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ABSTRACT 

It is well known that the Ermanno-Bernoulli constants derived from the Laplace-Runge-Lenz vector of dynamical sys-

tems are efficiently used to reduce them to a system of harmonic oscillator(s) and conservation law in the context of 

point and nonlocal symmetries of dynamical systems. In this paper, we review Ermanno-Bernoulli constants and 

observe that one can also use analogous constants obtained from the Hamilton vector of dynamical systems to serve the 

same purpose. We report the generic natural variables for reducing such dynamical systems in two-dimensions and 

three-dimensions to a system of one harmonic oscillator and two harmonic oscillators respectively, and a conservation 

law with some examples. We also note that the symmetry groups obtained from the reduced systems using the alterna-

tive constants are realizations of those obtained from Ermanno-Bernoulli constants. We also report here that the symm-

etries of the original dynamical systems can be obtained from symmetries of the reduced systems.  
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1 Introduction 

In the discussion of the Lie symmetries, first inte- 

grals and linearization of dynamical systems using 

the Kepler problem as a vehicle, Leach and 

Andriopoulos (2003) used the representation of the 

Cartesian components of the angular momentum 

L and Laplace-Runge-Lenz vector J  in the polar 

),,( φθr   coordinate systems, and obtained the 

complete symmetry representation by the Nucci-

reduced technique and the alternate derivation of 

the reduction through manipulation of the equation 

of motion and the realizations of the Lie symmetry 

algebra of a certain linear system. This suggested 

the Ermanno-Bernoulli constants obtained from the 

Laplace-Runge-Lenz vector as tools for reducing 

the equation of motion to systems of harmonic 

equations and a conservation law. This phenomenon 

simplified the reduction of the Kepler problem from 

the sixth-order nonlinear system to a fifth-order 

system comprising of the above linear system by 

virtue of using the conserved vector J  andL . This 

analysis was carried out by Leach and Nucci (2004) 

on the MICZ-Kepler problem which possesses ins-

tead of the conservedL , the Poincaré vector con-

stant of motionP . The symmetry algebra of the 

reduced system is well known [1, 2, 3, 4]. In the se-

quel, we report herein that this idea can be exten- 

ded to other dynamical systems describing motion 

in a plane and which admits Laplace-Runge-Lenz 
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vector. We also report that alternative constants for 

reducing the dynamical system using the Hamilton 

vector exist. The symmetry algebraic structures of 

the reduced systems are well known in the Lie sy-

mmetry analysis of dynamical systems. The paper 

is organized as following. In section 2 we intro-

duced the general technique for reducing general 

dynamical systems using the Ermanno-Bernoulli 

constants and the alternative constants. In sections 

3 specific examples for two-dimensions are given. 

In section 4 we give examples of the computations 

of exact symmetries transformations using the Lie 

symmetries of the reduced system viz Kepler pro-

blem and the generalized Kepler problem. Section 

5 outlines the same details for the general dynami-

cal systems in three-dimensions. Section 6 contains 

concluding remarks.  

 

2 General ideas of the Ermanno-Bernoulli 

constants 

The most general form of a dynamical system 

describing motion in a plane is 

),()^(21 xxxLxx &&& Fpp =+= ,                              (1) 

where ),( xx &
ii pp = are functions of their arguments 

and xxL &^= . We consider those systems (1) which 

possess a Laplace-Runge-Lenz (LRL) vector of the 

form  

)^(^ 321 xLxxLJ ggg ++= & ,                               (2) 

 where ),(11 Lgg = ),,(22 xx &gg = and ),(33 xx &gg =  

are functions of their arguments, and L=L . We 

note that L satisfies the equation of motion [7] 

LxLxL 2
2

2 )^(^ prp ==&  . 

i.e.  LL 2
2 pr=& ,                                                   (3) 

and LprL 2
2=& . 

 The second equation in (3) implies that the unit 

vector L̂ parallel to the angular momentumL is 

constant, and that the system (1) describes motion 

in a plane perpendicular to L̂ . We write kL L= , 

and jix 21 xx +=  where Lk ˆ=  and ji, are two 

fixed orthogonal unit vectors in the plane of motion. 

The expression for J in (2) reduces to 

)(                     
)()(

123

212121

ji
jijiJ

xxLg
xxgxxLg

+−+
+++−= &&

                      (4) 

 so that  

)()()( 32121 ±±±± ±+±=±= xLigxgxLigiJJJ & ,  (5) 

where 

     )(),( 2121 xixxixxx &&& ±=±= ±± . 

Setting θθ sin,cos 21 rxrx ==  where ),( θr  are 

polar coordinates in the plane of motion, ±J  reduce 

to 

    θθθθ iii LreigregeirrLig ±±± ±+±± 321 )( &&  

               θθ ieLrigrgirrLig ±±+±±= ))(( 321
&&  

               θθ ieLrigrgrigLLrg ±±+±−= )( 321
&&  

               θθ ieLrgrLgirgLrg ±+±+−= )]()[( 3121
&&  

               θieLrgrLgirgrLg ±− +±+−= )]()[( 312
12

1
& . 

Hence we have that 

       θieiwwJ ±
± ±= )( * .                                          (6) 

Where  

rgrLgw 2
12

1 +−= − , and LrgrLgw 31* += & . 

So 0=±J
&  implies that 

0)( ** =±+± θ&&& iiwwwiw .                                     (7) 

That is  

      0* =− ww θ&& , 0* =+ ww θ&& .                                (8) 

Taking θ  as new independent variable equation (8) 
gives 

     *ww =′ , ww −=′*  0=+′′⇒ ww .                     (9) 

We assume also that the equation of motion for L in 

equation (3) possesses the solution 

    constLrV =),,( θ .                                            (10) 

Then the pair ),(),( 21
Vwvv = satisfies the equations 

           011 =+′′ vv  

              02 =′v .                                                   (11) 

The two-dimensional form of the dynamical systems 

(1) is equivalent to (11). The constants ±J  are called 

the Ermanno-Bernoulli constants. 

The Hamilton vector JLK ^ˆ=  can also be used to 

obtain Quasi- Ermannor-Bernoulli constants given 

by θωω ieiiKKK ±
± ′±=±= )( 1121 . This reduces (1) 

to 

     011 =+′′ ωω  

             02 =′v . 
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It turns out that in two dimensions ±± ±= iJK  i.e.  

11 v′−=ω and 11 v=′ω , this corresponds to the 

reduced system by the Ermanno-Bernoulli 

constants. However this is not the case when they 

are expressed in three- dimensional coordinates.   

 

3 Some well known examples in two-dimensions 

 

3.1 The Kepler problem 

The equation of the motion is 

                 xx 3−−= rµ&& ; r=x .                          (12) 

The Laplace-Runge-Lenz vector is 

xLxJ 1^ −−= rµ& . 

The Ermanno-Bernoulli constants θievivJ ±
± ′±= )( 11  

 yield the expression µ−=
r

L
v

2

1 , and equation (3) 

becomes 0=L& . That is L is constant and 2v  is 

simply θ&2rL = . 

 

3.2 The Generalized Kepler problem 

The equation of motion given by   

0)3(
2
1 =++− xxx g

r

r

g

g
µ&

&&
&& .                                (13) 

 This possesses the Laplace-Runge-Lenz 

vector xLxJ 122 )^( −−− −= rAL µ& , where 

θ&
2
1









=

g

r
A .  The corresponding Ermanno-

Bernoulli constants are θievivJ ±
± ′±= )( 11 , where  

2
1

1
−−= A

r
v µ .                                                  (14) 

In the calculations to follow in sec. 4, we will use 

µ−= −12
1 rAv  which is a constant multiple of (14) 

and which coincides with the expression for 1v in the 

Kepler problem in 3.1 when 13 =gr .The corres-

pondding equation (3) becomes 

0
3

2
1 =








+− L

r

r

g

g
L

&&
& .                                       (15) 

Multiplying (15) by 2
1

3 )(
−

gr we obtain the 

equation 0)( 2
1

3 =





⋅
−
Lgr . That is constLgr =−

2
1

3 )( . 

This constant is A , and hence we make the choice 

     θ&
2
1

2 







==

g

r
vA .                                      (16) 

    

3.3 Dynamical systems with symmetry groups of 

the inverse cube law equation 

 The most general dynamical system which 

possesses the Lie symmetry group of the equation 

xx 4−=Gr&&  and which also describes motion in a 

plane is [5, 6] 

     )^(42
4

1 xLxx −− += rPrP&& ,                           (17) 

where 1P  and 2P are functions of L . Using (3), 

equation of motion for L in polar coordinates ),( θr  

is  

     θ&&
2

2
2 PLrPL == − .                                      (18) 

That is  .
1

2 θ&& =−
LP  

So defining  

 ∫ ′′= −L
LdLPLH )()( 1

2 ,                                 (19)   

where ׳ denotes that the integrand is evaluated at 

time variable t ′ . Then the expression (18) implies 
that 0))(( =− ⋅θLH , therefore we take as ),,( LrV θ  

in (10) the expression 

   .)( constLH =−θ                                          (20) 

The system (17) is known to possess the Hamilton 

vector K and the Laplace-Runge-Lenz vector J  

given by [5] 

       )()( 1
2

2
1

2
1

xxxK
2
1 −−⋅− −== rPLL & , 

and KLJ ^ˆ−= ,                                               (21)     

provided that 

    )( 22
1

222
1

1 PPLPP +′= .                                   (22) 

The expressions for the constants     

    21 iKKK ±=±  ,                                             (23)                    

     21 iJJJ ±=± ,                                               (24)   

turn out to be 

θieLirrPrLK ±−−−
± ±−= ])[( 11

22
12

1

& ,                (25) 

θierPriLrLJ ±−−−
± −= )]([ 1

22
112

1

&m .                (26) 
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Using (10), (20) and (26) the expression for 

),( 21 vv in (11) are given by  

2
1

1
1 Lrv −= ,  )(2 θ−= LHv . 

 

4 Exact symmetries of the Kepler problem and 

the generalized Kepler problem in two-

dimensions  

We report here that the symmetries of dynamical 

systems can be accurately calculated from the Lie 

symmetries of the reduced systems. We shall only 

give few actual calculations. The Lie symmetry 

generators of the reduced dynamical system (11) are 

as follows: 

221 ∂= vV ; θ∂=2V ; 113 ∂= vV ; 14 ∂= ±
±

θieV ; 

][ 11
2

6 ∂±∂= ±
± iveV i

θ
θ ; ][ 1

2
118 ∂±∂= ±

± ivveV i
θ

θ , 

where ii v∂∂=∂ / . 

     

4.1 The Kepler Problem in 2-dimensions 
We now proceed to find the symmetry 

transformations generated by the vector field 

221 ∂= vV αα  in two-dimensions. The flow of the 

vector field is the function  

),,(),,( 2121 θθ vvvvf =  

 where 01 =
λd
vd

 ;  2
2 v

d

vd
α

λ
= ; 0=

λ
θ
d

d
.         (26) 

Solving system (26) we have the following 

11 vv =   ;   22 vev αλ= ; θθ = .                        (27) 

The second equation in (27) implies CLL = while 

the first equation implies that 

µµ −=− −− 1212 rLrL  

 i.e. µµ −=− −− 12122 rLrLC  

where αλeC = , then 

2C
r

r
= ⇒ rCr 2=                                         (28) 

CLL =  implies that                                                           

22 rCr θθ && = ⇒
dt

d
Cr

td

d
r

θθ
22 = ,           

 this implies that 

        3C
dt

td
= ,                                                 (29) 

i.e.  tCdt 3+= , where d is an arbitrary constant.  

Consequently the exact symmetry transformations 

generated by the vector field above for the Kepler 

problem is given by equations (28) and (29). If  

)sin,cos(),( 21 θθ rrxx =  denotes the Cartesian 

coordinates of x in the plane of motion then θθ =  

implies that 

     xx 2C= ,                                                       (30) 

where jix 21 xx +=  is the two dimensional Carte-

sian vector. The transformation defined by (29) and 

(30) is also a three-dimensional symmetry transfor-

mation of the Kepler problem when x is made three-

dimensional. We note that the vector fields 2Vα  and 

1214 )sincos( ∂+= θαθαV  also generate symmetry 

transformations with θθ = , 22 vv =  i.e  LL = . 

Applying the same manner of calculations we obtain 

the symmetry transformations 2f , 4f   given by 

     ),(),( ttf i xx =   

     xx 1−= iH ;  2−= iH
dt

td
 

where  

          )1( 22
2 rLCrLH −− −+= µµ  

          xα ⋅+= −2
4 1 LH λ , λαeC = ,  

          2211 xx αα +=⋅ xα  .                                 (31) 

The transformations 2f , 4f  are again symmetry 

transformations when x  and xα ⋅  are made three-
dimensional.  

 

4.2 Generalized Kepler Problem in 2-dimensions 

Using the expressions for 1v and 2v  just after (14) and 

(16) i.e. AvrAv =−= −
2

12
1 ,µ , the symmetry 

transformation generated by the vector field 

221 ∂= vV αα is given by  

    xx 2C= ,    
)(

)(

2rCg

rg

dt

td
=                            (32)   

where αλeC = . 

The vector fields iVα  9,...,2=i  generate 

transformation where 22 vv = which implies that 

     
2
1

2 )(

)(









=
rCg

rg

r

r

dt

td
                                       (33) 
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In particular the transformations 2f , 4f generated by 

2Vα , and 1214 )sincos( ∂+= θαθαV are given by 

),(),( ttf i xx = where t satisfies (33) and x is given 

by xx 1−′= iH ; 4,2=i                                     (34) 

where 2H ′ , 4H ′  are obtained from 2H , 4H in (31) by 

replacing L by A . 

 

5 The case of three-dimension motion 

The reduction of Kepler problem and the MICZ 

problem to a system of harmonic oscillators and a 

conservation law is well known [1, 2]. But it is not 

reported in the literature the generic natural 

variables for the reduction of the general dynamical 

systems of the form (1) with a LRL vector (2).  We 

report in this section the generic natural variables 

for reducing such systems. In the three dimensional 

case when expressed in spherical coordinates 

),,( φθr the Ermanno-Bernoulli constants are given 

by 
φieuiuiJJJ ±

± ′±=±= )( 1121 .                            (35) 

Similarly, the Quasi- Ermanno-Bernoulli constants 

are of the form  
φυυ ieiiKKK ±

± ′±=±= )( 1121 .                         (36) 

The direction of the angular momentum L̂  in the 

Cartesian coordinates is given by 

kjiL 321
ˆˆˆˆ LLL ++= . 

 Similar toJ , the constancy of L̂  i.e. 0)ˆ( =⋅L  

implies that there exists a function 2u  (of x and x& ) 

such that 
 

φieuiuLiLL ±
± ′±=±= )(ˆˆˆ

2221 .                           (37) 

Consequently, we have that 
φieuiuLiLLL ±

± ′±=±= )( 2221 .                         (38) 

We assume that in terms of spherical coordinates 

the solution to the second equation in (3) (corres-

pondding to (10)) takes the form 

.),,,( constLrW =φθ i.e. W depends on x& only 

through L  (the expression for L is given by 

)sin( 22242 φθθ && += rL ).  

Defining Wu =3 , the triple ),,( 321 uuu  satisfies the 

coupled equations, 

011 =+′′ uu  

022 =+′′ uu                                                          (39) 

        03 =′u . 

The expressions for ±L , are given in [1], they are as 

follows 
φiewiwiLLL ±

± ′±=±= )( 2221 .                          (40) 

where θθφ cossin2
2

&rw = , θ&22 rw −=′ . 

Thus the expressions for 2u , 3u in (38) and (39) are 

as follows 

φieuiuiLLLLiLL ±−
± ′±=±=±= )()(ˆˆˆ

2221
1

21 ,   (41) 

where θθφ cossin21
2

&rLu −= , θ&21
2 rLu −−=′ .                    

In ref. 1, which deals with the Kepler problem, 

Leach et al reported that ),(),( 3232 Lwuu = where  

33 L̂LL = .  For this problem there are several 

choices of these variables viz 2
1

22 or    wLwu −= , 

LLLu or    ˆ, 333 = . This is not the case with dyna-

mical systems describing motion in a plane where 

L is not constant. We note that the choice 33 L̂u =  

analogous to (38) cannot be made along with  

2
1

2u wL−=  since in this case 

)(1ˆˆ1ˆ 2
2

2
2

2

2

2

1

2

3 uuLLL ′+−=−−=  ( 3u  must be 

functionally independent of 2211 ,,, uuuu ′′ ). Using the 

expression for J  just after (13) the generalized 

Kepler problem possesses the three-dimensional 

Ermanno-Bernoulli constants     φieuiuJ ±
± ′±= )( 11  

where θθθµ cossin
1

222
1

&&rrLA
r

u −− −






 −=  

and θφ sin22
1

&&rrLu −−=′ .                                  (42) 

By replacing A  by L  in (42), we obtain the 

corresponding variables for the Kepler problem as 

θθθµ cossin
1

222
1

&&rrLL
r

u −− −






 −=  

and θφ sin22
1

&&rrLu −−=′ .                                   (43) 

 

5.1 Exact symmetry transformations of the 

Kepler problem in 3-dimensions 

We report here also that the symmetries of 

dynamical systems in three-dimensions can be 

obtained from the Lie symmetries of the reduced 

systems as in section 4. We list here the Lie 

symmetry generators of the reduced system (39). 
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They consist of sixteen generators, one viz 1Γ  for 
the conservation law 03 =′u  and the fifteen Lie 

symmetry generators for the pair of harmonic 

oscillators in (39). They are as follows 

331 ∂=Γ u , kj

jk u ∂=Γ2 , 

φ∂=Γ3 , j
ij e ∂=Γ φ

4 , 

)(2
5 ∂⋅+∂=Γ ± uie i

φ
φ ,  

)(6 ∂⋅+∂=Γ ± uiue j
ij

φ
φ                                     (44)                                   

where jj ukj ∂∂=∂= /;2,1, and 2211 ∂+∂=∂⋅ uuu . 

We now compute the symmetry transformation 

generated by the vector field 11
11
2 ∂=Γ u for the 

Kepler problem. The symmetry transformation 

generated by this vector field is the transformation 

f given by ),(),( φφ jj ufu = where   

11 Cuu = , 22 uu = , 33 uu = , φφ = , αλeC =       (45) 

from which it follows that  

 11 uCu ′=′ , 22 uu ′=′ , LL =  .                              (46) 

The relations in (46) imply that 

1)(sec 2
2

22
2 =′+ uu θ . 

Thus from the invariance of 2u and 2u′  in (44) and 

(45) we deduce θθ secsec = ,  

i.e. θθ = .                                                          (47) 

The relations in (43) imply that                                                        

θθθµ cotsin
1

1
2

1
′′−







 −= − uL
r

u .                      (48) 

Since L , θ ′and θcot are invariants of this 

transformation, the first relation in (45) becomes  

=′′−






 − − θθθµ cotsin
1

1
2 uL

r
 

θθθµ cotsin
1

1
2 ′′−






 − − uCL
r

C ,                        (49) 

which reduces to 








 −=






 − −− 22
11

L
r

CL
r

µµ ;                               (50) 

i.e. rHr 1
2
−= , 

where 2H is given in (31). The relation 22 uu =′  in 

(46) implies that 

θθ && 2121 rLrL −− =  

i.e. 
2

2

2

H
r

r

dt

td
=







=                                         (51) 

In view of the (50),(51) and the relations θθ = , 

φφ =  in (47) and (45) the required transformation 

is the transformation 2f  in (31). We now consider 

the Hamilton vector K which for the Kepler 

problem is given by [1] )^(12 xLxK −−−= rLµ&  (This 

is a constant multiple of the expression for K given 

just after (11)). This expression for K yields the 

relation 
φυυ ieiiKKK ±

+ ′±=+= )( 1121 , 

where  

           θθµθυ && cos)1(sin 2
1 rLrr −−+= , 

            φθµυ &sin)1( 2
1 rL−−=′ .                            (52) 

We note that one could consider instead of (39), the 

same system of equations with 1u replaced with 1υ , 
and its Lie symmetries to obtain symmetries of the 

original system. We report without proof that the 

symmetry transformation generated by 11∂υ  (where 

11 / υ∂∂=∂ ) is also given by (50), (51) and (47) i.e. 

the transformation 2f  in (31).  

 

6 Concluding remarks 
In this paper we note the following:  

1) The Hamilton vector can be used to reduce 

the dynamical system to coupled systems of 

oscillator(s) and a conservation law just as 

the Laplace-Runge-Lenz vector is used.  

2) The Lie point symmetry groups of the 

reduced systems are widely known in the 

literature and the backward transformation 

from the symmetries of the reduced systems 

to symmetries in original variables of the 

dynamical systems is schematically available. 

We note that the symmetry groups from the 

reduced systems using the Quasi-Ermanno-

Bernoulli constants are isomorphic although, 

their forms in the original variables may defer 

(realizations). One can obtain other nonlocal 

symmetries of the dynamical system.  

3)  The generating algebras are not altered 

consequence of 2) above. 
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4) We obtained here symmetry transformations 

of dynamical systems without any reference 

to their generators in the original variables. 
We have shown the generic natural variables for 

reducing dynamical systems in two-dimensions and 

three-dimensions to systems of harmonic oscillator(s) 

and a conservation law.  
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