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Abstract: This paper deals with an inverse problem concerning the identification of the heat exchange coefficient H
(assumed depending on the temperature) between a certain material with the external environment (see, e.g., [12],
[20] for real applications modelled with equations involving this coefficient). Only experimental measurements of
the temperature are supposed to be known. The goal is to identify H in order to get a solution for the corresponding
model, approximating some given temperature measurements. The main difficulty is that we consider the case
of functions H depending on the solution of the state equation. We begin by setting several scenarios for the
inverse problem. For each scenario, we know the initial and ambient temperatures, we identify function H through
different methods and we obtain error bounds in adequate norms (uniform and square integrable). Finally, we
study the inverse problem in the framework of the classical theory for Hilbert spaces. Several methods are used
(Tikhonov, Morozov, Landweber,. . . ) and the approximations obtained, as well as the one provided by our method,
are shown.

Key–Words: Function identification, Inverse Problems, Heat exchange, Regularization strategies.

1 Description of the inverse problem
and their physical motivation.

Let us suppose we have a homogeneous sample of a
material that is getting warm (respectively, cool) due
to heat exchange with the external environment. Com-
plex models based on partial differential equations are
needed to describe the distribution of the tempera-
ture inside the sample. These equations (direct equa-
tions) involve functions and parameters that need to
be known before we can compute solutions. Typi-
cally, these functions and parameters are computed
either by experimental methods or, as in this work,
by solving inverse problems in suitable mathematical
frameworks (see, for instance, [5], [6], [7], [10]).

An experimental procedure was proposed in [24]
based on a genetic algorithm for determining a heat
transfer coefficient. In [1] and [18] some methods
based on inverse analysis are developed in order to

identify the heat transfer on a machine tool surface.
A method for the determination of the heat transfer
coefficient was proposed in [21] for the first falling
drying period of potato cubes where heat and mass
transfer were considered as coupled phenomena. In
[8] an identification problem for the heat transfer co-
efficient in foods during freezing using cooling curves
obtained from an industrial survey is solved. The dif-
fusion coefficient is supposed to be constant in all the
works cited in this paragraph, which do not use reg-
ularizing algorithms able to compensate the sensitiv-
ity of the identification process to experimental mea-
surement errors, as it is done in this paper. Other ap-
proaches in inverse problem theory can be seen in [2],
[11] and [13]

For parameter identification, the least squares
method may provide a good tool for solve inverse
problems (see, for instance, [12]). When the goal is to
identify a function, the problem becomes more com-
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plicated, especially if the function depends on the so-
lution of the state and experimental data can be given
with measurement errors.

For simplicity, let us suppose that the sample is
small enough to be able to assume that the tempera-
ture gradient inside it is negligible. The Newton Cool-
ing Law provides a simple mathematical model de-
scribing this phenomenon through the following ini-
tial value problem (direct problem):

{
T ′(t) = H(T (t))(T e − T (t)), t ≥ t0

T (t0) = T0,
(1)

where T (t) is the temperature of the sample at time t,
T e is the external environment temperature, T0 is the
temperature at the initial time t0 and H is the temper-
ature dependent heat exchange coefficient. To solve
problem (1) we need to know the model data: con-
stants T0, T

e ∈ R and function H(·) : (Ta, Tb) → R,
where (Ta, Tb) is a range of temperatures suitable for
the problem we are considering.

In real cases, the values of T0 and T e can be ob-
tained through simple devices measuring temperature.
However, obtaining function H(·) is not so easy by
experimental methods.

The goal of this work is to solve the inverse prob-
lem of identify H(·), knowing just certain experimen-
tal measurements of temperature. The main difficul-
ties are the following:

• The function H(·) to be identified depends on the
temperature T, which is the solution of the state
equation.

• Temperature data may be given with a certain er-
ror due to measurement equipment accuracy lim-
itations.

In this paper we develop, in a rigorous mathemat-
ical way, suitable strategies for identifying the heat
transfer coefficient when it is a function with such a
kind of dependency. A numerical algorithm is also
developed in a framework different from that of the
Classical Theory. Other works regarding numerical
approaches for inverse problems can be seen in [9],
[14], [15], [22].

In some contexts, and under certain conditions, it
can be assumed that H has a known expression (e.g.,
H constant or a function with a few real parameters to
identify). The challenge that we face in this work is
to identify function H when continuity and positivity
are the only information available about H .

2 Scenarios of the inverse problem.

The model is not very sensitive to changes in H(s) for
s close to T e in the following sense: if for some tµ,
T (tµ) = T e − µ then, monotonicity of T implies that
T remains in the interval [T e−µ, T e] for every t ≥ tµ
and arbitrary values of H. For this reason, it is unreal-
istic (and unnecessary) pretend to identify H near T e.
These considerations lead us to pose the problem of
identifying function H as follows:

i) A threshold µ > 0, depending on the admissible
error in the approximation of the temperature, is
fixed so that the identification of H in the inter-
val [T e−µ, T e] is not part of our goal. From this
threshold, a time tf = tf (µ, T0, T

e,H) is deter-
mined (by arguments explained later) such that

|T e − T (t)| < µ, t ≥ tf . (2)

Thus, the error in the temperature will be smaller
than µ for t ≥ tf .

ii) We use model (1) in [t0, tf ] and identify H in
[T0, T (tf )] ⊃ [T0, T

e − µ].

According to the available information about T (t) in
[t0, tf ] we set the inverse problem in several scenarios:

• The trivial (and unrealistic) case is to suppose
that functions T (t) and T ′(t) are known in
[t0, tf ]. Then, assuming H ∈ C([T0, T (tf )]) and
positive, we can identify H in a direct way from

H(s) =
T ′(T−1(s))

T e − s
. (3)

• If function T can be evaluated without error
in a finite number of arbitrary instants t ∈
[t0, tf ], the identification of H in [T0, T (tf )] be-
comes a standard problem of numerical differen-
tiation (in order to approximate T ′(t) from data).

• Next scenario arises when a function T̃ , repre-
senting an approximate value of the tempera-
ture in every instant, is supposed to be known.

• However, in a realistic context, only discrete val-
ues T̂k approximating the temperature at some
instants are available.

For the last two scenarios we use a “stable” method to
approach T ′(t) from data. Then, formula (3) provides
discrete values approximating H in points of interval
[T0, T (tf )].

Let us see how to determine tf satisfying (2) in
the non trivial situations described before:
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a) In the second scenario, given p + 1 exact val-
ues {T0, T1, . . . , Tp} of the temperature at instants
{τ0 = t0 < τ1 < · · · < τp}, we consider
µk = T e − Tk. Then µ is chosen as one of the
values µk or any number smaller than all of them.
We take tf = τm, where

m =





p, if µ < µk for all k.

min
k
{µ = µk}, otherwise.

(4)

b) The assumptions in the third scenario are that func-
tion T̃ is known in some interval [t0, t∗] and

∣∣∣
∣∣∣T − T̃

∣∣∣
∣∣∣
C([t0,t∗])

< δ,

where δ < µ (if µ ≤ δ we would need to increase
the value of µ). Then, we consider tf as

tf=





t∗, if T̃ (t) < T e − µ + δ for all t ≤ t∗

min
t
{T̃ (t) = T e − µ + δ}, otherwise.

(5)

c) Finally, in the fourth scenario, tf is defined in a
more sophisticated way. Measurements {T̂k}p

k=0

such that |T (τk)− T̂k| < δ̂, with δ̂ > 0, are avail-
able. Let T̃ be an interpolation function of values
{T̂0, T̂1, . . . , T̂p} in {τ0, τ1, . . . , τp} such that

∣∣∣
∣∣∣T − T̃

∣∣∣
∣∣∣
C([τ0,τp])

< δ

for some δ > 0, and take µk = T e − T̂k + δ for
k = 1, 2, . . . , p. Now, we assume that µ > 3δ
(otherwise, the value of µ will be increased) and
that µ is lower or equal than all previous values
µk. Then, taking m as in (4), we may define

tf = τm. (6)

3 A first approach to the inverse
problem.

3.1 Identifying from a finite amount of exact
values of temperature.

Given n ∈ N, the values of the temperature T at tk =
t0+kh for k = 0, 1, . . . , n, are supposed to be known,

where h =
tf − t0

n
. Lets denote Tk = T (tk), k =

0, 1, . . . , n. The differential equation of problem (1)
can be rewritten as

T ′(t)
T e − T (t)

= H(T (t)), t0 < t < tf . (7)

Therefore, our goal is to find, for k = 0, 1, . . . , n, an
approximation H̃k of

T ′(tk)
T e − T (tk)

,

which is also an approximation of H(Tk). Consider-
ing the first order approximate differentiation operator
Rh : C([t0, tf ]) → C([t0, tf ]) given by

Rh(v)(t) =





Φh(v)(t), t ∈ [t0, t̂]

Ψh(v) + Φh(v)(t− h), t ∈ [t̂, tf ]

where t̂ = tf − h,

Φh(v)(t) =
v(t + h)− v(t)

h

and

Ψh(v) =
v(tf )− 2v(tf − h) + v(tf − 2h)

h
.

Let us denote by ||·|| the norm in C([t0, tf ]). The fol-
lowing result holds:

Lemma 1 If v ∈ C2([t0, tf ]) then

∣∣∣∣v′ −Rh(v)
∣∣∣∣ ≤ 7h

2

∣∣∣∣v′′∣∣∣∣ .

PROOF. Taylor expansion provides

v(t + h) = v(t) + hv′(t) +
h2

2
v′′(ξ), t ∈ [t0, tf − h],

where ξ ∈ (t, t + h). Then

v′(t)−Rh(v)(t) = −h

2
v′′(ξ) ≤ h

2

∣∣∣∣v′′∣∣∣∣ .

On the other hand, for t ∈ [tf − h, tf ] it follows

v(t− h) = v(t)− hv′(t) +
h2

2
v′′(η)

and
−2v(tf − h) + v(tf − 2h)

= −v(tf ) + h2

(
2v′′(ζ2)− v′′(ζ1)

)

for some η ∈ (t − h, t), ζ1 ∈ (tf − h, tf ) and ζ2 ∈
(tf − 2h, tf ). Therefore,

v′(t)−Rh(v)(t) = h

(
1
2
v′′(η)− 2v′′(ζ2) + v′′(ζ1)

)

≤ 7h

2

∣∣∣∣v′′∣∣∣∣ . 2
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In order to approach H(Tk) we take

H̃k =
Rh(T )(tk)
T e − Tk

,

for k = 0, 1, . . . , n. Thus, the following bound for the
error is obtained:

Proposition 2 If T ∈ C2([t0, tf ]) then

max
k=0,1,...,n

∣∣∣H(Tk)− H̃k

∣∣∣ ≤ 7M2

2µ
h, (8)

where M2 = ||T ′′|| .
PROOF. Monotonicity of T implies

T e − Tk ≥ T e − T (tf ) = µ.

Now, it suffices to apply Lemma 1. 2

Remark 3 Note that this estimate for the error in H
has the same order as the approximate differentiation
method used. Thus, if an upper order method is cho-
sen, the estimate (8) will be better. 2

Remark 4 As noted at the beginning of Section 2, tf
is fixed, a priori, from the value of µ. Then, the bound
in estimate (8) does not blow up. 2

3.2 Identifying from a function that approx-
imates the temperature.

In this context, we suppose to know a function
T̃ ∈ C([t0, tf ]), where tf is chosen according to (5)
and ∣∣∣

∣∣∣T − T̃
∣∣∣
∣∣∣ < δ (9)

for some δ ∈ (0, µ). For the sake of simplicity and
consistency with the properties of T, we assume that
T̃ (t) ≥ T0, t ∈ [t0, tf ]. From (7), we define

u(t) =
T ′(t)

T e − T (t)
, t0 < t < tf

and the approximation

ũh(t) =
Rh(T̃ )(t)

T e − T̃ (t)
, t0 < t < tf .

Next, an error estimate is obtained:

Proposition 5 If T ∈ C2([t0, tf ]) and T̃ ∈ C([t0, tf ])
satisfies (9) with 0 < δ <

µ

3
, then

||u− ũh|| ≤ 1
µ− 2δ

(
7M2

2
h

+
3δ

h

T e − T0 + µ− 2δ

µ− 3δ

)
.

(10)

PROOF. Note that

u(t)− ũh(t) =
T ′(t)−Rh(T )(t)

T e − T (t)

+ Rh(T )(t)
T (t)− T̃ (t)

(T e − T (t))(T e − T̃ (t))

+
Rh(T )(t)−Rh(T̃ )(t)

T e − T̃ (t)
.

Monotonicity of T and (5) give




T e − T (t) ≥ T e − T̃ (tf )− δ = µ− 2δ

T e − T̃ (t) ≥ T e − T̃ (tf )− 2δ = µ− 3δ.
(11)

¿From Lemma 1, the first part of the right hand term
can be bounded by

7h

2(T e − T (t))

∣∣∣∣T ′′∣∣∣∣ ≤ 7M2

2(µ− 2δ)
h.

In order to estimate the second and third parts, we con-
sider the following two cases:

a) Let t ∈ [t0, tf − h]. Since

|Rh(T )(t)| ≤ T (tf )− T0

h

≤ T̃ (tf ) + δ − T0

h

=
T e − T0 − µ + 2δ

h
,

then ∣∣∣∣∣Rh(T )(t)
T (t)− T̃ (t)

(T e − T (t))(T e − T̃ (t))

∣∣∣∣∣

≤ T e − T0 − µ + 2δ

h

δ

(µ− 2δ)(µ− 3δ)

=
δ

(µ− 3δ)h

(
T e − T0

µ− 2δ
− 1

)
.

For the third part, since
∣∣∣Rh(T )(t)−Rh(T̃ )(t)

∣∣∣

≤ 1
h

(∣∣∣T (t + h)− T̃ (t + h)
∣∣∣ +

∣∣∣T (t)− T̃ (t)
∣∣∣
)

≤ 2δ

h
,

then ∣∣∣∣∣
Rh(T )(t)−Rh(T̃ )(t)

T e − T̃ (t)

∣∣∣∣∣ ≤
1
h

2δ

µ− 3δ
.
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b) Let t ∈ [tf − h, tf ]. Since

|Rh(T )(t)| ≤ 2(T (tf )− T0)
h

+
T (tf )− T0

h

≤ 3(T̃ (tf ) + δ − T0)
h

=
3(T e − T0 − µ + 2δ)

h

then
∣∣∣∣∣Rh(T )(t)

T (t)− T̃ (t)

(T e − T (t))(T e − T̃ (t))

∣∣∣∣∣

≤ 3(T e − T0 − µ + 2δ)
h

δ

(µ− 2δ)(µ− 3δ)

=
3δ

(µ− 3δ)h

(
T e − T0

µ− 2δ
− 1

)
.

Finally, since
∣∣∣Rh(T )(t)−Rh(T̃ )(t)

∣∣∣

≤ 1
h

(∣∣∣∣T (tf )− T̃ (tf )
∣∣∣∣

+2
∣∣∣∣T (tf − h)− T̃ (tf − h)

∣∣∣∣

+
∣∣∣∣T (tf − 2h)− T̃ (tf − 2h)

∣∣∣∣

+
∣∣∣∣T (t)− T̃ (t)

∣∣∣∣

+
∣∣∣∣T (t− h)− T̃ (t− h)

∣∣∣∣
)

≤ 6δ

h
,

we obtain
∣∣∣∣∣
Rh(T )(t)−Rh(T̃ )(t)

T e − T̃ (t)

∣∣∣∣∣ ≤
1
h

6δ

µ− 3δ
.

All this leads to
||u− ũh||

≤ 7M2

2(µ− 2δ)
h +

3δ

(µ− 3δ)h

(
1 +

T e − T0

µ− 2δ

)

=
1

µ− 2δ

(
7M2

2
h +

3δ

h

T e − T0 + µ− 2δ

µ− 3δ

)
. 2

The following result determines how to optimize
the above estimate by choosing a suitable step time h:

Proposition 6 Under the assumptions of Proposi-
tion 5, the minimum value for the right hand side
in (10) is obtained for

h∗ =

√
6(T e − T0 + µ− 2δ)

7(µ− 3δ)M2
δ. (12)

In this case, estimate (10) becomes

||u− ũh∗ || ≤ 1
µ− 2δ

√
42M2(T e − T0 + µ− 2δ)

µ− 3δ
δ.

PROOF. It suffices to note that function

g(x) = c

(
ax +

b

x

)
, x > 0

with a, b, c > 0, attains his minimum value at point

xmin =

√
b

a

and g(xmin) = 2c
√

ab, taking

a =
7M2

2
, b = 3δ

(
T e − T0 + µ− 2δ

µ− 3δ

)

and
c =

1
µ− 2δ

. 2

¿From Proposition 6, choosing h∗ as in (12), tak-

ing n as the entire part of
tf − t0

h∗
, denoting tk =

t0 + kh∗, T̃k = T̃ (tk) and

H̃k = ũh∗(tk) =
Rh∗(T̃ )(tk)

T e − T̃k

for k = 0, 1, . . . , n, we obtain the main result of this
section:

Theorem 7 If H ∈ C1([T0, T
e]) and T̃ ∈ C([t0, tf ])

satisfies (9) with 0 < δ <
µ

3
, then

max
k=0,1,...,n

∣∣∣H(T̃k)− H̃k

∣∣∣ ≤ δ
∣∣∣∣H ′∣∣∣∣

C([T0,T e])

+
1

µ− 2δ

√
42M2(T e − T0 + µ− 2δ)

µ− 3δ
δ = O(

√
δ).

PROOF. Triangular inequality provides
∣∣∣H(T̃k)− H̃k

∣∣∣

≤
∣∣∣H(T̃k)−H(Tk)

∣∣∣ +
∣∣∣H(Tk)− H̃k

∣∣∣

≤
∣∣∣∣H ′∣∣∣∣

C([T0,T e])

∣∣∣
∣∣∣T − T̃

∣∣∣
∣∣∣ + ||u− ũh∗ || .

Now, the result follows from Proposition 6. 2

WSEAS TRANSACTIONS on MATHEMATICS Andr’Es Fraguela, Juan–Antonio Infante,
A’ Ngel Manuel Ramos, Jos’E Mar’Ia Rey

ISSN: 1109-2769
164

Issue 4, Volume 7, April 2008



Remark 8 We point out that, by using (11), we
can change ||H ′||C([T0,T e]) by ||H ′||C([T0,T e−µ+3δ])

in Theorem 7, which provides a slightly better
estimation. 2

3.3 Identifying from a finite number of ap-
proximated values of the temperature.

We assume that the interpolation method used is such
that the error δ between T and T̃ , and the measure-
ment error δ̂, are of the same order, i.e., δ = Cδ̂.

For example, if T̃ is the piecewise linear interpo-
lation of measurements {T̂0, T̂1, . . . , T̂p} and we de-
note Tint the piecewise linear interpolation of values
of T at points τk, the monotonicity of T provides
∣∣∣
∣∣∣T − T̃

∣∣∣
∣∣∣ ≤ ||T − Tint||+

∣∣∣
∣∣∣Tint − T̃

∣∣∣
∣∣∣

≤ max
1≤k≤p

|T (τk)− T (τk−1)|+ δ̂

≤ max
1≤k≤p

(
|T̃ (τk)− T̃ (τk−1)|+ 2δ̂

)
+ δ̂

= max
1≤k≤p

|T̂k − T̂k−1|+ 3δ̂.

Therefore, when the interpolation considered is the
piecewise linear interpolation, if the difference be-
tween consecutive measurements is of order δ̂, then
δ and δ̂ are of the same order. The number of mea-
surements will be increased if needed.

3.3.1 Algorithm for determining H

The input data are: {T̂k}p
k=0, δ̂ > 0 and the admissible

threshold µ > 0. First of all, we construct a function
T̃ (t) interpolating {T̂k}p

k=0. Then, we estimate the er-
ror δ > 0 due to the interpolation. Next, tf is fixed by
using (6).

The algorithm is based on an iterative process be-
ginning from an initial guest Λ2 for M2. From this
value, the time step is calculated by

h =

√
6(T e − T0 + µ− 2δ)

7(µ− 3δ)Λ2
δ, (13)

according to (12). With this election of h, the corre-
sponding values

H̃k = ũh(tk) =
Rh(T̃ )(tk)

T e − T̃k

(14)

are obtained. Approximating T ′′ by (15) in nodes tk
and taking the absolute maximum, a new Λ2 (and a

new h) is obtained, and so on. This iterative process
finishes when h stabilizes. Since

T ′′ =
(

H ′(T )(T e − T )−H(T )
)

H(T )(T e − T ),

we approximate T ′′(tk) as:




(
H̃k+1 − H̃k

T̃k+1 − T̃k

(T e − T̃k)− H̃k

)
H̃k(T e − T̃k),

k = 0, 1, . . . , n− 1(
H̃n − H̃n−1

T̃n − T̃n−1

(T e − T̃n)− H̃n

)
H̃n(T e − T̃n).

(15)

Algorithm

DATA {T̂k}p
k=0: measurements of T (tk).

δ̂ > 0: bound for measurement errors.
µ > 0: threshold.
ε: stopping test precision.
Λ2: initial guest for M2.

Step 1: Determine T̃ and δ according to δ̂.
Step 2: Fix tf from (6) adapting µ if needed.
Step 3: Initialize h using (13).
Step 4: While the relative error in h is bigger

than ε:
a) Compute T̃k.

b) Calculate H̃k from (14).
c) Set Λ2 as the maximum of the ab-

solute value of (15).
d) Set h using (13).

4 Functional framework of the in-
verse problem. Classical theory.

Let us suppose the fourth scenario (the more general
one) exposed in Section 2. Once tf is determined, we
consider the initial value problem (1) over the interval
[t0, tf ]. By denoting u(t) = H(T (t)), t ∈ [t0, tf ], we
have that
∫ t

t0

u(s) ds =
∫ t

t0

T ′(s)
T e − T (s)

ds = − ln
(

T e − T (t)
T e − T0

)
.

Thus, for suitable functional spaces X and Y , by
defining the operator K : X → Y as

Kx(t) =
∫ t

t0

x(s) ds,

our problem can be written as Ku = y, where

y(t) = − ln
(

T e − T (t)
T e − T0

)
, t ∈ [t0, tf ]. (16)
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Note that function y is well defined and it is positive.
In order to apply the Classical Regularization Theory
in Hilbert spaces (see, e.g., [4], [16], [17]), we choose
X = Y = L2(t0, tf ). We remind that

L2(t0, tf ) =
{

f : (a, b) → R :
∫ tf

t0

(f(s))2ds < ∞
}

.

We also consider

H1(t0, tf ) =
{
f ∈ L2(t0, tf ) : f ′ ∈ L2(t0, tf )

}
.

Next result shows some properties of operator K:

Proposition 9 K : L2(t0, tf ) → L2(t0, tf ) is a lin-
ear and compact operator. Moreover:

a) Kx ∈ H1(t0, tf ) and (Kx)′ = x in L2(t0, tf ) for
every x ∈ L2(t0, tf ).

b) K is an injective operator and has dense rank in
L2(t0, tf ).

c) The adjoint operator K∗ : L2(t0, tf ) → L2(t0, tf )

is given by K∗y(t) =
∫ tf

t
y(s) ds.

PROOF. Obviously, K is a linear operator. Compact-
ness follows from Theorem A.33 (pag. 230) of [17]
(see also [3]) taking the function k(t, s) appearing in
that Theorem as, for every t ∈ (t0, tf ), the character-
istic function of interval (t0, t), i.e.,

k(t, s) =

{
1, t0 < s < t

0, otherwise.

Let us prove the rest of properties:

a) For all test function ϕ ∈ C∞c (t0, tf ), the space of
infinitely many differentiable functions with com-
pact support, we have

〈(Kx)′, ϕ〉 = −〈Kx, ϕ′〉

= −
∫ tf

t0

(∫ t

t0

x(s) ds

)
ϕ′(t) dt

=
∫ tf

t0

x(t)ϕ(t) dt = 〈x, ϕ〉.

Now, if ϕ ∈ L2(t0, tf ), since C∞c (t0, tf ) is dense
in L2(t0, tf ) (see, for instance, [3]), there exists a
sequence {ϕn}∞n=1 ⊂ C∞c (t0, tf ) such that

ϕn → ϕ in L2(t0, tf ).

Then,
〈(Kx)′, ϕn〉 = 〈x, ϕn〉

and, passing to the limit (n →∞) we have that

〈(Kx)′, ϕ〉 = 〈x, ϕ〉

and, therefore, (Kx)′ = x in L2(t0, tf ).

b) Injectivity of K follows from

Kx = 0 ⇒ (Kx)′ = 0 ⇒ x = 0.

On the other hand, note that

R(K) = {v ∈ H1(t0, tf ) : v(t0) = 0}.

Since R(K) ⊃ C∞c (t0, tf ) and C∞c (t0, tf ) is dense
in L2(t0, tf ), the operator K has dense rank in
L2(t0, tf ).

c) For u, y ∈ L2(t0, tf ) given and denoting

Y (t) =
∫ t

tf

y(s) ds,

we obtain

〈Ku, y〉 =
∫ tf

t0

(∫ t

t0

u(s)ds

)
y(t)dt

=
(∫ t

t0

u(s)ds

)
Y (t)

∣∣∣∣
tf

t0

−
∫ t

t0

u(t)Y (t)dt

=
∫ t

t0

u(t)(−Y (t))dt = 〈u,−Y 〉.

That is,

K∗y(t) = −Y (t) =
∫ tf

t
y(s) ds. 2

In our problem we have measurements T̂k verify-
ing |T (τk)− T̂k| < δ̂, and an interpolation function T̃

such that
∣∣∣
∣∣∣T − T̃

∣∣∣
∣∣∣
C([τ0,τp])

< δ. This provides a right

hand term

yδ(t) = − ln

(
T e − T̃ (t)
T e − T0

)
(17)

and the approximate problem Kuδ = yδ. Next propo-
sition estimates the error between yδ and y in terms of
error between T̃ and T (given by δ).
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Proposition 10 Let y(t) and yδ(t) given by (16) and
(17), respectively. By denoting

e(δ) =

√
tf − t0

µ− 3δ
δ, (18)

the estimate

||y − yδ||L2(t0,tf ) ≤ e(δ)

holds.

PROOF. A first order Taylor expansion of function
s 7→ ln(T e − s) about s = T (t), provides

|y(t)− yδ(t)| =
∣∣∣ln(T e − T̃ (t))− ln(T e − T (t))

∣∣∣

=

∣∣∣∣∣
T (t)− T̃ (t)

T e − Tθ

∣∣∣∣∣ ,

where Tθ is a value between T (t) and T̃ (t) which can
be written as

Tθ = θT (t) + (1− θ)T̃ (t)

for some 0 < θ < 1. Estimates (11) imply

T e − Tθ = θ(T e − T (t)) + (1− θ)(T e − T̃ (t))

≥ θ(µ− 2δ) + (1− θ)(µ− 3δ)

= µ− (3− θ)δ

≥ µ− 3δ.

Thus,

|y(t)− yδ(t)| ≤ |T (t)− T̃ (t)|
µ− 3δ

≤ δ

µ− 3δ
,

which allows to conclude the result easily. 2

4.1 Tikhonov’s method

The Tikhonov strategy to solve Kuδ = yδ, (see,
for instance, [22], [23]) consists of minimizing the
Tikhonov functional

Jα(x) = ||Kx− yδ||2L2(t0,tf ) +α ||x||2L2(t0,tf ) , (19)

where α = α(δ) > 0. Theorem 2.11 of [17], guaran-
tees uniqueness of the minimum uα,δ of (19), which
is also the unique solution of the normal equation

(α + K∗K)x = K∗yδ. (20)

The regularization strategy is given for the linear op-
erators Rα : L2(t0, tf ) → L2(t0, tf ) defined by

Rαy = (α + K∗K)−1K∗y.

For α = 0 this becomes the normal equation asso-
ciated to operator K. Since minimizing operator J0 is
an ill–posed problem (see [17], Lemma 2.1), a penalty
term is added.

Proposition 11 The solution uα,δ of (20) is the solu-
tion of the boundary problem

{ −αx′′(t) + x(t) = y′δ(t), t ∈ (t0, tf )

x′(t0) = 0, x(tf ) = 0.
(21)

Moreover, denoting γ(r) =
tf − r√

α
, the solution is

uα,δ(t) =
1√
α

(ϕα,δ(t) cosh γ(t) + ψα,δ(t) sinh γ(t)) ,

where

ϕα,δ(t) =
∫ tf

t
y′δ(s) sinh γ(s) ds

and

ψα,δ(t) =
∫ t

t0

y′δ(s) cosh γ(s) ds−tanh γ(t0)ϕα,δ(t0).

PROOF. Proposition 9 allows to write equation (20)
as

αx(t) +
∫ tf

t

(∫ s

t0

x(τ) dτ

)
ds =

∫ tf

t
yδ(s)ds.

Thus x(tf ) = 0. Further, since yδ ∈ R(K), we have
yδ ∈ H1(t0, tf ) and yδ(t0) = 0. Therefore, by differ-
entiating the above expression, we obtain

αx′(t)−
∫ t

t0

x(s) ds = −yδ(t),

and, in particular, x′(t0) = −yδ(t0) = 0. By differen-
tiating again, we get to

αx′′(t)− x(t) = −y′δ(t).

Finally, standard calculations for solving the
boundary value problem (21) lead to the above expres-
sion for uα,δ. 2

Remark 12 Theorem 2.12 of [17] states that if one
chooses α = α(δ) such that lim

δ→0
α(δ) = 0 and

lim
δ→0

δ2

α(δ)
= 0, then the Tikhonov regularization strat-

egy is admissible, i.e.,

lim
δ→0

∣∣∣∣uα(δ),δ − u
∣∣∣∣

L2(t0,tf )
= 0,

since ||y − yδ||L2(t0,tf ) ≤ e(δ) (see Proposition 10). 2
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4.1.1 Morozov’s discrepancy principle.

This principle (see [19]) provides a way to choose the
parameter α = α(δ) for the Tikhonov regularization
strategy: it is chosen so that the solution uα(δ),δ of
(20) satisfies

∣∣∣∣Kuα(δ),δ − yδ

∣∣∣∣
L2(t0,tf )

= e(δ), (22)

supposing that

||y − yδ||L2(t0,tf ) ≤ e(δ) < ||yδ||L2(t0,tf ) .

Theorem 2.17 of [17] assures that the regularization
strategy associated to this choice of α(δ) is admissi-
ble.

4.2 Landweber’s iterative method.

Landweber’s iterative method is defined as
{

x0 = 0

xm = (I − aK∗K)xm−1 + aK∗y, m = 1, 2, . . . ,

where a > 0. Using Theorem 2.19 of [17], we choose
a such that 0 < a < 1

||K||2 and we consider the stop-
ping test

||Kxm − yδ||2L2(t0,tf ) ≤ r(e(δ))2

for some r > 0 satisfying

||yδ|| ≥ re(δ), δ ∈ (0, δ0).

4.3 Comparison between the methods.

We present two test problems in order to compare be-
tween the methods considered above. For each exam-
ple, we start from a known function H and we solve
the corresponding direct problem in order to compute
the temperature T. Then, we evaluate T in some time
instants and, finally, we introduce some perturbations
(measurement errors) of these values.

With these new temperature values we use lin-
ear piecewise interpolation to get a function T̃ pro-
viding the temperature with simulated measurement
errors. Every definite integral appearing in the com-
putations is approximated by means of the trapezoidal
rule by using only points at which measurements of
the temperature are available. Thus, these calculations
are “independent” of the interpolation method used to
compute T̃ .

For the Tikhonov method we compute uα,δ as
stated in Proposition 11 for α(δ) = δγ , by using dis-
crete values of 0 < γ < 2 with step size 0.025.

For the Morozov discrepancy principle we ap-
proximate the solution of (22) by applying the secant
method to the function

F (α) = ||Kuα,δ − yδ||2L2(t0,tf ) − (e(δ))2,

where uα,δ is stated in Proposition 11 and yδ and e(δ)
are given in (17) and (18), respectively.

Finally, for the Landweber iterative method we
consider a = 10 and the stopping criterium of Sec-
tion 4.2 for r = 1.

In the first example we consider a constant func-
tion H whereas the second one deals with a smooth
but strongly oscillating function H.

4.3.1 Example 1

Consider the test problem
{

T ′(t) = 4
(
1− T (t)

)
, t ∈ (0, 0.23)

T (0) = 0.

We take tf = 0.23 corresponding to the thresh-
old µ = 0.4. The goal is to identify H(s) ≡ 4 in
(0, T (tf )) ' (0, 0.6). We consider a uniform parti-
tion of (0, 0.23) with step h = 0.01. At these instants,
approximate measurements of temperature with error
δ = 0.001 are supposed to be known.

First, we consider the algorithm described in Sec-
tion 3.3 and obtain the results shown in Figure 1 (the
error is computed in the L∞–norm).

When applying the Tikhonov method as ex-
plained above, the exponent with lower error in the
L2–norm is attained when γ = 1.25, which corre-
sponds to α(δ) = 1.778 × 10−4. For this value of α,
Figure 2 shows the computed approximations for H
and T .

Figure 3 shows the results obtained with the Mo-
rozov discrepancy principle by applying the secant
method as explained above. The value that has been
obtained is α = 0.5× 10−3.

Finally, the Landweber iterative method, after
2539 iterations, provides a residual L2–norm of
1.181× 10−3 and the results are shown in Figure 4.

4.3.2 Example 2

Consider now the test problem
{

T ′(t) =
(
2 + sin(14T (t))

)(
1− T (t)

)
, t ∈ (0, 0.48)

T (0) = 0

We approximate its solution trough an adaptive
Runge–Kutta method.
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We take tf = 0.48 corresponding to the same
threshold µ = 0.4 as in the example above. In this
case, the goal is to identify the function H(s) =
2 + sin(14s) in (0, T (tf )) ' (0, 0.6). We consider
again a uniform partition of (0, tf ) with step h = 0.01
and error δ = 0.001.

Following the same schedule, we begin showing
in Figure 5 the results obtained by applying the algo-
rithm described in Section 3.3.

Figure 6 shows the computed approximations for
H and T with the Tikhonov method when α(δ) =
7.0795 × 10−4. This value corresponds to exponent
γ = 1.05, which minimizes the corresponding L2–
norm error for α(δ) = δγ .

By applying the Morozov discrepancy principle
we obtain α = 0.001 and the corresponding approxi-
mations are shown in Figure 7.

Finally, Landweber’s iterative method gives, after
620 iterations, the functions H and T in Figure 8. In
this case, the residual L2–norm is 1.725× 10−3.

5 Conclusions.

We have developed a numerical algorithm, well
adapted to the problem considered, which improves
those based on the Classical Theory, from a qualita-
tive and quantitative point of view.

On the one hand, this algorithm is able to cap-
ture the qualitative properties of the solution, correct-
ing (see Figures 1 and 5) the bad behavior obtained
with classical methods for function H near final in-
stant tf (see Figures 2, 3, 4, 6, 7 and 8), which is due
to the x(tf ) = 0 condition needed with the square
integrable approximation used in Classical Theory.

On the other hand, from a quantitative point of
view, the solution H̃ provided by our algorithm ap-
proximates function H better than those correspond-
ing to the classical approaches, when considering the
L∞–norm and L2–norm of H − H̃.
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Figure 1: Results obtained with the algorithm developed in Sec-
tion 3.3.1.
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Figure 2: Tikhonov’s method with the best exponent.
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Figure 3: Morozov’s discrepancy principle.
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Figure 4: Landweber’s iterative method.
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Figure 5: Results obtained with the algorithm developed in Sec-
tion 3.3.1.
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Figure 6: Tikhonov’s method with the best exponent.
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Figure 7: Morozov’s discrepancy principle.
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Figure 8: Landweber’s iterative method.
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