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Abstract: In this work we consider a 3D isothermal mathematical model for ice sheets flows over a horizontal
bedrock. The model is derived from the mechanics and dynamics of ice sheets and experimental results carried out
in Glaciology. The final formulation of the model gives rise to a degenerate quasi-linear elliptic-parabolic equa-
tion for the ice-thickness function. Under appropriated initial and Dirichlet boundary conditions, we discuss the
existence and uniqueness of weak solutions for this problem. Then, we prove that the local speed of propagations
of disturbances from the initial ice-thickness is finite. We prove also that the solutions of this problem have the
waiting-time local behavior. To establish these properties we use here a suitable local energy method.

Key–Words: ice sheet dynamics, existence, uniqueness, finite speed of propagations, waiting time.

1 Introduction
Mathematical models of ice sheets flows deal with the
evolution equation for the ice-thickness function H:

∂ H

∂ t
+ub ·∇H = div

(∫ h

b

A(θ)(h− z)n+1dz|∇h|n−1∇h

)
+a.

(1)
In (1), H = h− b, where h and b are, respectively, the
top surface and the bedrock of the ice sheet, ub is the
sliding velocity, A(θ) = 2(ρ g)nA(θ), where ρ is the
constant density of the ice sheet, n is called Glen’s ex-
ponent and A(θ) is a temperature-depending function
(θ is the absolute temperature), and a is the accumu-
lation/ablation rate function (see Sections 3 and 4).

In this work, we shall only consider isothermal mo-
tions, which causes, in (1), that A does not depend
on θ. This can be a consequence of approximately
zero changes of temperature in the ice sheet, or more
generally if, in the Arrhenius relationship (12), | −
Q/(kθ)| ¿ 1 and A0 = 1. The exothermic model
shall be considered by the authors in a future work.
Another simplification of the model, results from an
usual assumption in ice sheet modeling, the bedrock
b is a horizontal surface, i.e. b = constant. Under
these assumptions, and after an integration procedure
(see Fowler [11]), (1) becomes

∂ H

∂ t
+ ub · ∇H = div

(
Hn+2

n + 2
|∇H|n−1∇H

)
+ a . (2)

On the other hand, it should be pointed out that, as any
measure, the ice-thickness must be non-negative. A
different mathematical model was considered by the
authors in [3, 5]. There, it was used the arguing of
Fowler [12] to justify the replacement of the sliding
velocity ub by −∇H .

When formulating mathematical models for the study
of ice sheets, usually it is necessary to take into ac-
count that the flow domain is not prescribed and is
itself part of the solution (see Calvo et al. [7] and Ro-
drigues and Santos [21]). However, in this work, we
are mainly interested with the local properties of the
ice-thickness function. Therefore we may assume the
ice sheet based domain is known. We assume the ice
sheet occupies a sufficiently large area where can pos-
sibly vanish the ice-thickness in some relatively small
subareas. On the boundary of this large area, we as-
sume the ice-thickness vanishes.

Most of the mathematical works in Theoretical
Glaciology deal only with 2D models (see e.g. Calvo
et al. [7], Díaz et al. [9] and the references cited
therein). However, in this article, we shall consider
the 3D model of (1), which causes to consider two
spatial coordinates in the ice sheet based domain. Let
us then consider the cylinder

QT := Ω× (0, T ) ⊂ R2 × R+ ,

whose boundary is defined by ΓT := ∂Ω × (0, T )
and Ω is assumed to be a large enough open bounded
domain with a sufficiently smooth boundary ∂Ω.

The (strong) formulation of our problem can be
stated in the following terms. Given an accumula-
toin/ablation rate function a = a(x, y, t) and a sliding
velocity ub = ub(x, y) defined in QT , and an initial
ice-thickness H0 = H0(x, y) ≥ 0, bounded and com-
pactly supported in Ω, to find a sufficiently smooth
function H = H(x, y, t) defined in QT such that (2)
is fulfilled in QT ,

H = H0 in Ω for t = 0 , (3)

H = 0 on ΓT . (4)
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The mathematical (strong) solutions of (2)-(4) must
be physically admissible, i.e. they have to be non-
negative compactly supported solutions. A sketch of
this work containing some of the ideas and formulated
in a different manner was published in the conference
proceedings [4]. Calvo et al. [7] have consider a sim-
ilar problem. They have considered a 2D model and
there the ice sheet domain is itself part of the solution.

2 Mathematical framework

Notation. The notation used throughout this text is
largely standard in Mathematical Fluid Mechanics -
see, e.g., Antontsev et al. [2]. We distinguish vec-
tors from scalars by using boldface letters. For func-
tions and function spaces we will use this distinction
as well. Symbols C and K will denote generic pos-
itive constants, whose value will not be specified. It
can change from one inequality to another and partic-
ularly when we use different subscripts. The depen-
dence of C and K on other parameters will always
be clear from the exposition and the same subscripted
symbols used in different sections account for differ-
ent constant values. In this article, the notation Ω
stands always for a bounded 2D domain, i.e., a con-
nected open bounded subset of R2, whose compact
boundary is denoted by ∂Ω.

Function spaces. Let 1 ≤ p ≤ ∞. We shall use
the classical Lebesgue spaces Lp(Ω), whose norm is
denoted by ‖ · ‖Lp(Ω). For any nonnegative integer
k, Wk,p(Ω) denotes the Sobolev space and its norm
is denoted by ‖ · ‖Wk,p(Ω). By Wk,p

0 (Ω) we denote
the closure of C∞0 (Ω) in Wk,p(Ω), where C∞0 (Ω) de-
notes the set of all continuously differentiable func-
tions with compact support in Ω. For 1 ≤ p < ∞ and
any nonnegative integer k, the dual spaces of Lp(Ω)
and Wk,p

0 (Ω) are denoted, respectively, by Lp′(Ω) and
W−k,p′(Ω), where 1/p + 1/p′ = 1. Given T > 0 and
a Banach space X , Lp(0, T ; X) and Wk,p(0, T ; X)
denote the usual Lebesgue and Sobolev spaces used
in evolutive problems, with norms denoted by ‖ ·
‖Lp(0,T ;X) and ‖ · ‖Wk,p(0,T ;X). The corresponding
spaces of vector-valued functions are denoted by bold-
face letters. All these spaces are Banach spaces and
the Hilbert framework corresponds to p = 2. Fi-
nally, C1(0, T ;Cα(Ω)), with 0 < α < 1, denotes the
space of continuous functions u : [0, T ] → Cα(Ω),
where Cα(Ω) is the space of Hölder continuous func-
tions. For a detailed exposition of these spaces and its
properties, we address the reader, for instance, to An-
tontsev et al. [2] and especially to the monograph by
Adams cited therein.

Auxiliary results. Throughout this text we will make
reference, at least once, to the following inequalities
(see Antontsev et al. [2]):

(1) Algebraic inequalities - whenever it make sense,
for every α, β, A, B ≥ 0,

AαBβ ≤ (A + B)α+β , (A + B)α ≤ 2α (Aα + Bα) ; (5)

(2) Algebraic equality - whenever it make sense, for
every A, B, C, α, β, ξ ∈ R and for every γ ∈ [0, 1],

AαBβ +CBξ = AαBγβB(1−γ)β +CBα+γβBξ−(α+γβ) ; (6)

(3) Young’s inequality - for every a, b ≥ 0, ε > 0 and
1 < p, q < ∞ such that 1/p + 1/q = 1,

ab ≤ εap + C(ε)bq ;

(4) Hölder’s inequality - for every u ∈ Lp(Ω), v ∈
Lq(Ω), with 1 ≤ p, q ≤ ∞ such that 1/p + 1/q = 1,

∫

Ω

u v dx ≤ ‖u‖Lp(Ω)‖v‖Lq(Ω) .

For the main properties we shall establish in this arti-
cle, play an important role the following result.

Lemma 1 Assume that Bρ ⊂ R2 is an open ball with
radius ρ and 0 ≤ σ ≤ q − 1 < ∞. Then there exists
a constant C depending on σ, q and Bρ such that, for
any u ∈ W1,q(Bρ), we have

‖u‖Lq(∂Bρ) ≤

C
(
‖∇u‖Lq(Bρ) + ρ−δ‖u‖Lσ+1(Bρ)

)θ

× ‖u‖1−θ
Lσ+1(Bρ)

,
(7)

where

θ = 1− (q − 1)(σ + 1)

2q + (q − 2)(σ + 1)
, δ = 1 + 2

q − (σ + 1)

q(σ + 1)
. (8)

Lemma 1 is derived from the well-known trace-
interpolation inequality (see Díaz and Veron [10]).

3 Mechanics of ice sheets

The common Fluid Mechanics model adopted for cold
ice is a non-Newtonian, viscous, heat-conducting, in-
compressible fluid. But, it should be pointed out that,
strictly speaking, it is not possible to assume ice to
be incompressible and yet still presume density vari-
ations under phase changes. It is, however, justified
to ignore density variations since associated changes
in bulk density are very small. On the other hand,
it is worth to know that ice sheets are assumed to be
isotropic materials, but they can develop an induced
anisotropy when stressed over sufficiently long time
scales.

Governing equations. The model adopted for ice
sheet flows results from the principles of conservation
of mass and momentum:

divu = 0 ; 0 = ρ g + divT. (9)
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Notice that in (9)2 we have neglected the inertial terms
because we are in the presence of very slow flows.
The notation used in (9) is well known: u is the ve-
locity field, p is the pressure, ρ is the constant density,
g is the gravitational force and T is the Cauchy stress
tensor:

T = −pI + S ; (10)

I is the unit tensor and S is the deviatoric part of T.
Notice that from (9)1, tr(S) = 0.

Glen’s law. Extra stress tensor S and strain rate tensor
D are related by a rheological flow law. According to
the common usage in Glaciology to write stretching
as a function of stress, this law states that the strain
rate D, at a given strain, is proportional to the stress S
raised to the power n:

D = A(θ)sgn(S)|S|n, sgn(S) = |S|−1S . (11)

This law was suggested by J.W. Glen and, for this
reason, is called Glen’s law in Glaciology. The ba-
sic postulate is that ice is an incompressible nonlinear
viscous fluid. Here n is a positive constant and the
function A may depend on the temperature and usu-
ally is postulated an Arrhenius-type relationship

A(θ) = A0 exp
(−(kθ)−1Q

)
, (12)

where Q is the so-called activation energy, k the
Boltzman constant, θ the absolute temperature and A0

a constant.

4 Dynamics of ice sheets

A thorough analysis of ice sheets dynamics is made in
many monographs, for instance, Hutter [14] and Pa-
terson [19]. However, many authors deal only with 2D
mathematical models, see e.g. Fowler [11]. Present-
day 3D mathematical models including full thermo-
mechanical coupling are those developed by Huy-
brechts [15], Greve [13] and Patyn [20], to name a
few. The mathematical model approach is based on
the continuum mechanics equations (9)-(11). We con-
sider a Cartesian coordinate system (x, y, z) with the
z-axis vertically pointing upward and being z = 0 at
the mean sea level.

Field Equations. Denoting the velocity components
in the correspondingly directions as (u, v, w), (9)1 can
be rewritten as

∂ u

∂ x
+

∂ v

∂ y
+

∂ w

∂ z
= 0 . (13)

Once the gravitational force is only important in the
vertical direction, i.e. considering g = (0, 0,−g),
(9)2 becomes

∂ Txx

∂ x
+

∂ Txy

∂ y
+

∂ Txz

∂ z
= 0, (14)

∂ Tyx

∂ x
+

∂ Tyy

∂ y
+

∂ Tyz

∂ z
= 0, (15)

∂ Tzx

∂ x
+

∂ Tzy

∂ y
+

∂ Tzz

∂ z
= ρ g, (16)

where Tij means stress in the i-plane (i = constant)
along j-direction.

Dynamic Boundary Condition. At the free surface,
say z = h(x, y, t), the model assumes that there is no
applied traction, i.e.

T · n = 0 on z = h(x, y, t) , (17)

where n is the exterior unit normal to the ice sheet top
surface z = h(x, y, t). If we write the free surface
in the implicit form z − h(x, y, t) = 0, then n =
|∇s|−1∇s, where s(x, y, t) = z − h(x, y, t). It is a
matter of practical evidence that everywhere in an ice
sheet the slopes of the free surface z = h(x, y, t) are
small, except in a small neighborhood of ice domes
and ice margins. Thus the normal unit vector of the
free surface z = h(x, y, t) is approximately vertical
and (17) reduces to

Txz = 0 , Tyz = 0 , Tzz = 0 on z = h(x, y, t) , (18)

Hydrostatic Approximation. Applying the hydro-
static approximation in the vertical direction, i.e. pz =
−ρ g, then (16) reduces to

∂ Tzz

∂ z
= ρ g . (19)

This means that, in all parts of an ice sheet, the shear
stresses Txz and Tyz are small compared to the vertical
normal stress Tzz . Therefore the variational stress in
the z-plane can be neglected. On the other hand, if we
neglect atmospheric pressure, an integration of (19)
from the surface h(x, y, t) to a height z in the ice body
and using (18), gives us an expression for the vertical
normal stress

Tzz = ρ g(z − h) . (20)

From (10) and (20), the pressure p reads

p = ρ g (h− z)− Sxx − Syy (21)

and the horizontal normal stresses can be expressed
as

Txx = 2Sxx + Syy − ρ g (h− z) , (22)

Tyy = Sxx + 2Syy − ρ g (h− z) . (23)

Inserting (22) and (23) in the horizontal components
(x, y) of (14) and (15), we achieve to

∂

∂ x
(2Sxx + Syy) +

∂ Txy

∂ y
+

∂ Txz

∂ z
= ρ g

∂ h

∂ x
, (24)

∂

∂ y
(Sxx + 2Syy) +

∂ Txy

∂ x
+

∂ Tyz

∂ z
= ρ g

∂ h

∂ y
. (25)

Shallow-Ice Approximation. The major simplifica-
tion of the model ensues by considering the shallow-
ice approximation. This is justified, since we assume
a physical process in which important length scales
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in the longitudinal directions are much larger, com-
pared to those in the transverse directions. Consis-
tently, x , y À z, and also u , v À w, and thus the
dominant stresses are the shear stresses in the hori-
zontal plane, Sxz and Syz , which are supported by the
basal drag. Moreover, normal stresses Sxx, Syy, Szz
are negligible , as well the shear stress Sxy in the ver-
tical planes. In consequence,

Txx = Tyy = Tzz = −p . (26)

and, from (17)-(20), the pressure is close to hydro-
static

p = ρ g(h− z) . (27)

Then the horizontal components of (24)-(25) simplify
to

∂ Txz

∂ z
= ρ g

∂ h

∂ x
,

∂ Tyz

∂ z
= ρ g

∂ h

∂ y
. (28)

On the free surface z = h(x, y, t) we obtain, after
using (18) and (26),

Txz = 0 , Tyz = 0 , p = 0 on z = h(x, y, t) . (29)

Then a vertical integration of (28) from h(x, y, t) to a
height z in the ice body and using (29), lead us to

Txz = −ρ g(h− z)
∂ h

∂ x
, Tyz = −ρ g(h− z)

∂ h

∂ y
. (30)

From (11), strain rates are related with deviatoric
stresses by

D = A(θ)τn−1S , τ =
√

IIS , (31)

where IIS denotes the second invariant of S. Notice
that (9)1 implies τ =

√
tr(S2)/2 and from the simpli-

fications of the shallow ice approximation, especially
(30),

τ =
√

T 2
xz + T 2

yz = ρ g(h− z)|∇h| . (32)

A common assumption in ice sheet modeling, and
which is valid for most of the ice sheet domain, is that
horizontal gradients of the vertical velocity are small
compared to the vertical gradient of the horizontal ve-
locity, i.e. wx ¿ uz and wy ¿ vz . Using this as-
sumption, (30) and (32), we obtain from (31)

∂ u

∂ z
= −2A(θ) [ρ g(h− z)]n |∇h|n−1 ∂ h

∂ x
, (33)

∂ v

∂ z
= −2A(θ) [ρ g(h− z)]n |∇h|n−1 ∂ h

∂ y
. (34)

Integrating (33) and (34) from the ice base, say z =
b(x, y, t), to an arbitrary point z in the ice sheet, we
obtain

u = ub − 2(ρ g)n|∇h|n−1 ∂ h

∂ x

∫ z

b

A(θ)(h− s)nds , (35)

v = vb − 2(ρ g)n|∇h|n−1 ∂ h

∂ y

∫ z

b

A(θ)(h− s)nds , (36)

where ub = (ub, vb) is the ice velocity at the ice base.

Kinematic Boundary Conditions. For this model,
the possible presence of attached ice shelves will be
ignored. If we write the free surface in the implicit

form s(x, y, t) = z − h(x, y, t) = 0, then its exterior
unit normal is given by n = |∇s|−1∇s. Let u and w
denote, respectively, the ice surface velocity and the
velocity at which the free surface points move. Then
w · n represents the normal speed of propagation of
the free surface and

ah = (w − u) · n (37)

is the ice volume flux through the free surface, also
known as the accumulation/ablation function. The
sign is chosen such that a supply (accumulation) is
counted as positive and a loss (ablation) as negative.
Then the time derivative of s(x, y, t) following the
motion of the free surface with velocity w must vanish
and, by using (37), we obtain

∂ h

∂ t
+u

∂ h

∂ x
+v

∂ h

∂ y
−w = ahNh, Nh =

√
h2

x + h2
y + 1. (38)

A similar boundary condition can be derived for the
ice base. We proceed as above, considering the im-
plicit form of the ice base r(x, y, t) = b(x, y, t)−z =
0, its exterior unit normal given by n = |∇r|−1∇r
and the ice volume flux through the ice base is given
by

ab = (w − u) · n . (39)

Now w is the velocity at which the ice base points
move and w · n represents the normal speed of prop-
agation of the ice base. Arguing as before, we obtain

∂ b

∂ t
+u

∂ b

∂ x
+v

∂ b

∂ y
−w = abNb , Nb =

√
b2
x + b2

y + 1 . (40)

In both cases, free surface and ice base, their inte-
rior sides are identified with the ice and therefore the
exterior sides are identified with the atmosphere and
the lithosphere, respectively. Provided that accumula-
tion/ablation functions (37) and (39) are given, equa-
tions (38) and (40) govern the evolution of the free
surface and ice base, respectively.

Ice-Thickness Equation. We integrate (13) along the
vertical from the ice base z = b(x, y, t) to the free
surface z = h(x, y, t) and we use (38) and (40) to
obtain

∂

∂ x

∫ h

b

u dz+
∂

∂ y

∫ h

b

v dz+
∂ h

∂ t
−Nhah− ∂ b

∂ t
+Nbab = 0 . (41)

Replacing, in (41), u and v by its expressions (35)
and (36), we obtain, after an integration by parts,
the evolution equation for the ice sheet thickness (see
(1)), where ub = (ub, vb) is the sliding velocity,
A(θ) = 2(ρ g)nA(θ) and a = ah − ab is the accu-
mulation/ablation rate. We already have seen that ev-
erywhere in an ice sheet the slopes of the free surface
z = h(x, y, t) are small. The same happens with the
slopes of the ice base z = b(x, y, t). Then the exterior
normal vectors to z = h(x, y, t) and to z = b(x, y, t)
are approximately vertical and this justifies why we
have taken Nh = Nb = 1 in (1).

WSEAS TRANSACTIONS on MATHEMATICS S.N. Antontsev, H.B. De Oliveira

ISSN: 1109-2769
81

Issue 3, Volume 7, March 2008



5 Existence and uniqueness

General formulation. In order to obtain a more gen-
eral framework than (2)-(4), let us introduce the new
functions ν = ν(x, y, t) and b = b(s) defined by

ν := Hm = ψ(H) =⇒ ψ−1(ν) = ν
1
m := b(ν) , (42)

where m = 2(n + 1)/n. Notice that the new variable
ν := Hm is motivated by the relation

Hn+2

n + 2
|∇H|n−1∇H =

m1−p

n + 2
|∇Hm|p−2∇Hm ,

with p = n + 1. Let us assume that:

a ∈ L∞(Ω) ; (43)

div ub = 0 in QT ; ub ∈ L∞(QT ) ; (44)

ν0 ∈ L∞(Ω). (45)

Notice that, according to (42), condition (45) is equiv-
alent to assume that H0 ∈ L∞(Ω). Then the general
formulation of (2)-(4) can be stated in terms of ν and
b as follows. Given Ω, a constant k = m1−p/(n + 2)
and a, ub and H0 satisfying (43)-(45), to find a func-
tion ν defined by (42) and solution of

∂ b(ν)

∂ t
= div

(
k|∇ν|p−2∇ν − ubb(ν)

)
+ a , (46)

b(ν) = b(ν0) in Ω for t = 0 , (47)

ν = 0 on ΓT . (48)

It is worth to notice that, according to (42), ν and H
have the same support and have the same value on
the boundary ΓT . Moreover, if H is a solution of
(2)-(4) then ν is a solution of (46)-(48) and recipro-
cally. The general formulation (46)-(48) is the one
used to establish existence and uniqueness of solu-
tions (see Calvo et al. [7]) and goes back to mathe-
matical works on quasi-linear elliptic-parabolic differ-
ential equations (see Alt and Luckhaus [1], Otto [18],
Benilan and Wittbold [6], Carrillo and Wittbold [8],
Ivanov and Rodrigues [16]), being our problem a par-
ticular case.

Weak formulation We start this section by introduc-
ing the notion of solutions to the problem (46)-(48)
we shall work with in the sequel. We multiply (46)
by a test function ζ and integrate by parts over QT to
obtain

∫

QT

(
b(ν)

∂ ζ

∂ t
+ aζ

)
dz +

∫

Ω

b(ν0)ζ0 dx =

∫

QT

(k|∇ν|p−2∇ν − b(ν)ub) · ∇ζ dz ,

(49)

where ζ0 = ζ(·, 0) and where we have set x = (x, y)
and z = (x, t). Then the definition of weak solution
follows as usual (see Alt and Luckhaus [1]).

Definition 2 . Let (43)-(45) be fulfilled. A function ν
is a weak solution of the problem (46)-(48), if:
1. ν ≥ 0 a.e. in QT and ν ∈ Lp(0, T ; W1,p

0 (Ω));
2. b(ν) ∈ L∞(0, T ; L1(Ω)), b(ν)t ∈
Lp′(0, T ;W1,−p(Ω));
3. The relation (49) holds for every ζ ∈
Lp(0, T ;W1,p

0 (Ω)) ∩ W1,1(0, T ; L∞(Ω)), such
that ζ(·, T ) = 0.

There are now many existence and uniqueness results
which can be applied directly to the problem (46)-
(48) (Alt and Luckhaus [1], Otto [18], Benilan and
Wittbold [6], Ivanov and Rodrigues [16], Carrillo and
Wittbold [8], to name a few). One of the first ref-
erences to appear was the paper by Alt and Luck-
haus [1], where is proved (Theorem 1.7) the existence
of a weak solution to a general problem which in-
cludes the case of Definition 2. The existence result
there is proved for any

u0 = b(ν0) with B(ν0) ∈ L1(Ω) (see (53 below)) ,

a ∈ Lp′(0, T ;W−1,p′(Ω)).

In order to apply Alt and Luckhaus [1, Theorem 1.7]
to the problem (46)-(48), let us define the following
functions

B : R→ R , B(u) = u
1
m , (50)

A : R2 × R→ R2 , A(v, u) = k|v|p−2v − uub , (51)

where m, k and p = n + 1 are constants and ub is a
given vector - the sliding velocity at the ice base. One
can easily sees that (50) is a nondecreasing continuous
function in R such that B(0) = 0 and (51) is a vector-
valued continuous function in R2 × R such that the
growth condition

|A(∇ν,B(ν))|p′ ≤ C1 (1 + |∇ν|p + B(B(ν))) , (52)

hold. In (52), C1 = const. ≥ 0 and B(B(ν)) is the
Legendre transform of the primitive of B(ν)

B(B(ν)) :=

∫ ν

0

s dB(s) . (53)

It should be noticed that B is super-linear in the sense
that for any δ > 0, there exists a C(δ) < ∞, such
that for all u ∈ R, |u| ≤ δ B(u) + C(δ) . From this
property of B it is a easy task to prove (52). The proof
of the strict monotonicity condition

(A(v, u)−A(w, u)) · (v,w) ≥ C2 |v −w|p , (54)

C2 = const. > 0, is more involved. In fact, after
some algebraic manipulations, we can prove succes-
sively

k−1(A(v, u)−A(w, u)) · (v,w) =

|v|p + |w|p − (|v|p−2 − |w|p−2)v ·w =
(|v|p−2 + |w|p−2) |v −w|2 + |v|p−1|w|+ |v||w|p−1 ≥

C|v −w|p , C = C(p) , p ≥ 2 .

For our purposes, it is enough to consider p ≥ 2, be-
cause p = n + 1 and, as we shall see in Section 7,
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n ≥ 1, 9. Anyway, an extension of the result pre-
sented in Alt and Luckhaus [1] to the case 1 < p < 2
is given by Ivanov and Rodrigues [16]. Moreover, Alt
and Luckhaus [1] have shown that the natural energy
associated to a weak solution ν of the problem (46)-
(48) is given by the finite sum

sup
t∈(0,T )

∫

Ω

B(B(ν(·, t))) dx +

∫

QT

|∇ν|pdz < ∞ , (55)

where B(B(ν(·, t))) is defined in (53). Benilan and
Wittbold [6] under rather general assumptions than
Alt and Luckhaus [1], and using the nonlinear semi-
group theory, have proved the existence of mild solu-
tions, which under certain conditions were shown to
be weak solutions. Uniqueness of weak solutions of
(46)-(48) is a much more difficult task because of the
nonlinear term b(ν). The usual approach consists in
to prove the L1-contraction principle

∫

Ω

|B(ν1(·, t)− B(ν2(·, t)| dx ≤

eLt

∫

Ω

B(ν1(·, 0))− B(ν2(·, 0))| dx
(56)

for any two weak solutions ν1 and ν2 satisfying (55)
- L is the assumed Lipschitz constant of a. Under the
additional continuity property

|A(v, u)−A(v, z)|p′ ≤ C(1 + B(u) + B(z) + |v|p)|u− z| ,
(57)

Alt and Luckhaus [1, Theorem 2.3] also have proved
the uniqueness of a weak solution ν provided

∂ ν

∂ t
∈ L1(QT ) . (58)

It is a easy task to prove that (51) satisfies (57). Lat-
ter, Otto [18], by using Kruzhkov method of dou-
bling variables both in space and time, have proved
(56), and consequently the uniqueness result, for νi,
i = 1, 2, satisfying (55) without assuming (58). Car-
rillo and Wittbold [8] have generalized the uniqueness
result of Otto [18] and have proved a comparison re-
sult by using also Kruzhkov method.

6 Qualitative properties
Existence and uniqueness of a weak solution ν = Hm

to the equivalent problem (46)-(48) have been estab-
lished in the previous section. According to (42), that
results allow us to state the existence and uniqueness
of a weak solution H for (2)-(4) and such that:
1. H ≥ 0 a.e. in QT and Hm ∈ Lp(0, T ;W1,p

0 (Ω));
2. H ∈ L∞(0, T ; L1(Ω)) and Ht ∈
Lp′(0, T ; W1,−p(Ω));
3. for every ζ ∈ Ln+1(0, T ;W1,n+1

0 (Ω)) ∩
W1,1(0, T ; L∞(Ω)), with ζ(·, T ) = 0, the equivalent
of (49) holds:

∫

QT

(
H

∂ ζ

∂ t
+ aζ

)
dz +

∫

Ω

H0ζ0 dx =

∫

QT

(
k|∇Hm|p−2∇Hm −Hub

) · ∇ζ dz .

Moreover, from (55) and by using (53), one can eas-
ily proves that the energy associated with the problem
(2)-(4) is finite

E(QT ) := sup
t∈[0,T ]

∫

Ω

|H(·, t)|m+1dx+

∫

QT

|∇Hm|pdz < ∞ ,

(59)
where we already have seen that

p = n + 1 , m =
2(n + 1)

n
. (60)

In order to establish the qualitative properties, let us
fix x0 in Ω, ρ0 ∈ (0,dist(x0, ∂Ω)) and assume that
H0(x) = 0 in Bρ0(x0) = {x ∈ Ω : |x−x0| < ρ0} ⊂ Ω . (61)

In this section, we shall assume that
div ub = 0 in QT , ub ∈ C1(0, T ;Cα(Ω)) , 0 < α < 1 . (62)

To proceed our study, let us consider the Lagrange
variables X defined as usual in Continuum Mechanics
(see, e.g., Meirmanov et al. [17]):

dX(x, t)

dt
= ub(X, t), t ∈ (0, T ); X(x, 0) = x, x ∈ Ω. (63)

Under conditions expressed in (62), there exists a
unique solution X(x, t) of the problem (63), which
is a homeomorphism between Ω and Ωt = {y : z =
X(x, t), x ∈ Ω} for any t ∈ [0, T ]. This solution
transforms the ball Bρ(x0) into

Bt
ρ(x0) = {z : y = X(x, t), for some x ∈ Bρ(x0)}.

Moreover, the following formulas hold
d

dt

∫

Bt
ρ(x0)

Φ dz =

∫

Bt
ρ(x0)

(
∂Φ

∂t
+ ub∇Φ

)
dz , (64)

dJ

dt
= Jdivub, J = det

(
∂X(x, t)

∂x

)
, J(x, 0) = 1. (65)

In the considered case (div ub = 0), we have that
J(x, 0) = J(x, t) = 1. In order to simplify the ex-
pressions, let us introduce the energy functions

E(ρ, s) :=

∫ s

0

∫

Bt
ρ(x0)

|∇Hm|pdzdt (66)

and
B(ρ, s) :=

∫

Bt
ρ(x0)

Hm+1dz . (67)

6.1 Finite speed of propagations
Theorem 3 Let H be a weak solution to the problem
(2)-(4) with a = 0. Assume ub satisfies (62) and (59)
is finite. If (61) is verified, then there exists t∗, 0 <
t∗ < T , such that

H(x, t) = 0 a.e. in Bρ(t)(x0), ∀ t ∈ [0, t∗],

with ρ(t) given by

ρν(t) = ρν
0 − ν

C τ
tλE(ρ0, t)

τ ,

for some positive constants α, λ, ν and C, provided
n > (1 +

√
17)/4.
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PROOF. We formally multiply (2) (with a = 0) by
H , a weak solution of (2)-(4) and integrate by parts
over Bt

ρ(x0) × (0, s), with s ≤ t ≤ T . To be pre-
cise, we should multiply (2) by a regularized H func-
tion, with compact support in Ω, and then pass to the
limit in the obtained integral inequality (see Díaz &
Veron [10, Lemma 2.1]). Using (62)1 and the nota-
tions introduced in (66)-(67), we obtain the following
energy relation

1

m + 1
B(ρ, s) + kE(ρ, s) ≤ 1

m + 1
B(ρ, 0) + kI(ρ, s), (68)

where k = m1−p/(n + 2),

I(ρ, s) :=

∫ s

0

∫

St
ρ(x0)

|∇Hm|p−2∇Hm · nHm dS ,

St
ρ(x0) is the boundary of Bt

ρ(x0), i.e. St
ρ(x0) =

∂Bt
ρ(x0), and n is the unit exterior normal to St

ρ(x0).
Taking the supreme for s ∈ [0, t] in (68), we achieve
to

sup
0≤s≤t

B(ρ, s) + C1E(ρ, t) ≤ B(ρ, 0) + C1I(ρ, t) , (69)

where C1 = (m + 1)k. Noticing that

∂E(ρ, t)

∂ρ
=

∫ t

0

∫

St
ρ(x0)

|∇Hm|pdS ,

we obtain, by using Hölder’s inequality,

|I(ρ, t)| ≤ (J(ρ, t))
1
p

(
∂E(ρ, t)

∂ρ

) p−1
p

, (70)

where

J(ρ, t) :=

∫ t

0

J(ρ)dt, J(ρ) :=

∫

St
ρ

HmpdS .

Now, we shall estimate J(ρ, t) in terms of E(ρ, t) and
B(ρ, t) by using Lemma 1. We apply (7) with q = p
and σ = m to obtain

J(ρ) ≤ Cp
(
‖∇Hm‖Lp(Bρ) + ρ−δ‖H‖m

Lm+1(Bρ)

)pθ

× ‖H‖mp(1−θ)

Lm+1(Bρ)
,

(71)

where, from (8) and (60),

θ = 1− n(3n + 2)

5n2 + n− 2
, δ = 1 + 2

n2 − 2n− 2

(3n + 2)(n + 1)
. (72)

The analysis of (72) and knowing that Glen’s expo-
nent n is positive, we have

0 < θ < 1 and δ > 0 iff n > (1 +
√

17)/4 . (73)

Integrating (71) over the interval (0, t) and then using
Hölder’s inequality and the algebraic inequality (5)2

J(ρ, t) ≤ C2

(
E(ρ, t) + ρ−δ p

∫ t

0

B(ρ, s)
pm

m+1 ds

)θ

×
(∫ t

0

B(ρ, s)
pm

m+1 ds

)1−θ

, C2 = (2θC)p .

(74)

We use
∫ t

0

B(ρ, s)
pm

m+1 ds ≤ t sup
0≤s≤t

B(ρ, s)
pm

m+1

and the algebraic inequality (5)2 in (74), which yield

J(ρ, t)
1
p ≤ C3t

(1−θ) 1
p K(ρ, t)θ , C3 = (2C2)

1/p , (75)

K(ρ, t) := E(ρ, t)
1
p

(
sup

0≤s≤t
B(ρ, s)

) m
m+1

1−θ
θ

+ ρ−δt
1
p

(
sup

0≤s≤t
B(ρ, s)

) m
m+1

1
θ

.

Then, we use the algebraic equality (6) on the term
K(ρ, t), and we obtain for any γ ∈ (0, 1)

K(ρ, t) = E(ρ, t)
1
p

(
sup

0≤s≤t
B(ρ, s)

)γ b(
sup

0≤s≤t
B(ρ, s)

)(1−γ) b

+ρ−δt
1
p

(
sup

0≤s≤t
B(ρ, s)

)1
p
+γ b(

sup
0≤s≤t

B(ρ, s)

) m
m+1

1
θ
−

(
1
p
+γ b

)

,

b =
m

m + 1

1− θ

θ
.

(76)

The following obvious relations E(ρ, t) ≥ 0, t ≤ T ,
ρ ≤ ρ0 and (73)2 imply B(ρ, t) ≤ B(ρ0, t) and
ρδ ≤ ρδ

0, and the algebraic inequality (5)1, allow us
to estimate (76) in the form

K(ρ, t) ≤ C4ρ
−δ

(
E(ρ, t) + sup

0≤s≤t
B(ρ, s)

)α

, (77)

where

C4 = max
{
1, ρδ

0

}
max

{
1, T

1
p

}
×

max





(
sup

0≤t≤T
B(ρ0, t)

)α

,

(
sup

0≤t≤T
B(ρ0, t)

)β


 ,

α =
1

p
+ γ

m

m + 1

1− θ

θ
, β =

m

m + 1

1

θ
−

(
1

p
+ γ

m

m + 1

1− θ

θ

)
.

(78)

Applying successively (77) in (75) and the resulting
inequality in (70), we prove that

|I(ρ, t)| ≤ C5ρ
−δθt

1−θ
p ×

(
E(ρ, t) + sup

0≤s≤t
B(ρ, s)

)α (
∂ E(ρ, t)

∂ ρ

) p−1
p

,
(79)

where C5 = C3C
θ
4 and α is given by (78)2. Now,

we shall use (79) in (69), but first we notice that, if
ρ ≤ ρ0, we are inside the ball Bρ0 and, from (61),
B(ρ, 0) = 0. In consequence, we obtain

sup
0≤s≤t

B(ρ, s) + E(ρ, t) ≤ C6ρ
−δθt

1−θ
p ×

(
sup

0≤s≤t
B(ρ, s) + E(ρ, t)

)η (
∂ E(ρ, t)

∂ ρ

) p−1
p

,

(80)

where C6 = C1C5/min {1, C1} and

η = αθ =
θ

p
+ γ

m

m + 1
(1− θ) . (81)
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Notice that from (73)1, 0 < η < 1. Rising both sides
of (80) to the power p/(p− 1), we achieve to

(
sup

0≤s≤t
B(ρ, s) + E(ρ, t)

)1−τ

≤ C7ρ
1−νtλ ∂ E(ρ, t)

∂ ρ
, (82)

where C7 = C
p

p−1

6 and

τ =
1

p− 1

(
γp

m

m + 1
− 1

)
(1− θ) ,

ν =1 + δθ
p

p− 1
, λ =

1− θ

p− 1
.

(83)

Gathering (73)1 and (83)1, we have τ > 0 if an only
if γ > (m + 1)/(pm). Therefore, by virtue of (60)
and once that Glen’s exponent n is positive, γ must be
chosen in (76) such that

2n + 3

2(n + 1)2
< γ < 1 . (84)

Once that B(ρ, s) ≥ 0, we obtain from (82) the ordi-
nary differential inequality for the variable ρ

E(ρ, t)τ−1 ∂ E(ρ, t)

∂ ρ
≥ C8ρ

ν−1t−λ , C8 = C−1
7 . (85)

Notice that in (85) the variable t is considered as a
parameter. Integrating (85) between ρ and ρ0 ≥ ρ, we
get

E(ρ, t)τ ≤ E(ρ0, t)
τ − C8

τ

ν
t−λ(ρν

0 − ρν)

In consequence, from (83) and (84), E(ρ, t) = 0 if
and only if

ρν ≤ ρν(t) := ρν
0 − ν

C8τ
tλE(ρ0, t)

τ .¥

6.2 Waiting time property
Theorem 4 Let H be a weak solution to the problem
(2)-(4) with a = 0. Assume ub satisfies (62) and (59)
is finite. If additionally to (61), the following condi-
tion holds

∫

Bρ(x0)

|H0|m+1dx ≤ ε(ρ− ρ0)
µ , (86)

for some ρ > ρ0, µ = µ(n) > 0, ε > 0. Then, there
exist t∗, 0 < t∗ < T , and ε∗ > 0, 0 < ε ≤ ε∗, such
that H(x, t) = 0 a.e. in Bρ0(x0), for all t ∈ [0, t∗],
provided n > (1 +

√
17)/4.

PROOF. We proceed as we did in the proof of The-
orem 3 (see (69)) and we obtain, after using the as-
sumption (86),

B(ρ, s) + K1E(ρ, s) ≤ ε(ρ− ρ0)
µ + K1I(ρ, s) (87)

where K1 = (m + 1)k and ε is a positive constant to
be defined later on. Using the same reasoning as we
did to prove (79), we obtain

|I(ρ, t)| ≤ K2t
1−θ

p ×
(

E(ρ, t) + sup
0≤s≤t

B(ρ, s)

)η (
∂ E(ρ, t)

∂ ρ

) p−1
p

,
(88)

where K2 = C3C
θ
4 , η is given in (81), C3 in (75)

and C4 has the form given in (77) but with the term
max

{
1, ρδ

0

}
replaced by max

{
1, ρ−δ

0

}
- notice that,

in this case, ρ0 ≤ ρ. Gathering (88) and (87), we
obtain

K3

(
E(ρ, t) + sup

0≤s≤t
B(ρ, s)

)
≤ ε(ρ− ρ0)

µ+

K2t
1−θ

p

(
E(ρ, t) + sup

0≤s≤t
B(ρ, s)

)η (
∂ E(ρ, t)

∂ ρ

) p−1
p

,

(89)

where K3 = min {1,K1}. Using Young’s inequality
with ε = K3/(2K2) in the second term of the right-
hand side of (89) and knowing that B(ρ, s) ≥ 0, we
obtain

E(ρ, t) ≤ ε K4(ρ− ρ0)
µ + K5

(
t
1−θ
p−1

∂ E(ρ, t)

∂ ρ

) 1
ξ

, (90)

where K4 = 2K−1
3 , K5 = 2K2K

−1
3 C(ε) and

ξ =
p

p− 1
(1− η) = 1 +

(
1− γp

m

m + 1

)
1− θ

p− 1
. (91)

From (60)1 and (81), we have 0 < ξ < 1. Rising both
sides of (90) to the power ξ and defining

µ :=
1

1− ξ
=

(p− 1)(m + 1)

[γpm− (m + 1)](1− θ)
, (92)

we obtain the ordinary differential inequality in the
variable ρ

E(ρ, t)ξ ≤ ε K6(ρ− ρ0)
ξ

1−ξ + K7
∂ E(ρ, t)

∂ ρ
, (93)

where K6 = (2εK4)ξ and K7 = (2K5)ξ t
1−θ
p−1 . No-

tice that, from (91) and (92), µ > 0. The analysis
of (93) shows us that its solutions are of the form
E(ρ, t) = K(ρ − ρ0)1/(1−ξ), where the constant K
should satisfies to

(
Kξ −K6 − K7

1− ξ
K

)
(ρ− ρ0)

ξ
1−ξ ≤ 0 .

Finally, once that ρ0 ≤ ρ, we obtain E(ρ, t) = 0 if
and only if Kξ−K6−K7/(1−ξ)K ≥ 0. Writing this
inequality in terms of t and ε, we obtain E(ρ, t) = 0
for all t such that

t ≤
(

Kξ − (2εK4)
ξ

(2K5)ξK
(1− ξ)

) p−1
1−θ

:= t∗

and ε is chosen such that ε ≤ K/(2K4) := ε∗. ¥
The results of Theorem 3 and 4 are still valid for
a global non-zero accumulation/ablation rate func-
tion a. Indeed, finite speed of propagations prop-
erty (Theorem 3) holds, provided we assume a = 0
in Bρ0(x0) × [0, t∗]. As for the waiting time prop-
erty (Theorem 4), it holds if we assume a = 0 in
Bρ0(x0)×[0, T ]. Since H = h−b, we can analyze the
properties of finite speed of propagation and waiting
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time, established in Theorem 3 and 4, in terms of the
ice top surface z = h. As discussed in Fowler [11, 12]
the slope of the surface z = h is singular in advance
but finite in retreat. This distinction causes the finite
speed of propagations and the waiting time behaviors.
Indeed, after a local retreat, the margin slope must re-
built itself before another advance it is possible.

7 Conclusions

Ice sheets are vast and slow-moving edifices of solid
ice, which flow under their own weight by solid state
creep processes such as the creep of dislocation in the
crystalline lattice structure of the ice. Experimental
results have showed different creep curves (graph of
strain versus time) when a polycrystalline aggregate
of ice is subjected to a constant stress. An elastic de-
formation is followed by a small period of transient or
primary creep in which the strain rate decreases con-
tinuously until a minimum value. Then the secondary
creep is reached and it remains for a long period as
the strain rate is approximately constant. After that,
the strain rate increases and tertiary creep is reached.
If the test is carried on for long enough, a steady value
is reached. In good approximation, we can assume
that in deforming ice masses like ice sheets, secondary
creep prevails for low temperatures (below -10oC),
whereas tertiary creep prevails for higher tempera-
tures. Numerous laboratory experiments have shown
that, for secondary creep, the relation between shear
strain rate and shear stress is given by Glen’s law (11),
where n varies from about 1.9 to 4.8. However, most
of evidence from either laboratory tests and deforma-
tion measurements in Antarctic and Greenland have
showed that n = 3 is more appropriated (see Hut-
ter [14] and Paterson [19]). The results of Theorem 3
and 4 hold provided n > (1 +

√
17)/4 ' 1.3 and

from experiments n ∈ [1.9, 4.8], being n = 3 usually
accepted as the best choice in ice-sheet modeling.
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