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1 Introduction

Singular integral equations (SIE) and singular integro-
differential equations (SIDE) have been used to model
many physical problems, for example, elasticity the-
ory, aerodynamics etc. [1]-[4].

It is known that the exact solution for SIDE is pos-
sible in some particular cases. That is why we are
looking for an approximate solution using the direct
methods1 with corresponding theoretical background.

It should be mentioned that using a conformal
mapping we can transform an arbitrary smooth closed
contour to the unit circle. However, this approach may
not simplify the problem due to the following:

• The coefficients, the kernels and right part of the
transformed equation may be more complicated.

• The convergence analysis may be more difficult
due to the transformation of contour.

The problem for approximate solution of SIDE by col-
location methods and mechanical quadrature methods
was studied in [5]-[9] . The equations were defined on
the unit circle.

The convergence for collocation methods was
proved in [22], [17]. The equations were defined on
an arbitrary smooth closed contour.

The main results about of the stability of projec-
tion methods were obtained in S. G. Mihlin [10], [11],
G.M. Vainikko [12] for Hilbert spaces and B.G. Gab-
dulhaev [13] for Banach spaces.

1The collocation methods, mechanical quadrature- methods
are direct methods.

The definition of condition number for system of
linear algebraic equations was introduced for example
in [14],[15], [16] and generalized for operators and
operator equations in [13].

The classical continuous function space can not
be used because the singular operator of integration is
unbounded. That is why we studied the Hölder spaces.

2 Definitions and Notations

In this section we introduce the main definitions from
[13],[16], [15]. Let

Ax = y, (x ∈ X, y ∈ Y ), (1)

be an exact equation and

Anxn = yn, (xn ∈ Xn, yn ∈ Yn), (2)

be an approximate equation.
Let A andAn be a linear operators which acting

from Banach spaceX to the Banach spaceY and from
subspaceXn ⊂ X to the subspaceYn ⊂ Y.

In practice the approximate solution of equation
(2) is solved approximate because of the elements of
these equations are not defined exactly. It means that
the equation (2) is changed by new one

Bnxn = zn (xn ∈ Xn, zn ∈ Yn), (3)

whereBn is linear operator acting fromXn to Yn and
soAn andBn, asyn andzn are appropriated.

So we study the error

δn = ||x(∗)
n − x(1)

n ||, (4)
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wherex(∗)
n andx(1)

n are solutions ( if the solutions ex-
ist) of equations (2) and (3), respectively.

We introduce the definition of condition number
defined by operator.

The valueη = η(A) = ||A||||A−1|| is named the
condition number of operatorA and equation (1).

The operatorA and the equation (1) are named
well-conditioned ifη is small and ill-conditioned in
another case.

The following equality was obtained in [16] :

η(A) = sup
x∗

{
sup

y

||x∗ − x∗n||
||x∗|| :

||A(x∗ − x∗n)||
||y||

}
, (5)

wherex∗, x∗n are solutions of equations (1) and (2)
andy is right part in (1).

3 Preliminaries

We study the stability of collocation methods. We
suppose that the operatorA in (1) are invertible.

The following theorems holds: [17]
Theorem 1. Let the following conditions be

satisfied

1) dimXn = dimYn (= n < ∞) andYn = QnY,
whereQn is bounded projector for alln;

2) the operatorsAn : Xn → Yn are invertible and
||A−1

n ||Yn→Xn ≤ c1 (<∞)2.

3) ||An −Bn||Xn→Yn = O(ε(1)
n );

4) ||yn − zn|| = O(ε(2)
n ); yn, zn ∈ Yn;

5) lim
n→∞ ε

(1)
n = lim

n→∞ ||Qn||ε(1)
n = lim

n→∞ ε
(2)
n = 0.

Then for numbersn large enough(n ≥ N0) the
operatorsBn : Xn → Yn are invertible and

a) ||B−1
n ||Yn→Xn ≤ c2 (<∞);

b) lim
n→∞ δn = 0, δn = ||x∗n − x

(1)
n ||, and δn ≤

c3||Qn||Y ε(1)
n + c4ε

(2)
m ;

c) ||x∗ − x(1)
n ||X ≤ ||x∗ − x∗n||+ ||Qn||YO(ε(1)

n ) +
O(ε(2)

n ).

2By c1, c2, . . . we denote the constants ;

Proof AsAn andBn : Xn → Yn and the condition 2)
holds then we have

Bn = An[I −A−1
n (An −Bn)]. (6)

Using the conditions 2),3) and 5) we have

||A−1
n (An −Bn)||Xn ≤ c1O(ε(1)

n ) ≤ q1 < 1, (7)

therefore the operatorI−A−1
n (An−Bn) is invertible

inXn for n(≥ N1) and we have that the operatorBn :
Xn → Yn is invertible:

B−1
n =

∞∑

j=0

[A−1
n (An −Bn)]jA−1

n .

From the last relation, from (6) and from the condition
2) we obtain

||B−1
n ||Yn→Xn ≤

c1
1− q1

(= c2)

The condition a) from theorem was received .
We will verify condition b).
We have that

B−1
n −A−1

n =
∞∑

j=1

[A−1
n (An −Bn)]jA−1

n ,

from (7)

||B−1
n −A−1

n || ≤ c21
1− q1

O(ε(1)
n ) = O(ε(1)

n ).

Then

||x∗n − x(1)
n ||Xn ≤ ||A−1

n yn −B−1
n zn||X

≤ ||(A−1
n −B−1

n )yn||X+

||B−1
n (yn − zn||X ≤

O(ε(1)
n )||yn||Yn + c2O(ε(2)

n ).

We know thatyn = Qny. So we obtain||yn||Yn ≤
||Qn||||y||Y . Using (4) we obtain

δn = ||x∗n−x(1)
n ||Xn ≤ O(ε(1)

n )||Qn||||y||Y +O(ε(2)
n ).

Using the last relation and the theorem condition 5)
we obtain condition b).

The condition c) followed by from b) and triangle
rule. Theorem 1 was proved.

Theorem 2. Let the operatorsA andAn be
linear and invertible as operators mapping from
X to Y and fromXn to Yn respectively where
dimXn = dimYn (< ∞) and

||A− An||Xn→Y = O(εn); lim
n→∞ εn = 0. (8)
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Then the condition numbersη(A) and η(An) of
operatorsA and An exist. The following rela-
tions hold:

η(An) ≤ cηA, 1 ≤ c ≤ 1 + ε

1− ε

for n ≥ N3(ε), (9)

whereε is an arbitrary positive less then 1 and

lim
n→∞ η(An) = η(A). (10)

Proof
We will prove the relations (9) and (10).

η(An) = ||An||||A−1
n || = ||A[I−A−1(A−An)]||

||[I − A−1(A− An)]−1A−1
n ||

≤ η(A)||I−A−1(A−An||||
∞∑

j=0

[A−1(A−An)]j||

≤ η(A)
1 + O(εn)

1−O(εn)
,

We note the function(1 + θ)/(1 − θ), θ ∈ (0; 1)
is increase monotonically and from the condition
(8) we have (9).

We will prove that the relation (10).
So we evaluatedη(An) as we would evaluate

η(A).

η(A) = ||A||||A−1|| = ||An[I−A−1
n (An−A)]||×

||
∞∑

j=0

[A−1
n (An−A)]jA−1

n || ≤ (η(An))
1 + O(εn)

1−O(εn)
.

From the obtained inequalities

η(An) ≤ (η(A))
1 + O(εn)

1−O(εn)
.

η(A) ≤ (η(An))
1 + O(εn)

1−O(εn)
.

follow

η(An) ≤ η(A)

(
2O(εn)

1−O(εn)
+ 1

)
;

η(An) ≥ η(A)
1−O(εn)

1 + O(εn)

= η(A)

(
1− 2O(εn)

1 + O(εn)

)
.

We obtain

−η(A)
O(εn)

1 + O(εn)
≤ η(An)− η(A) ≤

η(A)
O(εn)

1−O(εn)
.

From the last inequality and (8) we have (10).
Theorem 2 is proved.

So if the exact solutions of equation (1) are
well conditioned then from the conditions of The-
orem 2. the approximate solutions of (2) are also
well conditioned.

4 Numerical schemes of the colloca-
tion methods

The numerical schemes of collocation methods for the
approximate solution of SIDE are presented in this
section. The theorems of the convergence of the ap-
proximate solutions to the exact solution are proved in
[17], [22].

Let Γ be an arbitrary smooth closed contour
bounding a simply-connected regionF+ of complex
plane, lett = 0 ∈ F+, F− = C \ {F+ ∪Γ}, C is the
complex plane.

Let z = ψ(w) be a Riemann function, mapping
conformably and unambiguously the outside of unit
circle Γ0 = {|w| = 1} on the domainF−, so that
ψ(∞) = ∞ , ψ(′)(∞) = 1. The class of these con-
tours we denote bỹΛ.

Let Un be the Lagrange interpolating polynomial
operator constructed on the points{tj}2n

j=0 (n is a nat-
ural number ) for any continuous function onΓ

(Ung)(t) =
2n∑

j=0

g(tj) · lj(t), t ∈ Γ,

where

lj(t) =
(
tj
t

)n 2n∏

(k=0,k 6=j)

t− tk
tj − tk

≡

≡
n∑

k=−n

Λ(j)
k tk, t ∈ Γ. (11)

ByHβ(Γ) we denote Ḧolder space with the expo-
nentβ (0 < β < 1) and with norm

‖g‖β = ‖g‖C +H(g;β),

H(g, β) = sup
t′ 6=t′′

∣∣∣g(t′′)− g(t
′
)
∣∣∣

|t′ − t′′ |β
, t
′
, t
′′ ∈ Γ.
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By H(q)
β (Γ) q = 0, 1, . . . , we denote the space

of r times continuously- differentiable functions. The
derivatives of theq-th order for these functions are el-
ements ofHβ(Γ) ( g(q) ∈ Hβ(Γ).)

The norm onH(q)
β (Γ) is given by formula

||g||β,q =
q∑

k=0

||g(k)||c +H(g(q);β). (12)

In the complex spaceHβ(Γ) we consider the
SIDE

(Mx ≡)
ν∑

r=0

[Ãr(t)x(r)(t) + B̃r(t)
1
πi

∫

Γ

x(r)(τ)
τ − t

dτ+

+
1

2πi

∫

Γ

Kr(t, τ)x(r)(τ)dτ ]

= f(t), t ∈ Γ, (13)

whereÃr(t), B̃r(t), Kr(t, τ)(r = 0, ν) andf(t) are
known functions which belong toHβ(Γ), x(0)(t) =
x(t) is the unknown function fromHβ(Γ), and

x(r)(t) =
drx

dtr
, r = 1, ν, ν is a positive integer.

We assume that the functionx(ν)(t) belongs to
Hβ(Γ), then

x(k)(t) ∈ Hβ(Γ), k = 0, ν − 1.

We search for a solution of equation (13) in the
class of functions, satisfying the conditions

∫

Γ

x(τ)τ−k−1dτ = 0, k = 0, ν − 1. (14)

Equation (13) with conditions (14) will be de-
noted as ”problem (13), (14) ”

Using the Riesz operatorsP = 1
2(I + S); Q =

1
2(I − S); (I an identity operator andS is a singular
operator)

Sϕ(t) =
1
πi

∫

Γ

ϕ(τ)dτ
τ − t

.

We rewrite the SIDE (13) in the form:

(Mx ≡)
ν∑

s=0

As(t)(Px(s))(t) +Bs(t)(Qx(s))(t)+

+
1

2πi

∫

Γ

Ks(t, τ)x(s)(τ)dτ = f(t), t ∈ Γ, (15)

We search for the approximate solutions of prob-
lem (13), (14) in the polynomial form

xn(t) =
n∑

k=0

α
(n)
k tk+ν +

−1∑

k=−n

α
(n)
k tk, t ∈ Γ, (16)

whereα(n)
k = αk (k = −n, n) are unknowns; we note

that the functionxn(t), constructed by formula (16),
obviously, satisfies the conditions (14).

Let Rn(t) = Mxn(t) − f(t) be the residual of
SIDE. The collocation methods consist in setting it
equal to zero at chosen pointstj , j = 0, . . . , 2n on Γ
and thus obtaining system linear algebraic equations
for the unknown coefficientsαk, which will be deter-
mined by solving it.

Rn(tj) = 0, j = 0, . . . , 2n. (17)

Using formulae [17] we have the following formulae:

(Px)(r)(t) = (Px(r))(t),

(Qx)(r)(t) = (Qx(r))(t) (18)

and the relations

(tk+q)(r) =
(k + q)!

(k + q − r)!
tk+q−r, k = 0, . . . , n;

(t−k)(r) = (−1)r (k + r − 1)!
(k − 1)!

t−k−r,

k = 1, . . . , n; (19)

from (17), we obtain the following system of
linear algebraical equations (SLAE) for collocation
methods:

n∑

k=−n

ν∑

r=0

{
(k + ν)!

(k + ν − r)!
· sign(k)[Ar(tj)tk+ν−r

j

+
1

2πi

∫

Γ

Kr(tj , τ) · τk+ν−rdτ ]+

+
(k + r − 1)!

(k − 1)!
sign(−k) · [(−1)rBr(tj)t−k−r

j +

+
1

2πi

∫

Γ

Kr(tj , τ)τ−k−rdτ ]
}
αk

= f(tj), j = 0, 2n, (20)

whereAr(t) = Ãr(t) + B̃r(t), Br(t) = Ãr(t) −
B̃r(t),r = 0, ν, sign(k) = 1,k ≥ 0, sign(k) =
−1,k < 0.

Let
o
H

(ν)

β (Γ) is a subspace ofH(ν)
β (Γ) space.

The elements of
o
H

(ν)

β (Γ) are satisfied the condition

(14) with the norm as inH(ν)
β (Γ).
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Theorem 3. LetΓ ∈ Λ̃ and the following condi-
tions be satisfied:

1. the functionsÃr(t), B̃r(t),Kr(t, τ)(r = 0, ν)
andf(t) belong to the spaceH(r)

α (Γ); 0 < α <
1, r ≥ 0;

2. Aν(t) ·Bν(t) 6= 0,t ∈ Γ;

3. the index of functiontνB−1
ν (t)Aν(t) is equal to

zero;

4. the operatorM :
o
H

(ν)

β (Γ) → Hβ(Γ) is linear
and invertible;

5. tj(j = 0, 2n) form a system of Fejér points [20],
[21] on Γ:

tj = ψ

[
exp

(
2πi

2n+ 1
(j − n)

)]
, j = 0, 2n;

6. 0 < β < α < 1.

Then, beginning withn ≥ n1, SLAE (20) has the
unique solutionαk, k = −n, n. The approximate so-
lution xn(t), constructed by formula (16,) converges
whenn → ∞ in according to the norm of space
H

(ν)
β (Γ) to the exact solutionx(t) of the problem (13),

(14). The following estimation of convergence speed
holds:

||x− xn||β,ν =
d1 + d2 lnn
nr+α−β

H(x(r), α).

The proof of this theorem can be found in [17], [22].

5 Stability of collocation methods.
Condition numbers

Theorem 4. In conditions of Theorem 3 the collo-
cation methods for the approximate solution of SIDE
(13) is stable in Ḧolder spaces from different of small
variations in approximate equations.

Proof of theorem. From the proof of Theorem
3 we obtained that approximate collocation operator
An starting from the numbersn ≥ n1, is invertible as

operator mapping from
o
Xn toXn, whereXn and

o
Xn

are defined in [22], [17]

||A−1
n || = O(1), An :

o
Xn→ Xn.

From proof of Theorem 3 we have that the op-
eratorsUn is bounded inHβ andXn = UnHβ. Us-

ing the theorem 1. in conditionsA = M, Xn =
o
Xn,

Yn = UnHβ;Qn = Un, ε
(1)
n = ε

(2)
n =

lnn
nα−β

,we have

the collocation operatorAn. Theorem 4. is proved
Theorem 5. Let the conditions of Theorem

3. be satisfied. Then beginning with the number
n ≥ N1 exist a condition numbersη(An) for ap-
proximate equations of collocation methods and

η(An) ≤ c · η(M), 1 ≤ c ≤ 1 + ε

1− ε
, ε(> 0) is an

arbitrary small numbern ≥ N1(ε) :

lim
n→∞(An) = η(M).

From Theorem 3 we have,

||An −M ||Xn = const
lnn
nα−β

.

We obtained the conditions (8) of the Theorem 2.
Now Theorem 5 followed from the relations (9) and
(10).

6 Stability of exact SIDE

In this section we study the stability of SIDE in Hölder
spacesHβ(Γ), Γ ∈ Λ̃.

We consider the SIDE (15) as exact equation.
We suppose that equation (15) has an unique solu-

tion. The coefficients, nuclei and right part have small
perturbations.

||As − Âs||c < ε, ||Bs − B̂s||c < ε,

||f − f̂ ||c < ε, ||Ks(t, τ)− K̂s(t, ε)||c < ε,

(t, τ ∈ Γ, ε < 1), s = 0, . . . ν. (21)

The following question appears: if the unique solution
xε(t) exists for equation

(M1x ≡)
ν∑

s=0

Âs(t)(Px(s))(t) + B̂s(t)(Qx(s))(t)+

+
1

2πi

∫

Γ

K̂s(t, τ)x(s)(τ)dτ = f̂(t), t ∈ Γ, (22)

if yes we should study the errorδ(1)
n = ||x∗(t) −

xε(t)||, wherex∗(t) is an unique solution for equation
(15) andxε(t) is an unique solution for (22)?

Suppose As(t), Bs(t), f(t) and Ks(t, τ)
∈ Hr

α(Γ), r = 0, 1, 2, . . . , s = 0, . . . ν (by
both variables).
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As It was proved in [18], for smallε the coeffi-
cientsÂs(t), B̂s(t) andK̂s(t, τ), s = 0, . . . ν, belong
to theHr

α(Γ), r = 0, 1, 2, . . . , s = 0, . . . ν.
We estimate the function norm∆Mx,

∆Mx
df
= (M −M1)x,

in Hβ(Γ) (0 < β < α) :

∆Mx =
ν∑

s=0

{[As(t)− Âs(t)](Px(s))(t)+

[Bs(t)− B̂s(t)](Qx(s))(t)+

1
2πi

∫

Γ

[Ks(t, τ)− K̂s(t, τ)]x(s)(τ)dτ}, t ∈ Γ. (23)

It is enough to estimate ||∆Mx||c and
H(∆Mx;β).

a) |∆Mx|(t)| :

|∆Mx)(t)| ≤
ν∑

s=0

|[As(t)− Âs(t)](Px(s))(t)|+

ν∑

s=0

|[Bs(t)− B̂s(t)](Px(s))(t)|+

+
1

2πi

ν∑

s=0

{
∫

Γ

|Ks(t, τ)− K̂s(t, τ)|

|x(τ)||dτ |} = M1 +M2 +M3.

Taking into consideration that the operatorsP,
Q is bounded in Ḧolder spaces,(21) and evident
equality||·||c ≤ ||·||β forM1 andM2,we obtain.

M1 ≤
ν∑

s=0

{|As(t)− Âs(t)||(Px(s))(t)|} ≤

ε
ν∑

s=0

||Px(s)||β ≤ ε||P ||β||x||β,ν ;

M2 ≤
ν∑

s=0

{|Bs(t)− B̂s(t)||(Qx(s))(t)|}

≤ ε
ν∑

s=0

||Qx(s)||β ≤ ε||Q||β||x||β,ν .

Analog, using (21), we obtainM3 ≤ l

2π
ε||x||c,ν

≤ l

2π
ε||x||β,ν (wherel is length of contourΓ).

So,

|(∆Mx)(t)| ≤ ε(||P ||β + ||Q||β+

l

2π
)||x||β,ν . (24)

b) H(∆Mx;β). Let t
′
andt

′′ ∈ Γ. Then

|(∆Mx)(t
′
)− (∆Mx)(t

′′
)| ≤

ν∑

s=0

|[As(t
′
)− Âs(t

′
)](Px(s))(t

′
)−

−[As(t
′′
)− Âs(t

′′
)](Px(s))(t

′′
)|+

ν∑

s=0

|[Bs(t
′
)− B̂s(t

′
)](Qx(s))(t

′
)−

−[Bs(t
′′
)− B̂s(t

′′
)](Qx(s))(t

′′
)|+

ν∑

s=0

1
2πi

∫

Γ

|[Ks(t
′
, τ)− K̂s(t

′
, τ)]−

−[Ks(t
′′
, τ)−K̂s(t

′′
, τ)]|x(s)(τ)||dτ | = M4+M5+M6.

We estimateM4 andM5.
Let |t′ − t

′′ | ≥ ε. Then from (21) we have

M4 ≤
ν∑

s=0

{|[As(t
′
)− Âs(t

′
)]|(Px(s))(t

′
)|+

+|As(t
′′
)− Âs(t

′′
)||(Px(s))(t

′′
)|} ≤

≤ 2ε
ν∑

s=0

||Px(s)||β ≤

2ε1−βεβ||P ||β||x||β,ν ≤
2ε1−β||P ||β||x||β,ν |t′ − t

′′ |β.
If |t′ − t

′′ | < ε, then

M4 ≤
ν∑

s=0

|[As(t
′
)− Âs(t

′
)][(Px(s))(t

′
)−

(Px(s))(t
′′
)]|+

+
ν∑

s=0

|(Px(s))(t
′′
)[As(t

′
)− Âs(t

′
)−

Â(t
′′
) + Âs(t

′′
)]| ≤

≤ ε
ν∑

s=0

H(Px(s);β) +
ν∑

s=0

||Px(s)||c[H(As;α)+

H(Âs, α)]|t′ − t
′′ |α ≤ ε||P ||β||x||β,ν+
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||P ||β||x||β,ν [H(As;α) +H(Âs;α)]|t′ − t
′′ |βεα−β.

The analog estimations are true forM5 changing
||P || by ||Q|| and functionsAs(t), Âs(t) byBs(t) and
B̂s(t), s = 0, ν. So in both cases

ν∑

s=0

|[As(t
′
)− Âs(t

′
)](Px(s))(t

′
)−

|t′ − t′′ |β

[As(t
′′
)− Âs(t

′′
)](Px(s))(t

′′
)|

|t′ − t′′ |β ≤ c1ε
δ||x||β,ν ,

ν∑

s=0

|[Bs(t
′
)− B̂s(t

′
)](Qx(s))(t

′
)

|t′ − t′′ |β −

[Bs(t
′′
)− B̂s(t

′′
)](Qx(s))(t

′′
)|

|t′ − t′′ |β

≤ c2ε
δ||x||β,ν , (25)

where
δ = min(β;α− β). (26)

ForM6, in similar way we will consider the case
|t′ − t

′′ | ≥ ε. Then

M6 ≤
ν∑

s=0

{ 1
2πi

∫

Γ

|Ks(t
′
, τ)−

K̂s(t
′
, τ)||x(s)(τ)|}|dτ |+

+
1

2πi

ν∑

s=0

{
∫

Γ

|Ks(t
′′
, τ)−

−K̂s(t
′′
, τ)||x(s)(τ)||dτ |} ≤

≤ ε

π
||x||c,ν l ≤ ε1−β

π
l||x||β,ν |t′ − t

′′ |β.

We used the fact that for functionsKs(t, τ) and
K̂s(t, τ) the relation (21) holds.

If |t′ − t
′′ | < ε, then

M6 ≤ 1
2πi

ν∑

s=0

∫

Γ

|Ks(t
′
, τ)−

Ks(t
′′
, τ)||x(s)(τ)||dτ |+

+
1

2πi

ν∑

s=0

∫

Γ

|K̂s(t
′
, τ)−

K̂s(t
′′
, τ)||x(s)(τ)||dτ | ≤

≤ 1
2πi

ν∑

s=0

{||x(s)||(H(Ks;α)+

+H(K̂s;α))}|t′ − t
′′ |α ≤

1
2πi

||x||c,νεα−β
ν∑

s=0

(H(Ks;α)+

+H(K̂s;α))|t′ − t
′′ |β.

From estimations ofM6, from (22) and (26) we obtain

||∆M ||
H

(l)
β

(Γ)
≤ c · εδ; δ = min(β;α− β). (27)

From relation (27) we have forε enough small the
equation (22) has unique solutionx∗ε(t).

Using the theory of operator perturbation ([19])
and the relations (27) we can determine the relations
between exact solutionsx∗(t) andxε(t) of equations
(15) and (22) in spacesHβ(Γ).

Taking into consideration the definition of norm
in Hölder spaces we obtain

||x∗ − x∗ε||β = O(εδ);
Remark The same results we can obtain for

Lebesgue and Generalized Hölder spaces.

7 Numerical Result

We present a test example in this section.

We take the exact solution asx(t) =
1

t− 1
.

The coefficients are chosen as follows

Ã0(t) = Ã1(t) =
1
2

(
t+

1
2
− 1
t

) (
1 +

1
t

)

B̃0(t) = B̃1(t) =
1
2

(
t+

1
2
− 1
t

) (
1
t
− 1

)

Kr(t, τ) =
t+ r + 1

τ
, r = 0, 1

The contourΓ is an ellipseRcosφ+ irsinφ. For this
example,R = 3 andr = 2. The right partf(t) of
equation is determined automatically.

In table we show the results using the colloca-
tion scheme (20) . We approximate the integrals by
quadrature formula [17]:

1
2πi

∫

Γ

g(τ)τ l+kdτ ∼=

1
2πi

∫

Γ

Un(τ l+1 · g(τ))τk−1dτ, (28)
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( where k = 0, . . . , n for l = 0, 1, . . . and k =
−1, . . . ,−n for l = −1,−2, . . .). Thus, we obtain the
following SLAE:

ν∑

r=0

{Ar(tj)
n∑

k=0

(k + ν)!
(k + ν − r)!

tk+ν−r
j αk+

Br(tj)
n∑

k=1

(−1)r (k + r − 1)!
(k − 1)!

t−k−r
j · α−k

+
n∑

k=0

(k + ν)!
(k + ν − r)!

2n∑

s=0

Kr(tj , ts)t1+ν−r
s Λ(s)

−kαk

+
n∑

k=1

(−1)r (k + r − 1)!
(k − 1)!

2n∑

s=0

Kr(tj , ts)t−1−r
s Λ(s)

k α−k} = f(tj), (29)

for j = 0, . . . , 2n.
We determineΛk, k = −n, . . . , n from relations

(11).

2n Error

8 0.0749
16 0.0215
24 0.0012
28 2.8018e− 04
32 6.4508e− 05

Table 1In this table we presented the error between
the exact and approximate solutions. The error is
largest error in the magnitude of all selected points.

In our test, the non- collocation points have been
obtained from formula

z(j) = R cos
(

2π(j − 1)
k

+
π

16

)
+

ir sin
(

2π(j − 1)
k

+
π

16

)

wherek is a natural integer andj = 1, . . . , k+ 1.
We observe that we should take enough collocation
points to guarantee the convergence.

8 Conclusion

In this article we proved the stability of collocation
methods. We demonstrated that condition numbers
of approximate equations and exact equations existed
and appropriated.
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