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Abstract: - In the present paper, for constructing the minimum risk estimators of state of stochastic systems, a 
new technique of invariant embedding of sample statistics in a loss function is proposed. This technique 
represents a simple and computationally attractive statistical method based on the constructive use of the 
invariance principle in mathematical statistics. Unlike the Bayesian approach, an invariant embedding 
technique is independent of the choice of priors. It allows one to eliminate unknown parameters from the 
problem and to find the best invariant estimator, which has smaller risk than any of the well-known estimators. 
Also the problem of how to select the total number of the observations optimally when a constant cost is 
incurred for each observation taken is discussed. To illustrate the proposed technique, examples are given.  
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1 Introduction 
The state estimation of discrete-time systems in the 
presence of random disturbances and measurement 
noise is an important field in modern control theory. 
A significant research effort has been devoted to the 
problem of state estimation for stochastic systems. 
Since Kalman’s noteworthy paper [1], the problem 
of state estimation in linear and nonlinear systems 
has been treated extensively and various aspects of 
the problem have been analyzed [2-8]. 

The problem of determining an optimal estimator 
of the state of stochastic system in the absence of 
complete information about the distributions of 
random disturbances and measurement noise is seen 
to be a standard problem of statistical estimation. 
Unfortunately, the classical theory of statistical 
estimation has little to offer in general type of 
situation of loss function. The bulk of the classical 
theory has been developed about the assumption of 
a quadratic, or at least symmetric and analytically 
simple loss structure. In some cases this assumption 
is made explicit, although in most it is implicit in 
the search for estimating procedures that have the 

“nice” statistical properties of unbiasedness and 
minimum variance. Such procedures are usually 
satisfactory if the estimators so generated are to be 
used solely for the purpose of reporting information 
to another party for an unknown purpose, when the 
loss structure is not easily discernible, or when the 
number of observations is large enough to support 
Normal approximations and asymptotic results. 
Unfortunately, we seldom are fortunate enough to 
be in asymptotic situations. Small sample sizes are 
generally the rule when estimation of system states 
and the small sample properties of estimators do not 
appear to have been thoroughly investigated. 
Therefore, the above procedures of the state 
estimation have long been recognized as deficient, 
however, when the purpose of estimation is the 
making of a specific decision (or sequence of 
decisions) on the basis of a limited amount of 
information in a situation where the losses are 
clearly asymmetric – as they are here. 

There exists a class of control systems where 
observations are not available at every time due to 
either physical impossibility and/or the costs 
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involved in taking a measurement. For such systems 
it is realistic to derive the optimal policy of state 
estimation with some constraints imposed on the 
observation scheme. 

It is assumed in this paper that there is a constant 
cost associated with each observation taken. The 
optimal estimation policy is obtained for a discrete-
time deterministic plant observed through noise. It is 
shown that there is an optimal number of 
observations to be taken. 

The outline of the paper is as follows. A 
formulation of the problem is given in Section 2. 
Section 3 is devoted to characterization of 
estimators. A comparison of estimators is discussed 
in Section 4.  An invariant embedding technique is 
described in Section 5. A general problem analysis 
is presented in Section 6. An example is given in 
Section 7.  
 
 
2 Problem Statement 
To make the above introduction more precise, 
consider the discrete-time system, which in 
particular is described by vector difference 
equations of the following form: 
 

 ),()()(),1()1( kkkkkk uBxAx ++=+  (1) 
 

,  ... 1,2,3,   ),()()()( =+= kkkkk wxHz   (2) 
 
where x(k+1) is an n vector representing the state of 
the system at the (k+1)th time instant with initial 
condition x(1); z(k) is an m vector (the observed 
signal) which can be termed a measurement of the 
system at the kth instant; H(k) is an m × n matrix; 
A(k+1,k) is a transition matrix of dimension n × n, 
and B(k) is an n × p matrix, u(k) is a p vector, the 
control vector of the system; w(k) is a random 
vector of dimension m (the measurement noise). By 
repeated use of (1) we find 
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where the discrete-time system transition matrix 
satisfies the matrix difference equation, 
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From these properties, it immediately follows that 
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Thus, for j≤k, 
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 The problem to be considered is the estimation of 
the state of the above discrete-time system. This 
problem may be stated as follows. Given the 
observed sequence, z(1), …, z(k), it is required to 
obtain an estimator d of x(l) based on all available 
observed data Zk={z(1), …, z(k)} such that the 
expected losses (risk function) 
 

  { }),(E),( dd θθ θ rR =  (9) 
 
is minimized, where r(θ,d) is a specified loss 
function at decision point d≡d(Zk), θ=(x(l),ω), ω is 
an unknown parametric vector of the probability 
distribution of w(k), k≤l.  
 If it is assumed that a constant cost c > 0 is 
associated with each observation taken, the criterion 
function for the case of k observations is taken to be  
 

  .),(),( ckrrk += dd θθ   (10) 
 
In this case, the optimization problem is to find 
 

 { }),(E min min d
d

θθ kk
r , (11) 

 
where the inner minimization operation is with 
respect to d≡d(Zk), when the k observations have 
been taken, and where the outer minimization 
operation is with respect to k. 
 
 
3 Characterization of Estimators 
For any statistical decision problem, an estimator (a 
decision rule) d1 is said to be equivalent to an 
estimator (a decision rule) d2 if R(θ,d1)=R(θ,d2) for 
all θ∈Θ, where R(.) is a risk function, Θ is a 
parameter space,. An estimator d1 is said to be 
uniformly better than an estimator d2 if R(θ,d1) < 
R(θ,d2) for all θ∈Θ. An estimator d1 is said to be as 
good as an estimator d2 if R(θ,d1) ≤ R(θ,d2) for all 
θ∈Θ. However, it is also possible that we may have 
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“d1 and d2 are incomparable”, that is, R(θ,d1) 
<R(θ,d2) for at least one θ∈Θ, and R(θ,d1) > R(θ,d2) 
for at least one θ∈Θ. Therefore, this ordering gives 
a partial ordering of the set of estimators. 

An estimator d is said to be uniformly non-
dominated if there is no estimator uniformly better 
than d. The conditions that an estimator must satisfy 
in order that it might be uniformly non-dominated 
are given by the following theorem. 

Theorem 1 (Uniformly non-dominated estima-
tor). Let (ξτ; τ=1,2, ... ) be a sequence of the prior 
distributions on the parameter space Θ. Suppose that 
(dτ;τ=1,2, ...) and (Q(ξτ,dτ); τ=1,2, ... ) are the 
sequences of Bayes estimators and prior risks, 
respectively. If there exists an estimator d∗ such that 
its risk function R(θ,d∗), θ∈Θ, satisfies the 
relationship 
 

  [ ] 0, = ),(  ),( lim τQQ dd τττ
ξξ −∗

→∞
 (12) 

 
where 
 

  ,)(),(= ),(  ∫
Θ

θθ dRQ ττ ξξ dd  (13) 

 
then d∗ is an uniformly non-dominated estimator. 

Proof.  Suppose d∗ is uniformly dominated. Then 
there exists an estimator d∗∗ such that R(θ,d∗∗) < 
R(θ,d∗) for all θ∈Θ. Let 
 

   [ ] 0. > ),(  ),( inf = ∗∗∗

∈
− dd θθ

Θθ
RRε  (14) 

 
Then 
 

.  ),(  ),( εξξ ττ ≥− ∗∗∗ dd QQ  (15) 
 
Simultaneously, 
 

  0,  ),(  ),( ≥−∗∗
τττ ξξ dd QQ  (16) 

 
τ=1,2, ...,  and  
 

[ ] 0.  ),(  ),( lim ≥−∗∗

→∞ ττττ
ξξ dd QQ  (17) 

 
On the other hand, 
 

 ),(  ),( τττ ξξ dd QQ −∗∗  
 

[ ] [ ]),(  ),(  ),(  ),( ∗∗∗∗ −−−= dddd τττττ ξξξξ QQQQ  

[ ] εξξ τττ   ),(  ),( −−≤ ∗ dd QQ  (18) 
 
and 
 

[ ] 0.  ),(  ),( lim <−∗∗

→∞ ττττ
ξξ dd QQ  (19) 

 
This contradiction proves that d∗ is an uniformly 
non-dominated estimator.   � 
 
 
4 Comparison of Estimators 
In order to judge which estimator might be preferred 
for a given situation, a comparison based on some 
“closeness to the true value” criteria should be 
made. The following approach is commonly used 
[9-10]. Consider two estimators, say, d1 and d2 
having risk function R(θ,d1) and R(θ,d2), 
respectively. Then the relative efficiency of d1 
relative to d2 is given by 
 

 { } .),(),( = ;,.rel.eff 1221 dddd θθ θ RRR  (20) 
 

When { } 1;,.rel.eff 021 <θdd R  for some 0θ , we 
say that d2 is more efficient than d1 at 0θ . 
If { } 1;,.rel.eff 21 ≤ θdd R  for all θ with a strict 
inequality for some 0θ , then d1 is inadmissible 
relative to d2. 
 
 
5 Invariant Embedding Technique 
This paper is concerned with the implications of 
group theoretic structure for invariant performance 
indexes. We present an invariant embedding 
technique based on the constructive use of the 
invariance principle in mathematical statistics. This 
technique allows one to solve many problems of the 
theory of statistical inferences in a simple way. The 
aim of the present paper is to show how the 
invariance principle may be employed in the 
particular case of finding the improved statistical 
decisions. The technique used here is a special case 
of more general considerations applicable whenever 
the statistical problem is invariant under a group of 
transformations, which acts transitively on the 
parameter space. 
 
 
5.1  Preliminaries 
Our underlying structure consists of a class of 
probability models (X, A, P ), a one-one mapping 
ψ taking P  onto an index set Θ, a measurable space 
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of actions (U, B), and a real-valued function r 
defined on Θ × U . We assume that a group G of 
one-one A - measurable transformations acts on X  
and that it leaves the class of models (X, A, P ) 
invariant. We further assume that homomorphic 
images G  and G~  of G act on Θ and U, 
respectively. ( G may be induced on Θ through ψ; 
G~  may be induced on U  through r). We shall say 
that r is invariant if for every (θ,u) ∈ Θ × U 
 

),,()~,( uu θθ rggr = g∈G.  (21) 
 
Given the structure described above there are 
aesthetic and sometimes admissibility grounds for 
restricting attention to decision rules ϕ : X  → U  
which are (G, G~ ) equivariant in the sense that 
 

.   ,   ),(~)( Gggg ∈∈= Xxxx ϕϕ  (22) 
 
If G  is trivial and (21), (22) hold, we say ϕ is G-
invariant, or simply invariant [11-12]. 
 
 
5.2 Invariant Functions 
We begin by noting that r is invariant in the sense of 
(21) if and only if r is a G•-invariant function, where 
G• is defined on Θ × U as follows: to each g∈G, 
with homomorphic images g~ ,g  in GG ~,  
respectively, let g•(θ,u)= )~ ,( uggθ , (θ,u)∈(Θ × U ). 
It is assumed that G~  is a homomorphic image of 
G .  

Definition 1 (Transitivity). A transformation 
group G  acting on a set Θ is called (uniquely) 
transitive if for every θ, ϑ∈Θ there exists a (unique) 

Gg ∈  such that g θ=ϑ. 
When G  is transitive on Θ we may index G  by 

Θ: fix an arbitrary point θ∈Θ and define 
1θg  to be 

the unique Gg ∈  satisfying g θ=θ1. The identity of 
G  clearly corresponds to θ. An immediate 
consequence is Lemma 1. 

Lemma 1 (Transformation). Let G  be transitive 
on Θ. Fix θ∈Θ and define 

1θg as above. Then 

1θqg = 
1θgq for θ∈Θ, .Gq ∈  

Proof.  The  identity θθθ θθ 11 1 gqqgq ==   shows 
that 

1θqg  and 
1θgq both take θ into 1θq , and the 

lemma follows by unique transitivity.   � 

Theorem 2 (Maximal invariant). Let G  be 
transitive on Θ. Fix a reference point θ0∈Θ and 
index G  by Θ. A maximal invariant M with respect 
to G• acting on Θ × U  is defined by 
 

.  ),(   ,~),( 1 U×Θ∈= − uuu θθ θgM  (23) 
 

Proof.  For each (θ,u)∈(Θ × U ) and Gg ∈  
 

uuu gggggggM g
~)~~(~)~()~,( 11 −− == θθθ  

 
),(~~~~ 111 uuu θθθ Mgggg === −−−     (24) 

 
by Lemma 1 and the structure preserving properties 
of homomorphisms. Thus M is G•-invariant. To see 
that M is maximal, let M(θ1,u1) = M(θ2,u2). Then 

2
1

1
1

21

~~ uu −− = θθ gg  or u1= g~ u2, where 1
21

~~~ −= θθ ggg . Since 

θ1 = 01
θθg  = 22

1
21

θθθθ ggg =− ,  (θ1,u1) = g•(θ2,u2) for 
some g•∈G•, and the proof is complete.   � 

Corollary 2.1 (Invariant embedding). An 
invariant function, r(θ,u), can be transformed as 
follows: 
 

),,()~,(),( 11 ηθθ θθ vuu rggrr &&)) == −−  (25) 
 
where v=v(θ, θ

)
) is a function (it is called a pivotal 

quantity) such that the distribution of v does not 
depend on θ; η=η(u, θ

)
) is an ancillary factor; θ

)
 is 

the maximum likelihood estimator of θ  (or the 
sufficient statistic for θ). 

Corollary  2.2 (Best invariant decision rule). If 
r(θ,u) is an invariant loss function, the best invariant 
decision rule is given by 

 
 ),,()( 1 θηη ∗ )−∗∗ == uxϕ  (26) 

 
where 
 

{ }.),(E inf arg ηη ηη

∗ vr&&=   (27) 

 
Corollary 2.3 (Risk). A risk function 

(performance index) 
 

{ } { }),(E))(,(E))(,( oo&&
o

ηϕθϕθ ηθ vxx rrR ==   (28) 
 
is constant on orbits when an invariant decision rule 
ϕ(x) is used, where ),( xvv θoo =  is a function 
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whose  distribution does not depend on θ; 
),( xuoo ηη =  is an ancillary factor. 

For instance, consider the problem of estimating 
the location-scale parameter of a distribution 
belonging to a family generated by a continuous cdf 
F: P ={Pθ: F((x-µ)/σ), x∈R, θ∈Θ}, Θ={(µ,σ): µ,σ 
∈R, σ > 0} = U. The group G of location and scale 
changes leaves the class of models invariant. Since 
G  induced on Θ by Pθ → θ is uniquely transitive, 
we may apply Theorem 1 and obtain invariant loss 
functions of the form 
 

],/)( ,/))([())(,( 21 σϕσµϕ xxrxr −=ϕθ  (29) 
 
where 
 

θ=(µ,σ) and ϕ(x)=(ϕ1(x),ϕ2(x)).  (30) 
 
Let ),( σµ )))

=θ  and u=(u1,u2),  then 
 

), ,(),(),( 22211 vvvrrr ηη+== &&&& ηθ vu  (31) 
 
where  
 

 v=(v1,v2), v1= σµµ /)( −) , v2= σσ /) ;  (32) 
 

 η=(η1,η2), η1= σµ )) /)( 1 −u , η2= σ)/2u . (33) 
 
 
5.3 Illustrative Example 1 
Consider an inventory manager faced with a one-
period Christmas-tree stocking problem. Assume the 
decision maker has demand data on the sale of trees 
over the last n seasons. For the sake of simplicity, 
we shall consider the case where the demand data 
can be measured on a continuous scale. We restrict 
attention to the case where these demand values 
constitute independent observations from a 
distribution belonging to invariant family. In 
particular, we consider a distribution belonging to 
location-scale family generated by a continuous cdf 
F: P ={Pθ: F((x-µ)/σ), x∈R, θ∈Θ}, Θ={(µ,σ): 
µ,σ∈R, σ>0}, which is indexed by the vector 
parameter θ=(µ,σ), where µ and σ (>0) are 
respectively parameters of location and scale. The 
group G of location and scale changes leaves the 
class of models invariant. The purpose in restricting 
attention to such families of distributions is that for 
such families the decision problem is invariant, and 
if the estimators of safety stock levels are 
equivariant (i.e. the group of location and scale 
changes leaves the decision problem invariant), then 

any comparison of estimation procedures is 
independent of the true values of any unknown 
parameters. The common distributions used in 
inventory problems are the normal, exponential, 
Weibull, and gamma distributions. 

Let us assume that, for one reason or another, a 
100γ% service level is desired (i.e. the decision 
maker wants to ensure that at least 100γ% of his 
customers are satisfied). If the demand distribution 
is completely specified, the appropriate amount of 
inventory to stock for the season is u satisfying 

 

  { } γ
σ

µ
=






 −

=≤
uFuXPr  (34) 

 
or 
 

 ,σµ γpu +=  (35) 
 
where 
 

)(1 γγ
−= Fp   (36) 

 
is the γth percentile of the above distribution. Since 
the inventory manager does not know µ or σ, the 
estimator commonly used to estimate u is the 
maximum likelihood estimator 
 

,σµ γ
))) pu +=  (37) 

 
where µ)  and σ)  are the maximum likelihood 
estimators of the parameters µ and σ, respectively. 
This estimator is one possible estimator of u and it 
may yield poor results.  

The correct procedure for estimating u requires 
establishing a tolerance limit for the percentile. It 
should be noted that tolerance limits are to 
percentiles what confidence limits are to parameters. 
With confidence limits, inferences may be drawn on 
parameters, whereas with tolerance limits, 
inferences may be drawn about proportions of a 
distribution. 

There are two criteria for establishing tolerance 
limits. The first criterion establishes an interval such 
that the expected percentage of observations falling 
into the interval just exceeds 100γ% [13]. This 
interval is called the 100γ% expectation interval. 
The second criterion establishes an interval, which 
ensures that 100γ% of the population is covered 
with confidence 1-α [14]. Such an interval is called 
a 100γ% content tolerance interval at level 1-α. The 
decision as to which interval to construct depends 
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on the nature of the problem. A precision-instrument 
manufacturer wanting to construct an interval 
which, with high confidence, contains 90% of the 
distribution of diameters, for example, would use a 
90% content tolerance interval, whereas an 
inventory manager wanting to stock sufficient items 
to ensure that in the long run an average of 95% of 
demand will be satisfied may find expectation 
intervals more appropriate. Expectation intervals are 
only appropriate in inventory problems where 
average service levels are to be controlled. 

Tolerance limits of the types mentioned above 
are considered in this subsection.  

That is, if f(x;θ) denotes the density function of 
the parent population under consideration and if S is 
any statistic obtained from a random sample of that 
population, then )(Suu oo )) ≡  is a lower 100(1-γ)% 
expectation limit if 
 

{ }












)=> ∫
∞

o)

o)

u

dxxfuX θθ ;(EPr  

 

  .11E γ
σ

µ
−=




















 −
−=

o)uFθ  (38) 

 
This expression represents a risk of o)u , i.e. 
 

  { } .1Pr),( γ−=>= ooo )) uXuR θ   (39) 
 

A lower 100(1-γ)% content tolerance limit at 
level 1-α, )(Suu •• ≡ )) , is defined by  
 













≥






 −
=













−≤
•∞

∫
•

γ
σ

µγ uFdxxf
u

)

)

Pr1);(Pr θ  

 
   { } .1 Pr ασµ γ −=+≥= • pu)  (40) 

 
A risk of this limit is 
 

{ } . Pr1),( ασµ γ =+≥−= ••• puuR ))θ  (41) 
 
Since it is often desirable to have statistical 
tolerance limits available for the distributions used 
to describe demand data in inventory control, the 
problem is to find these limits. We give below a 
general procedure for obtaining tolerance limits. 
This procedure is based on the use of an invariant 
embedding technique given above. 

Lower 100(1-γ)% expectation limit.  Suppose X1, 
..., Xn are  a  random  sample  from  the  exponential  
distribution, with pdf 
 

,xxx;f 0   , )exp(1 = )( ≥− σσσ  (42) 

 
where σ > 0 is unknown parameter. Let 
 

. = 
1

∑
=

n

i
in XS  (43) 

 
It can be justified by using the factorization theorem 
that Sn is a sufficient statistic for σ. We wish, on the 
basis of the sufficient statistic Sn for σ, to construct 
the lower 100(1-γ)% expectation limit for a stock 
level. It follows from (38) that this limit is defined 
by 

{ }












)=> ∫
∞

o)

o)

u

σ dxf(x;σuX E Pr  

 
  { } .1)/exp( E γσσ −=−= o)u  (44) 

 
where )( nSuu oo )) ≡ . 

Using the technique of invariant embedding of Sn 
in a maximal invariant 
 

,/σo)uM =     (45) 
 
we reduce (44) to 
 

  { } { } .1);exp( E)/exp( E γηησσ −=−=− ooo) Vu  (46) 
 
where 
  

/σV= Sn    (47) 
 
is the pivotal quantity whose distribution does not 
depend on unknown parameter σ, 
 

 ./ nSu oo )=η  (48) 
 
is an ancillary factor. It is well known that the 
probability density function of V is given by 
 

 .v),   v(v
Γ(n)

h(v) = n 0exp1 1 ≥−−  (49) 

 

Thus, for this example, o)u  can be found explicitly as 
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    ,nSu oo) η=  (50) 
 
where (see (46)) 
 

   .1
1

1
−








−

=
n

γ
η o  (51) 

 
If the parameters µ and σ were known, it follows 
from  (44) that 
 

,σγpu =  (52) 
 
where 

 .
1

1ln 







−

=
γγp  (53) 

 
The maximum likelihood estimator of u is given by 
 

,σγ
)) pu =  (54) 

 
where 
 

nSn /=σ)   (55) 
 
is the maximum likelihood estimator of the 
parameter σ. 
 One can see that each of the above estimators is a 
member of the class 
 

{ },  : nkSdd ==
))

C    (56) 
 
where k is a non-negative real number. A risk of an 
estimator, which belongs to the class C, is given by 
 

.
1

1),(
n

k
dR 








+
=

)
o σ   (57) 

 
Then the relative efficiency of d

)
 relative to o)u  is 

given by 
 

{ } ),(R),(R = ;,.rel.eff R duud
))))

oooo
o σσσ  

 
 .)1)(1( nk+−= γ  (58) 

If, say, 

,
1

1ln/ 1








−

== −

γγ nnpk    (59) 

 
n=2 and γ=0.95, then the relative efficiency of the 
maximum likelihood estimator, u) ,  relative to o)u  is 
given by 

{ }
n

R
nuu 
















−

+− −

γ
γσ

1
1ln1)1(= ;,.rel.eff 1o

o

))  

  
=0.312. (60) 

 
Lower 100(1-γ)% content tolerance limit at level 

1-α. Now we wish, on the basis of a sufficient 
statistic Sn for σ, to construct the lower 100(1-γ)% 
content tolerance limit at level 1-α for the size of the 
stock in order to ensure an adequate service level. It 
follows from (40) that this tolerance limit is defined 
by 
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By using the technique of invariant embedding of Sn 
in a maximal invariant 
 

,/σ•= uM )  (62) 
 
we reduce (61) to 
 

{ } { } .1/ Pr Pr αησ γγ −=≥=≥ •• pVpu)   (63) 
 
where ),( nSuu •• ≡ ))  
 

  nSu /•• = )η  (64) 
 
is an ancillary factor. 
 It follows from the above that, in this case, •u)  
can be found explicitly as 
 

,nSu •• = η)  (65) 
 
where 
 

,
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1
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)2(
2

22 nn
p
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γ

χ
γ

χ
η





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−

==•  (66) 

 
)2(2 nαχ  is the 100α% point of the chi-square 

distribution with 2n degrees of freedom. 
Since the estimator •u)  belongs to the class C, 

then the relative efficiency of d
)

∈C  relative to •u)  
is given by 
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If, say, k is given by (59), n=2 and α=0.05, then we 
have that the relative efficiency of the maximum 
likelihood estimator, ,u)  relative to •u)  is given by 
 

{ } { }[ ] 1
2 2)2( Pr1 = ;, .rel.eff

−
• ≥−• nnuu

R
χασ))  

 
  =0.084. (68) 

 
 

5.4 Illustrative Example 2 
Let X(1) ≤ X(2) ≤ ⋅⋅⋅ ≤ X(k) be the k smallest 
observations in a sample of size n from the two-
parameter exponential distribution, with density 
 

 ,exp1);( 





 −

−=
σ

µ
σ

xxf θ    x ≥ µ, (69) 

 
where σ>0 and µ are unknown parameters, θ=(µ,σ).  

Let Y(r) be the rth smallest observation in a future 
sample of size m from the same distribution. We 
wish, on the basis of observed X(1), …, X(k) to 
construct prediction intervals for Y(r). 

Let  
 

Sr=(Y(r)−µ)/σ,   S1=(X(1)−µ)/σ  (70) 
 
and  
 

T1=T/σ, (71) 
 
where 
 

∑
=

−−+−=
k

i
ki XXknXXT

1
)1()()1()( ).)(()(   (72) 

 
To construct prediction intervals for Y(r), consider 

the quantity (invariant statistic) 
  

V = n(Sr−S1)/T1= n(Y(r)−X(1))/T. (73) 
 
It is well known [15] that nS1 has a standard 
exponential distribution, that 2T1~ 2

22 −kχ  and that S1 
and T1 are independent. Also, Sr is the rth order 
statistic from a sample of size m from the standard 

exponential distribution and thus has probability 
density function [16], 
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r
rr ee

r
m
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if sr>0, and f(sr)=0 for sr≤0. Using the technique of 
invariant embedding, we find after some algebra 
that  
 

F(v)=Pr{V≤v} 
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(75) 

 

where m(r)=m(m−1) ⋅⋅⋅ (m−r+1). 
 The special case in which r=1 is worth 
mentioning, since in this case (75) simplifies 
somewhat. We find here that we can write 
 

F(v)=Pr{V≤v} 
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   (76) 

 
where ϑ=n/m. 
 Consider the ordered data given by Grubbs [17] 
on the mileages at which nineteen military carriers 
failed. These were 162, 200, 271, 302, 393, 508, 
539, 629, 706, 777, 884, 1008, 1101, 1182, 1463, 
1603, 1984, 2355, 2880, and thus constitute a 
complete sample with k=n=19. We find 
 

15869))(
19

1
1()( =−= ∑

=i
i XXT   (77) 

 
and of course X(1)=162.  
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Suppose we wish to set up the shortest-length 
(1−α=0.95) prediction interval for the smallest 
observation Y(1) in a future sample of size m=5. 
Consider the invariant statistic 
 

 .
)( )1()1(

T
XYn

V
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=  (78) 

 
Then 
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where  
 

     zL=X(1)+v1T/n  (80) 
 
and  
 

       zU=X(1)+v2T/n. (81) 
 
The length of the prediction interval is  
 

 ∆z = zU−zL = (T/n)(v2−v1). (82) 
 
We wish to minimize ∆z subject to 
 

F(v2)−F(v1)=1−α.  (83) 
 
It can be shown that the minimum occurs when 
 

  f(v1)=f(v2), (84) 
 
where v1 and v2 satisfy (83). The shortest-length 
prediction interval is given by 
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where ∗

1v = −0.18105 and ∗
2v = 0.688. Thus, the 

length of this interval is ∗∆ z = 736.62 − 10.78 
=725.84. 

The equal tails prediction interval at the 
1−α=0.95 confidence level is given by 
 


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where F(vα)=α, vα/2= −0.125 and v1-α/2= 0.805. The 
length of this interval is o

z∆ = 834.34 − 57.6 = 
776.74. 
 The relative efficiency of ),( )1()1(

TXCY
o  relative 

to ),,( )1()1(
TXCY

∗ taking into account ∆z is given by 
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One may also be interested in predicting the 

mean  

mYY
m

j
j /

1
∑

=

=  (88) 

 
or total lifetime in a future sample. Consider the 
quantity 
 

 ./)( )1( TXYnV −=   (89) 
 
Using the invariant embedding technique, we find 
after some algebra that 
 

F(v)=Pr{V≤v} 
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 (90) 

 
Probability statements about V lead to prediction 
intervals for Y or  
 

 .
1

YmY
m

j
j =∑

=

 (91) 

WSEAS TRANSACTIONS on MATHEMATICS Nicholas A. Nechval, Gundars Berzins,
Maris Purgailis, Konstantin N. Nechval

ISSN: 1109-2769

149
Issue 4, Volume 7, April 2008



5.5 Illustrative Example 3 
Suppose that X1, ..., Xn  and  Y1i, ..., Ymi  (i=1, ..., k) 
denote n+km independent and identically distributed 
random variables from a two-parameter exponential 
distribution with pdf (69), where σ >0 and µ are 
unknown parameters.  

Let  X(1) be the smallest observation in the initial 
sample of size n and 
 

( )∑
=

−
n

j
jn XXS

1
)1( . =  (92) 

 
It can be justified by using the factorization theorem 
that (X(1),Sn) is a sufficient statistic for (µ,σ). Let Y(1i) 
be the smallest observation in the ith future sample 
of size m, ∀i=1(1)k. We wish, on the basis of a 
sufficient statistic (X(1),Sn) for (µ,σ), to construct 
simultaneous lower one-sided β-content tolerance 
limits at level γ for Y(1i), i=1, ..., k. It can be shown 
that this problem is reduced to the problem of 
constructing a lower one-sided β-content tolerance 
limit at level γ, L≡L(X(1),Sn), for 
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This tolerance limit is defined by 
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By using the technique of invariant embedding of 
(X(1),Sn) into a maximal invariant M=(L−µ)/σ, we 
reduce (94) to 
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are the pivotal quantities, 
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is the ancillary factor. It follows from (95) that 
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Therefore, in this case, L can be found explicitly as 
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For instance, let us suppose that shipments of a 

lot of electronic systems of a specified type are 
made to each of 3 customers. Further suppose each 
customer selects a random sample of 5 systems and 
accepts his shipment only if no failures occur before 
a specified time has elapsed. The manufacturer 
wishes to take a random sample and to calculate the 
simultaneous lower one-sided β-content tolerance 
limits so that all shipments will be accepted with a 
probability of γ at least for 100β% of the future 
cases of such k shipments, where β=0.95, γ=0.95, 
and k=3.  

The resulting failure times (rounded off to the 
nearest hour) of an initial sample of size 20 from a 
population of such electronic systems are: 3149, 
3407, 3215, 3296, 3095, 3563, 3178, 3112, 3086, 
3160, 3155, 3742, 3143, 3240, 3184, 3621, 3125, 
3109, 3118, 3127.  

It is assumed that the failure times follow a two-
parameter exponential distribution with unknown 
parameters µ and σ. Thus, for this example, n=20, 
k=3, m=5, β=0.95 γ=0.95, X(1)=3086, and Sn=3105.  

The manufacturer finds from (99) that 
  

3060. = 0.951
(0.95)  120

3105 + 3086 = 
19
1

20/15
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


−

−L  

(100) 
 
and he has 95% assurance that no failures will occur 
in each shipment (i.e. each shipment will be 
accepted) before L=3060 hours at least for 95% of 
the future cases of such shipments of a lot of 
electronic systems which will be made to each of 
three firms. 
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6 General Problem Analysis 
6.1 Inner Minimization 
First consider the inner minimization, i.e., k (Section 
2) is held fixed for the time being. Then the term ck 
does not affect the result of this minimization. 
Consider a situation of state estimation described by 
one of a family of density functions, indexed by the 
vector parameter θ=(µ,σ), where µ≡x(k) and 
σ≡ω(>0) are respectively parameters of location and 
scale. For this family, invariant under the group of 
positive linear transformations: z→az+b with a>0, 
we shall assume that there is obtainable from some 
informative experiment (a random sample of 
observations zk={z(0), …, z(k)}) a sufficient statistic 
(mk,sk) for (µ,σ) with density function pk(mk,sk;µ,σ) 
of the form 
 

]./ ,/)[(),;,( 2 σσµσσµ kkkkkk smfsmp −= −  (101) 
 
We are thus assuming that for the family of density 
functions an induced invariance holds under the 
group G of transformations: mk→amk+b, sk→ask (a> 
0). The family of density functions satisfying the 
above conditions is, of course, the limited one of 
normal, negative exponential, Weibull and gamma 
(with known index) density functions. 
 The loss incurred by making decision d when 
µ≡x(l) is the true parameter is given by the 
piecewise-linear loss function 
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The decision problem specified by the informative 
experiment density function (101) and the loss 
function (102) is invariant under the group G of 
transformations. Thus, the problem is to find the 
best invariant estimator of µ, 
 

   ),,R( min arg dd
d

θ
D∈

∗ =  (103) 

 
where D is a set of invariant estimators of µ, R(θ,d) 
= Eθ{r(θ,d)} is a risk function. 
 
 
6.2   Best Invariant Estimator 
It can be shown by using the invariant embedding 
technique that an invariant loss function, r(θ,d), can 
be transformed as follows: 

  ),,(),( ηvrdr &&=θ  (104) 
 
where 
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v=(v1,v2), v1= σµ /)( −km , v2= σ/ks , η=(d−mk)/sk.  

It follows from (104) that the risk associated with 
d and θ can be expressed as 
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which is constant on orbits when an invariant 
estimator (decision rule) d is used, where fk(v1,v2) is 
defined by (101). The fact that the risk (106) is 
independent of θ means that a decision rule d, which 
minimizes (106), is uniformly best invariant. The 
following theorem gives the central result in this 
section. 

Theorem 3 (Best invariant estimator of µ). 
Suppose that (v1,v2) is a random vector having 
density function 
 

1

0
12122212 ),(),(

−∞ ∞

∞− 










∫ ∫ dvvvfdvvvvfv kk (v1 real, v2>0), 

(107) 
 

where fk is defined by (101), and let Gk be the 
distribution function of v1/v2. Then the uniformly 
best invariant linear-loss estimator of µ is given by 
 

    d*= mk+η∗sk, (108) 
 
where 
 

 )./()( 211 cccGk +=− ∗η    (109) 

 
Proof. From (106) 

WSEAS TRANSACTIONS on MATHEMATICS Nicholas A. Nechval, Gundars Berzins,
Maris Purgailis, Konstantin N. Nechval

ISSN: 1109-2769

151
Issue 4, Volume 7, April 2008



{ }
η

η
∂

∂ ),( vrEk &&
 

 
 

∫ ∫∫∫
∞ −

∞−

∞

−

∞

−=
0

121222121
0

221

2

2

),(),(
v

k
v

k dvvvfdvvcdvvvfdvvc
η

η

 
 

∫∫
∞

∞−

∞

>+= }0:),{([),( 21211121
0

22 vvvvPcdvvvfdvv kk η  

 
 

}]0:),{( 21212 <+− vvvvPc k η  
 
 

)].())(1([),( 21121
0

22 ηη −−−−= ∫∫
∞

∞−

∞

kkk GcGcdvvvfdvv  

 
(110) 

 
Then the minimum of Ek{ r&& (v,η)} occurs for η∗ 
being determined by setting ∂Ek{ r&& (v,η)}/∂η = 0 
and this reduces to 
 

,0)()](1[ 21 =−−−− ∗∗ ηη kk GcGc  (111) 

 
which establishes (109).   � 
 Corollary 3.1 (Minimum risk of the best 
invariant estimator of µ). The minimum risk is 
given by 
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(112) 

 
with η∗ as given by (109). 
 Proof. These results are immediate from (104) 
when use is made of ∂Ek{ r&& (v,η)}/∂η = 0.   � 
 
 
6.3   Outer Minimization 
The results obtained above can be further extended 
to find the optimal number of observations. Now 
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is to be minimized with respect to k. It can be shown 
that this function (which is the constant risk 
corresponding to taking a sample of fixed sample 
size k and then estimating x(l) by the expression 
(108) with k for k∗) has at most two minima (if there 
are two, they are for successive values of k; 
moreover, there is only one minimum for all but a 
denumerable set of values of c). If there are two 
minima, at k∗ and k∗+1, one may randomize in any 
way between the decisions to take k∗ or k∗+1 
observations. 
 
 
7 Example 
Consider the one-dimensional discrete-time system, 
which is described by scalar difference equations of 
the form (1)-(2), and the case when the 
measurement noises w(k),  k = 1, 2,  …  (see  (2))  
are  independently  and identically distributed 
random variables drawn from the exponential 
distribution with the density 
 

),(0,   ),/exp()/1();( ∞∈−= wwwf σσσ  (114) 
 
where the parameter σ>0 is unknown. It is required 
to find the best invariant estimator of x(l) on the 
basis of the data sample zk=(z(1), …, z(k)) relative to 
the piecewise linear loss function 
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where θ=(µ,σ), µ≡x(l), c1>0, c2=1. 
 The likelihood function of zk is 
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where 
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if l < k (estimation of the past state of the system), 
and 
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if either l = k (estimation of the current state of the 
system) or l > k (prediction of the future state of the 
system). 
 It can be justified by using the factorization 
theorem that (mk,sk) is a sufficient statistic for 
θ=(µ,σ), where 
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j
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The probability density function of (mk,sk) is given 
by 
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      mk > µ,   sk > 0, (123) 

where 
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=
k
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Since the loss function (115) is invariant under the 
group G of location and scale changes, it follows 
that 
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where v=(v1,v2), 
 

 .   ,   , 21
k

kkk

s
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= η
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Thus, using (108) and (109), we find that the best 
invariant estimator (BIE) of µ is given by 
 

  ,BIE kk smd ∗+= η  (127) 
 
where 
 

{ }, ),(E inf arg)(/])1(1[ /1
1 ηη

η
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The risk of this estimator is 
 

{ }),(E),( BIEBIE drdR θθ θ=  
 
 

 { } . )(/]1)1[(),(E /1
1 knckr k

k −+== ∗ηv&&  (130) 
 
Here the following theorem holds. 
 Theorem 4 (Characterization of the estimator 
dBIE). For the loss function (115), the best invariant 
estimator of µ, dBIE, given by (127) is uniformly 
non-dominated. 
 Proof. The proof follows immediately from 
Theorem 1 if we use the prior distribution on the 
parameter space Θ, 
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This ends the proof.   � 
 Consider, for comparison, the following 
estimators of µ (state of the system): 
 The maximum likelihood estimator (MLE): 
 

   ;MLE kmd =  (132) 
 
 The minimum variance unbiased estimator 
(MVUE): 

   ;
)()1(MVUE knk

smd k
k −

−=   (133) 

 
 The minimum mean square error estimator 
(MMSEE): 
 

   ;
)(MMSEE kkn

smd k
k −=  (134) 

 
 The median unbiased estimator (MUE): 
 

   .
)(

)12( )1/(1
MUE kn

smd kk
k −−= −  (135) 

 
Each of the above estimators is readily seen to be of 
a member of the class 
 

 { },  : kk smdd η+==C  (136) 
 
where η is a real number. A risk of an estimator, 
which belongs to the class C, is given by (129). If, 
say, k=3 and c1=26, then we have that 

 
   { } ,0.231 = ;,.rel.eff BIEMLE θddR  (137) 

 
 

 { } ,0.5 = ;,.rel.eff BIEMVUE θddR  (138) 
 
 

    { } ,0.404 = ;,.rel.eff BIEMMSEE θddR  (139) 
 
 

  { } .0.45 = ;,.rel.eff BIEMUE θddR   (140) 

In this case (113) becomes 
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Now (141) is to be minimized with respect to k. It is 
easy to see that 
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Define 
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Thus 
 

.)( 1−<
>

<
> ⇔ kk JJkc ϕ  (144) 

 
 By plotting ϕ(k) versus k the optimal number of 
observations k∗ can be determined. 
 For each value of c, we can find an equilibrium 
point of k, i.e., c=ϕ(k•). The following two cases 
must be considered: 
 1) k• is not an integer. We have 
k(1)<k•<k(1)+1=k(2), where k(1) and k(2) are neighboring 
integers. Since ϕ(k) is monotonically decreasing, we 
know that ϕ(k(1))>c and ϕ(k(2))<c. Then, by using 
these properties, (133) becomes 
 
 

   ,0)( )1(
1)1()1( <+−=−

−
ckJJ

kk
ϕ  (145) 

 
 

,0)( )2(
)1()2( >+−=− ckJJ

kk
ϕ  (146) 

 
Thus 
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Therefore, k(1) is the optimal number of 
observations. We conclude that the optimal number 
k∗ is equal to the largest integer below the 
equilibrium point. 
 2) k• is an integer. By the same sort of argument, 
we know that k• is as good as k•-1. Consequently, 
both k• and k•-1 are the optimal number of 
observations. Notice that in this case, Jk* can be 
computed directly and precisely from (132). 
 
 
8   Conclusions and Directions  
for Future Research 
In this paper we construct the minimum risk 
estimators of state of stochastic systems. The 
method used is that of the invariant embedding of 
sample statistics in a loss function in order to form 
pivotal quantities, which make it possible to 
eliminate unknown parameters from the problem. 
This method is a special case of more general 
considerations applicable whenever the statistical 
problem is invariant under a group of 
transformations, which acts transitively on the 
parameter space. 
 For a class of state estimation problems where 
observations on system state vectors are 
constrained, i.e., when it is not feasible to make 
observations at every moment, the question of how 
many observations to take must be answered. This 
paper models such a class of problems by assigning 
a fixed cost to each observation taken. The total 
number of observations is determined as a function 
of the observation cost. 
 Extension to the case where the observation cost 
is an explicit function of the number of observations 
taken is straightforward. A different way to model 
the observation constraints should be investigated. 
 More work is needed, however, to obtain 
improved decision rules for the problems of 
unconstrained and constrained optimization under 
parameter uncertainty when: (i) the observations are 
from general continuous exponential families of 
distributions, (ii) the observations are from discrete 
exponential families of distributions, (iii) some of 
the observations are from continuous exponential 
families of distributions and some from discrete 
exponential families of distributions, (iv) the 
observations are from multiparameter or 
multidimensional distributions, (v) the observations 
are from truncated distributions, (vi) the 
observations are censored, (vii) the censored 
observations are from truncated distributions.  

Appendix: Further Applications of the 
Invariant Embedding Technique 
A.1   Finding Shortest-Length Confidence 
Intervals for System Availability 
Availability analysis is performed to verify that an 
item has a satisfactory probability of being 
operational, so it can achieve its intended objective. 
An item’s availability can be considered as 
combination of its reliability and maintainability. 
Accordingly, when no maintenance repair is 
performed (e.g., in nonrepairable items), reliability 
can be considered as instantaneous availability. 
Availability is very important to users of repairable 
products and systems, such as computer networks, 
manufacturing systems, power plants, transportation 
vehicles, and fire-protection systems. 
 Mathematically, the availability of an item is a 
measure of the fraction of time that the item is in 
operating condition in relation to total or calendar 
time, i.e., availability indicates the percent of the 
time that products are expected to operate 
satisfactory. There are several measures of 
availability, namely, inherent availability, achieved 
availability, and operational availability. For further 
definition of these availability measures, see [18]. 
Here, we consider inherent availability, which is the 
most common definition used in the literature. This 
availability, A, is the designed-in capability of a 
product and is defined by [19] 
 

,
MTTRMTBF

MTBF
+

=A   (A1) 

 
where MTTR is the Mean Time To Repair (more 
generally, the mean time that the process is 
inoperable when it is down for maintenance or 
because of a breakdown) and MTBF is the Mean 
Time Between Failures (more generally, the mean 
operating time between one downtime and the next, 
where each downtime can be due to maintenance or 
a breakdown). 
 Actually the true inherent availability is rarely 
known. Usually, it is estimated from the few 
collected data on the operating (up) times and 
repair/replace (down) times. The point estimate of 
the availability is then given by 
 

 ,
TTRMTBFM

TBFM
))

)
)

+
=A  (A2) 

 
where A

)
 is an estimate of the inherent availability, 

TBFM
)

 is an estimate of MTBF from sample data, 
TTRM

)
is an estimate of MTTR from sample data. 
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Obviously, this point estimate is a function of the 
sample data and the sample size. Different samples 
will result in different estimates. The sample error 
affects the quantification of the calculated 
availability. If the estimates were based on one 
failure and one repair only, it would be quite risky 
[20]. We would feel more confident if we had more 
data (more failures and repairs). The question is 
how good the estimated inherent availability is. The 
answer is to attach a confidence level to the 
calculated availability, or give the confidence limits 
on the availability at a chosen confidence level. The 
most interesting confidence limits would be the 
shortest-length confidence limits on the true 
availability at a given confidence level. 
 In a wide variety of inference problems one is 
not interested in estimating the parameter or testing 
some hypothesis concerning it. Rather, one wishes 
to establish a lower or an upper bound, or both, for 
the real-valued parameter. For example, if X is the 
time to failure of a piece of equipment, one is 
interested in a lower bound for the mean of X. If the 
rv X measures the toxicity of a drug, the concern is 
to find an upper bound for the mean. Similarly, if 
the rv X measures the nicotine content of a certain 
brand of cigarettes, one is interested in determining 
an upper and a lower bound for the average nicotine 
content of these cigarettes. 
 The following result provides a general method 
of finding shortest-length confidence intervals and 
covers most cases in practice. 
 Let S=s(X) be a statistic, based on a random 
sample X. Let F be the distribution function of the 
pivotal quantity V(S,A) ≡ A and let vL, vU be such 
that 
 

  F(vU) − F(vL) = Pr{vL < V < vU} = 1−α. (A3) 
 
It will be noted that the distribution of V does not 
depend on any unknown parameter. A 100(1−α)% 
confidence interval of A is (AL(S,vL,vU),AU(S,vL,vU)) 
and the length of this interval is ∆(S, vL, vU) = AU − 
AL. We want to choose v1, v2, minimizing AU − AL 
and satisfying (A3). Thus, we consider the problem: 
 Minimize: 
 

 ∆(S, vL, vU) = AU − AL, (A4) 
 

 Subject to: 
 

F(vU) − F(vL) = 1−α.  (A5) 
 

The search for the shortest-length confidence 
interval  ∆ = AU − AL is greatly facilitated by the use  

of the following theorem. 
 Theorem A1. Under appropriate derivative 
conditions, there will be a pair (vL, vU) giving rise to 
the shortest-length confidence interval ∆(S, vL, vU) = 
AU − AL for A as a solution to the simultaneous 
equations: 
 

   ,0
)(
)(

=
′
′

∂
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+
∂
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U

L

UL vF
vF

vv
 (A6) 

 
F(vU) − F(vL) = 1−α. (A7) 

 
 Proof. Note that (A5) forces vU to be a function 
of vL (or visa-versa). Take ∆(S,vL,vU) as a function 
of vL, say ∆(S,vL,vU(vL)). Then, by using the method 
of Lagrange multipliers, the proof follows 
immediately.   �   
 
 
A.1.1   Example 1 
Consider the problem of constructing the shortest-
length confidence interval for system availability 
from time-to-failure and time-to-repair test data. It is 
assumed that X1 (time-to-failure) and X2 (time-to-
repair) are stochastically independent random 
variables with probability density functions 
 

,0   ),(0,   ,1);( 11
/

1
111

11 >∞∈= − θ
θ

θ θ xexf x  (A8) 

 

and 
 

.0   ),(0,   ,1);( 22
/

2
222

22 >∞∈= − θ
θ

θ θ xexf x  (A9) 

 
Availability is usually defined as the probability that 
a system is operating satisfactorily at any point in 
time. This probability can be expressed 
mathematically as 
 

  ,
21

1

θθ
θ
+

=A  (A10) 

 
where θ1 is a system mean-time-to-failure, θ2 is a 
system mean-time-to-repair. 
 Consider a random sample X1= ), ... ,(

1111 nXX of 
n1 times-to-failure and a random sample 
X2= ), ... ,(

2221 nXX of n2 times-to-repair drawn from 
the populations described by (A8) and (A9) with 
sample means 
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It is well known that 2n1 11 /θX  and 2n2 22 /θX  are 
chi-square distributed variables with 2n1 and 2n2  
degrees of freedom, respectively. They are 
independent due to the independence of the 
variables X1 and  X2. 
 It follows from (A10) that 
 

.
1 2

1

θ
θ

=
− A
A  (A12) 

 
Using the invariant embedding technique, we obtain 
from (A12) a pivotal quantity 
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which is F-distributed with (2n2,2n1) degrees of 
freedom, and  
 

     ./ 12 XXS =  (A14) 
 
Thus, (A13) allows one to find a 100(1−α)% 
confidence interval for A from 
 

,1}Pr{ UL α−=<< AAA  (A15) 
 

where 
 

  
Sv
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L
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It follows from Theorem A1 that the shortest-length 
confidence interval for A is given by 
 

 ),( UL AACA =∗  (A17) 
with 
 

  ∆*(S, vL, vU) = AU − AL, (A18) 
 
where vL and vU are a solution of 
 

 )()()()( U
2
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2
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(f is the pdf of an F-distributed rv with (2n2,2n1) 
d.f.) and 
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In practice, the simpler equal tails confidence 
interval for A, 
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with 
 

  ∆(S, vL, vU) = AU − AL, (A22) 
 
is employed, where 
 
   ),2,2( 122/L nnFv α=    ),2,2( 122/1U nnFv α−= (A23) 

 

and 
 

Pr{F(2n2,2n1) > Fα/2(2n2,2n1)}≤ 1−α/2.   (A24) 
 

 Consider, for instance, the following case. A 
total of 400 hours of operating time with 2 failures, 
which required an average of 20 hours of repair 
time, were observed for aircraft air-conditioning 
equipment. What is the confidence interval for the 
inherent availability of this equipment at the 90% 
confidence level? 
 The point estimate of the inherent availability is  
 

 =
+

=
20200

200A
)

0.909, (A25) 

 
and the confidence interval for the inherent 
availability, at the 90% confidence level, is found as 
follows. 
 From (A21), the simpler equal tails confidence 
interval is 
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i.e., 
 

∆(S, vL, vU) = AU − AL= 0.375. (A27) 
 

 From (A17), the shortest-length confidence 
interval is 
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where vL and vU are a solution of (A19) and (A20). 
Thus,  
 

 ∆*(S, vL, vU) = AU − AL = 0.291.  (A29) 
 
The relative efficiency of CA relative to ∗

AC  is given 
by 
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A.1.2   Example 2 
Consider the problem of constructing the shortest-
length confidence interval for system availability 
from time-to-failure and time-to-repair test data 
when the operating time distribution is lognormal 
and repair time distribution is Inverse Gaussian. 
 Let us assume that the operating time X has a 
lognormal distribution with probability density 
function (pdf) given by 
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and is denoted by Λ(µ,σ2). Note that E{X} 
=exp(µ+σ2/2). The repair time Y has an Inverse 
Gaussian distribution with a pdf given by  
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and is denoted by IG(λ,a). It may be noted that 
E{Y}=a. The parameter σ of the lognormal 
distribution and only the ratio λ/a of the IG 
distribution are known. 
 Let X1, X2, …, Xm be a random sample of times to 
operate with the pdf (A31). It can be shown that 
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where G is the sample geometric mean of time to 
operate. 
 Let Y1, Y2, …, Yn be another random sample of 
times to repair with the pdf (A32). It can be shown 
that 
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If the pivotal quantities U and W are independent, 
then the joint density of (U, W) is given by 
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By making transformations V=U/W and Z=W, it can 
be shown that the pdf of V is 
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where 
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Now we can determine vL and vU such that 
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 It follows from (A1) that 
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Using the invariant embedding technique, we obtain 
from (A39) a pivotal quantity 
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Thus, (A40) allows one to find a 100(1−α)% 
confidence interval for A from 
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where 

  
•

•

+
=

Sv
SA

U
L    and   .

L
U

•

•

+
=

Sv
SA  (A43) 

 

Clearly, (A42) is an exact confidence interval for A, 
if the parameter σ for lognormal distribution and 
only the ratio λ/a of IG distribution are known. 
 It follows from Theorem A1 that the shortest-
length confidence interval for A is given by 
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with 
 

  ∆*(S•, vL, vU) = AU − AL, (A45) 
 
where vL and vU are a solution of 
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