying

1
a’ +a° P
- :

Q0) =, Q) 1‘7"[

Proof. We shall now present a formulation of
(9) as a system of Briot-Bouquet type
differential equations (16). Let us take solution
of (9) in the form

u(r):Q(ra), re(0,A),
where Qe C2(0,a) and o>0. Let us take
u(r) = Q(r") into (9) we obtain

Q7 +Q5 r_p (0-_1)
Q1P (p-1oP

Q)=
17)

_n-1+(p-1(c-1) o0’

(p-Do

and substituting & =r° we have
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o-1

Q7+Q? £F o
Q1P (p-DoP

Q"(4) =

(18)
_n-1+(p-D)(0-1) sy,
e

Here, we introduce function Q as follows
Q(&) =090 +9i¢ +F (&), (19)

where F e CZ(O,a),
F(0)=0, F’(0)=0.

Therefore we have

Q(0) = go, Q'(0) = 91,

Q&) =91 +F'(§), Q") = F"(©&).
From initial condition u(0) = & we have that
Jp = 0.
We reformulate (18) as a system of equations:

1(£) = F($),
25(£) = F'($),

with initial conditions
71(0)=0,
z,(0) = 0.

According to (17) we get that
o1,

Fig)=—°

m G(f’ 4, 22)

_n-1+(p-1(c-1)
(p-Do

oo+ 98+ FEV +lgo + 016 +FEF

gy +F/(&))

G(..\.)

g1+ F'(©)"°

We generate the system of equations
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w@a@ﬂﬂ@=§4@}
uz(§ (), 22(6) = £ 22()

as follows

u($,21(8),22(8) =S 2

1_0-7_1 p

U2(§¢1(§)¢2(§))=—§ 5 G 7, 25);.
(p-Do

—%ﬂ"‘”(gﬁq(f))
In order to satisfy conditions u;(0,0,0)=0 and
u,(0,0,0) =0 we must get zero for the power
of & in the right-hand side of the second
equation:

p(c -1)
1- 5 =0,
i.e.,
__ b
O = —p_ 1
To ensure Uuy(0,0,00=0 we have the
connection
2 (p-1 p-1
nmwﬂ“'+ﬂjgﬂ (0 +0¢)=0,
ie.,
5\p
/4 p—
1-p| 95 +90
gl—p[ 0 J . (20)
p n

Therefore, we obtain

1
71,9 \p-1
1-pl @’ +a
91=—p[ J : (21)
p n

From initial conditions u(0)=a #0, u’(0)=0,
and (19) it follows that gg = a.

For u; and up, we find the following partial
derivatives at (0,0,0)

o,
910,0,0)
wl g
921 (0,0,0)

Issue 6, Volume 7, June 2008



WSEAS TRANSACTIONS on MATHEMATICS

ou, .
nlpo0 (p-Dogf >
duy __n(p-1

921(0,0,0) P

Therefore the eigenvalues of matrix

8u1/821 aU]_/aZz
8u2 /aZ]_ aUZ /822

at (0,0,0) are 0 and —n(p—1)/ p. Since both
eigenvalues are non-positive, applying Theorem
2 we get the existence of unique analytic
solutions z; and z, at zero. Thus we get the
analytic solution

Q) =g+ 915 +F(S)
satisfying (17) with
Q(0) =9o.
Q(0) =gy,

where gp =« and g, is determined in (21).

Corollary 4. From Theorem 3 it follows that
solution u(r) for (9) has an expansion near
zero of the form
o kp
=3 g r°
k=0

satisfying

u(0) =«,
and

u’(0)=0.

4 Determination of local solution near
Z2ero
This section is devoted to the construction of
the power series solution for (9) with initial
conditions

u@@)=a>0,

u’(0)=0.

We seek a solution of the form

(22)
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Lj
+gor (p_ +..., >0,

(23)

P
u(r)=gg+gy rP

with coefficients gy € R, k=0,1,....
From Section 3 we get the first two coefficients:

Jo=a >0,

and
1

1-p a? +af P
Q=" :
p n
We assume that

u(r)>0 (24)
and

u’(r)<o0 (25)
in the neighborhood of zero. Since

and function f(s) :s|s|'0_2 is an odd function
(se R), then we can write

un)P P =—u )P (26)

(NP2 (r) =

P Z(Lj
—r P+ R rPrapr P |

moreover,

r1—n(rn—1

u'(r)| ID_Zu'(r)j, =
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P
rP1_ .

Y
=|—-Pn-P|n+——
’ 1( p—lj

bt

—Pk(n-i-&

where coefficients B, will be expressed in
terms of g, (k=0,1...). Now, u”(t) and
u‘s(t) can be written in the form

P 2(Lj g
+gor P4

u’(t)=|go+gyrP

p Z(L)
=Gy +G rP 4G, r \P 4
)
p 2(Lj
u)=|go+grPl+g,r P4
N (Lj
=Dg+D rPlap,r \PU 4
where coefficients Gy and Dy can be

expressed in terms of g, (k=0,1,...) and 7,

o0 , respectively

Substituting them into the equation (9) we
compare the coefficients of the proper powers
of r and we find that

kp _

for k >0.

Applying the J. C. P. Miller formula (see [11])
we derive B, Gy and Dy (k=0,1...) in the
forms

k-1

Y lk-§)y-ilGjok-j.
j=0

6-L

” (28)

1k
D =1~ Y lk-i)0-ilDjge-j (29

1=0
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k-1

i ; kK+1-]j
j=0 01
(30)
for k>1, and
Go = 9§,
Do = 9§,

p—1
p
Ph=|-g—— .
0 (glp_J

From (27) we obtain coefficients
k>2:

gk for
90 =@,

1
~ p—l[a7’+a5Jp‘1

1= 0 n

3-p
p—1 (¥ +o° P y +8a°
g2 =
p n 2o(np—n+p)

Example 1. Let us consider the solution of (9)
with parameters

Using software MAPLE we obtain the

coefficients of the power series solution
< 2k
u(r)=> gk r
k=0

from recursive formulas (27)-(30) as follows

go = 2.3233,
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gy =-1.7101,
g, =1.2047,
g3 =—0.8505,
g4 =0.6013,
g5 =—0.4254,
gg =0.3011

Therefore, we have the local analytic solution
of the form

u(r) =2.3233-1.7101r2 +1.2047r*

—0.8505r% +0.6013r8 —0.4254r%  (31)

+0.3011r2 —0.21318r + ...

We keep parameters n, y and ¢ fixed and
evaluate the power series solution for different
values of p. The value of the radial solution of

(9) at 0 denoted by gq will be considered

in each cases (as it was done in Example 1 as
well). This value is the same as parameter value
a in the formula (15) of the exact solution (see
Section 2).

Example 2. Evaluate the power series solution
of (9)-(22) with parameters

p=1.8,
n=>5,
y=1.8,
0=3

o =1.7380.

After making calculations from the recursive
formulas we have the solution in the form

u(r) =1.7380-0.7941r"** +0.4053r > %®
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—~0.2137r*%2 4+0.1145r>70 —0.0619r 2 (32)
+0.0337r804 _0,0184r1098 1

Example 3. Evaluate the power series solution
of (9)-(22) with parameters

p=22,
n=>5,
y=1.8,
0=3

o = 3.2884.

From formulas (27)-(30) we shall obtain the
solution in the form

u(r) =3.2884—3.3458r>%4 + 2.8728r>28

—2.3882r 792 +1.9539r'0-% _1 58271320 (33)
+1.2732r84 _1 01011848 |

We note that in this section we have assumed
that u=u(r) satisfies (24) and (25). If we
assume that

ur) >0
and

u'(r)>0
in the neighborhood of zero, then we have the
following modified version of (26)

w(nP ) =[P

and
rnPt=

p p-1

r gli+gzﬁrp_1+... =

p-1 p-1

P Z(LJ
(P+RrPrepr \P U4 |

In this case the connection between B, and
Gk, Dy simplifies to the form
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Pk[n+£j+6k +Dy =0

(34)
for k=0
and moreover,
GO - gg)/a
Do = 9§,

With these changes we can determine the
coefficients gg, o7, ... 9k, ... of the power
series solution.

5 The comparison of exact and local
analytic solutions

In the previous three examples we gave
approximate solutions to the problem (9) in the
neighborhood of zero. The parameters p, n, ¥
and o were chosen such a way to fulfill
conditions (11) in Proposition 1. It means that
for such specific values entire solution of the
problem (9)-(22) exists. Now we consider
problem (9) with the same values of n, y and

o0, (i.e., with the same parameter value S =%)

and with different values of p (namely
p=18, 2, 22).

Using Proposition 1 the entire solutions for all
three cases can be determined with the
calculated parameter values by using (13)-(15).
In Example 1 the parameters are the following:

p=2

a=2.3233,

b =0.8081,

B =516,

p'=2

and the exact solution can be given as follows
5
u(r) = 2.3233[%)6 (35)
0.8081+r

(see Fig. 1).
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37

2,51

1,57

0,57

GIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

1,5 2,5

r
Fig.1. Entire solution for p=2
Hence, we have the possibility to compare the
two solutions, i.e., (31) with (35). On Fig. 2. the
difference between the exact (31) and local
analytic solutions (35) are represented.

0,02+

0,015

{0 e sy s s e s s s W s s s W R e s e e |

0 0,05 0,1 0,15 o2

r
Figure 2.

In Example 2 the parameters are
p=18
a=1.7380,

b =1.4275,
B =516,
p'=1.44
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and the exact solution can be given as follows p=22
5 a=3.2884,
— 6
u(r) = 1,7380(%J (36) b =0.3227,
1.4275+r~ B=5186,
(see Fig. 3). p’ = 2.64,
21 and the exact solution can be given by
] 5
] — 6
i u(r)= 3.2884(%} (37)
E 0.3227+r“
] (see Fig. 5).
i
- 4_
0,57 :
)
G rrrrrrrrrrrrrTrrrrrrrrrrrrr 11Tl ]
o} 0.5 1 1,6 2 2,5 3
; ]
Fig.3. Entire solution for p=1.8 21
The difference between the entire and power
series solution is exhibited on Fig. 4. i
0,027
GIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
| o} 0.5 1 1,6 2 2,5 3
0,015 '
] Fig. 5. Entire solution for p=2.2
i The difference between solution (33) and (37) is

illustrated on Fig.6.

1 On Fig.1, Fig.3 and Fig. 5 we see that the
ey shapes of the solutions of the initial value
problem (9) differ considerably if we keep the
parameters the same and only value of p is

|9 S S S R R B B B N B B B B R e e | Val‘il’]
o] 0,08 0.1 0,15 02 y g

r
Figure 4.

In Example 3 the parameters are
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0,02
0,015
0,014

0,005

G T T T T T T T T T T T T T T T T T T T 1

0 0,05 015 0z
r

Figure 6.

In Fig. 7 the entire solutions of (9) are
illustrated for the examined three cases.

i
1 22

o

1 g2

Ul =8

-I_
GIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
] 0,5 i 1,5 2 2,5 )

r
Figure 7.

6 Perturbation analysis

In this section we intend to discuss the
influence of change of parameters for the
analytical solution of initial value problem (8).
We present the power series solutions for
different values of parameters n, p, », and o.

From the four parameters we always fix three
ones and allow to change only one. For all
investigated cases we take sublinear and
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superlinear exponents in function f, i.e., <1,
and 8 >1, and we fix the initial value of the

solution at zero:
a=2.

6.1 The effect of changein p
Let us fix parameters n, », and J':

n=3,
y=20.8,
o=2,

and evaluate the power series solution

according to Section 4 for
p=15, 2, 3.

The solutions up for different values of p
have the form:

p=15
Up=y 5(r) = 2-1.2207r® +0.6095r° — 0.3047r°
+0.1526r*2 —0.0765r%° +0.0384r*® —0.0193r??,
p=2
Up= () = 2-0.9568r2 +0.2247r* —0.4616r°
+0.0886r —0.0016r'° +0.0003r2,

1,8
1,8]
- =15
1,47
] p=2
¥y 2] p=3
i
0,8
0,67
3 T 1r 1 rrrr1rrrrrrrrrrrr1r1r 11111711
0 02 0.4 0.8 0.8 1
r
Figure 8.
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p=3
Up=3(r) = 2—0.9222r° +0.1159r® - 0.0086r *°
+0.0004r° —0.1094053423104r "
+0.8781107°r°,

On Figure 8 we demonstrate the figures of
solutions  Up_15, Up—p, Up—3 and the

influence of different values of p.

6.2  Theeffect of changein 6
Let us fix parameters n, 7, and p:

n=3,
y=10.3,
p=2,

and evaluate the local analytic solution in the
neighborhood of zero for

0=123.

The solutions u for different values of 6 have
the form

5=1
Ug_1(r) =2—-0.6235r% +0.0529r* —0.0018r°

+0.3429107%r% - 0.20101075¢10
+0.185010" " rt2,

5§=2
Ug—p(r) = 2—0.9568r2 +0.2247r* — 0.0462r®
+0.0088r® —0.0016r19 + 0.0003r!2
~0.49901074r14,

5§=3
Ug—g(r) = 2—1.6235r2 +1.0306r* - 0.6859r°
+0.4581r8 —0.3057r'° + 0.2040r1?
—0.1362r'4,

On Figure 9 the graphs of us_;, us—p, and
us—3 are illustrated and we see the effect of ¢
for the shape of the solutions.
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delta=1

1,51

1 delta=2
L delta=3

0,57

{1 s s S s B S B e e e

0 0,2 04 0.6 0a 1

r
Figure 9.

6.3 Theeffect of changein y
Let us fix parameters n, p, and J as follows

n=3,

p=3,

0=15,
and evaluate the power series solution
according to Section 4 for

y=0.1, 0.4, 0.9.

The solutions u,, for different values of y have
the form
y=0.1

Uy—g1(r) =2-0.7601r¥2 +0.0537 r3

~0.0017 r¥'2 - 0.2463107*r® -~ 0.286810°r'>/2
~0.210210%r° —0.42631078r%/2,

y=0.4
Uy—0.4(r) =2-0.7839 32 + 005889 r

—0.0014r%2 +0.139510~4r8 +0.1916 10751572
+0.430110°%r% +0.905910 7 r21/ 2
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y =0.9 Unep (1) =2-1.2119r%/3 4+ 0.2184r10/3
Uy—gg(r)=2-0.8339 r¥2 +0.0731r° —0.0298r° +0.32251072r20/3
~0.0014r%/2 +0.18381074r® +0.80631076r15/2 ~0.298710°3r%/3 4 0.27371074r1°
+0.4372107"r® - 0.146510 82/ 2 ~0.1819107°r3/3,
On Figure 10 we exhibit the figures of u,_g 1, n=14
Uy—0.4. and Uy,_gg. We see that the influence Uneg(r) =2 —0.7634r°73 4+ 0.1122710/3
of change of y very small. —0.0121r° +0.1089102r20/3

—0.8425104r?/3 £ 0.6128107°r10
—0.3999106r35/3,

n==56
Unzs(r) =2-0.5826 r°/%+0.0724 (1073
~0.66791072r° +0.524110~3r20/3
~0.356810"*r?*/3 +.0.2259107°r'°
~0.13191076¢%5/3,

On Figure 11 we present the figures of u,_,,
Un=4, and up_g.

i s s s s e s e s e e s s S e e |

o] 02 04 0.6 eR) 1
r o
Figure 10. A
6.4 The effect of changein n 13
Let us fix parameters n, », and § such as
p=2.5, T
y=10.3,
o0=2,

and evaluate the local analytic solution in the %5
neighborhood of zero for
n:2’4’6. GIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
The solutions u,, for different values of n have & Re 8 S8 BR d W
r
the form Figure 11.
n=2

7 Conclusion
For problem (9) the entire solutions can be
evaluated under restrictions listed in (11).
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In other cases (and in this case as well) we are
able to show the existence of local analytic
solution of initial value problem (9) and to give
a method for the determination of the
coefficients for convergent power series
solution in the neighborhood of zero. We
calculated the exact entire solutions and the
power series solutions for different values when
the parameters. The effect of change of
parameter values was investigated.

We remark, that the local solution can be given

in the neighborhood of any rpe R and for

different parameter values of p, n, a, 7, J.
Our future aim is to investigate the widest class
of function f such that there exists locally

analytic solution to problem (7).
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