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ABSTRACT

It is well known that the Ermanno-Bernoulli constants derived from the Laplace-Runge-Lenz vector of dynamical sys-
tems are efficiently used to reduce them to a system of harmonic oscillator(s) and conservation law in the context of
point and nonlocal symmetries of dynamical systems. In this paper, we review Ermanno-Bernoulli constants and
observe that one can also use analogous constants obtained from the Hamilton vector of dynamical systems to serve the
same purpose. We report the generic natural variables for reducing such dynamical systems in two-dimensions and
three-dimensions to a system of one harmonic oscillator and two harmonic oscillators respectively, and a conservation
law with some examples. We also note that the symmetry groups obtained from the reduced systems using the alterna-
tive constants are realizations of those obtained from Ermanno-Bernoulli constants. We also report here that the symm-
etries of the original dynamical systems can be obtained from symmetries of the reduced systems.
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1 Introduction Laplace-Runge-Lenz vector as tools for reducing
In the discussion of the Lie symmetries, first inte- the equation of motion to systems of harmonic
grals and linearization of dynamical systems using equations and a conservation law. This phenomenon
the Kepler problem as a vehicle, Leach and simplified the reduction of the Kepler problem from
Andriopoulos (2003) used the representation of the the sixth-order nonlinear system to a fifth-order
Cartesian components of the angular momentum system comprising of the above linear system by
L and Laplace-Runge-Lenz vector J in the polar virtue of using the conserved vector J andL . This
(r,0,¢) coordinate systems, and obtained the analysis was carried out by Leach and Nucci (2004)
complete symmetry representation by the Nucci- on the MICZ-Kepler problem which possesses ins-
reduced technique and the alternate derivation of tead of the conservedL, the Poincare vector con-
the reduction through manipulation of the equation stant of motionP. The symmetry algebra of the
of motion and the realizations of the Lie symmetry reduced system is well known [1, 2, 3, 4]. In the se-
algebra of a certain linear system. This suggested quel, we report herein that this idea can be exten-
the Ermanno-Bernoulli constants obtained from the ded to other dynamical systems describing motion

in a plane and which admits Laplace-Runge-Lenz
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vector. We also report that alternative constants for
reducing the dynamical system using the Hamilton
vector exist. The symmetry algebraic structures of
the reduced systems are well known in the Lie sy-
mmetry analysis of dynamical systems. The paper
is organized as following. In section 2 we intro-
duced the general technique for reducing general
dynamical systems using the Ermanno-Bernoulli
constants and the alternative constants. In sections
3 specific examples for two-dimensions are given.
In section 4 we give examples of the computations
of exact symmetries transformations using the Lie
symmetries of the reduced system viz Kepler pro-
blem and the generalized Kepler problem. Section
5 outlines the same details for the general dynami-
cal systems in three-dimensions. Section 6 contains
concluding remarks.

2 General ideas of the Ermanno-Bernoulli
constants

The most general form of a dynamical system
describing motion in a plane is
X = px+p,(L"x) = F(x,%), (1)
where p, = p,(X,Xx)are functions of their arguments

and L = x*x. We consider those systems (1) which
possess a Laplace-Runge-Lenz (LRL) vector of the
form

J=g L "x+g,x+g;(L"x), (2)
where g, = g,(L), g, = g&,(x,X),and g; = g;(X,X)
are functions of their arguments, and L = |L| . We
note that L satisfies the equation of motion [7]
L=p,x"(L"x)=r2p,L .

ie. L=r2p,L,

and L=r2p,L.

The second equation in (3) implies that the unit

3)

vector L parallel to the angular momentumL is
constant, and that the system (1) describes motion
in a plane perpendicular tol.. We writeL = Lk,
and x=xi+x,] where k= L and i jare two
fixed orthogonal unit vectors in the plane of motion.
The expression for J in (2) reduces to
J=g L(—xi+xj)+ gz.(xli + X, J)
+ g5 L(=x,i+ x,))

(4)
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so that
J.=J, £, = +ig L(,) + g,(x,) £ig,L(x,) . (5)
where
x, =(x, ix,),x, =(x, £ix,).
Setting x, =rcosf,x, =rsind where (r,0) are
polar coordinates in the plane of motion, J, reduce
to
Tig L(7 +irf)ei? + g,re*? tig.Lre*?
= (tig,L(r £ irf) + g,r tig,Lr)e*i?
= (—glLré tiglr + g,r Xig,Lr)e*
= [(‘&Lré +g,r)ti(g Lr+ g;Lr)]e*?
=[(-g L*r' +g,r)£i(g,Li+ g Lr)]e*".
Hence we have that

J, =(wxiw,)e*?. (6)
Where
w=-g L[*r'+g,r,andw, = g LF+g,Lr.
SoJ, =0 implies that
Wk i, + (Wt iw, )i =0. (7
That is

W—6w, =0, W, +w=0. ®)

Taking 6 as new independent variable equation (8)
gives
w=w.,w.=—w =>w'+w=0. ©)
We assume also that the equation of motion for L in
equation (3) possesses the solution
V(r,0,L)=const. (10)
Then the pair (v ,v,) = (w,V) satisfies the equations
vi+v, =0
(11)
The two-dimensional form of the dynamical systems
(1) is equivalent to (11). The constants J, are called

the Ermanno-Bernoulli constants.

’_
v, =0.

The Hamilton vector K =LAJ can also be used to
obtain Quasi- Ermannor-Bernoulli constants given
byK, =K, tiK, = (o, tio)e*?. This reduces (1)
to

o'+, =0

’_
v, =0.
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It turns out that in two dimensions K, =+iJ, i.e.
o, =-viand® =v,, this corresponds to the
reduced system by the Ermanno-Bernoulli

constants. However this is not the case when they
are expressed in three- dimensional coordinates.

3 Some well known examples in two-dimensions

3.1 The Kepler problem
The equation of the motion is

X =—wr3x; x|=r. (12)
The Laplace-Runge-Lenz vector is
J=x"L - wr'x.

The Ermanno-Bernoulli constants J, = (v, £ iv))e*?
: . L? :
yield the expressionv, = —— u, and equation (3)
r
becomes L =0. That is Lis constant and v, is
simply L = r20.
3.2 The Generalized Kepler problem
The equation of motion given by
-1 (E+30) %+ uex=0. (13)
g r
This possesses the Laplace-Runge-Lenz

vectorJ = L2(x*L) — pdA-2r-'x, where
1

A= (LJ 0. The corresponding Ermanno-
g
Bernoulli constants are J, = (v, £iv|)e*?, where
1
v, =——uA>2. (14)
r

In the calculations to follow in sec. 4, we will use
v, = A?r-' — u which is a constant multiple of (14)

and which coincides with the expression forv, in the
Kepler problem in 3.1 whengr? =1.The corres-
pondding equation (3) becomes

L—%[§+sz:0. (15)
g r
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Multiplying (15) by (gr3)2we obtain the
equation[(gﬁ)_é L} =0. That is (gr3)_%L = const .

This constant is 4, and hence we make the choice
2,
A=v2=(LJ 6. (16)

3.3 Dynamical systems with symmetry groups of
the inverse cube law equation

The most general dynamical system which
possesses the Lie symmetry group of the equation
X =Gr*x and which also describes motion in a
plane is [5, 6]

X=Pr*x+Pr+L"x), (17)
where P, and P, are functions of L. Using (3),
equation of motion for L in polar coordinates (r,6)
is

L=Pr2L=P@. (18)
Thatis P,”'L =4.
So defining

H(L)=["P(LYdL', (19)

where ' denotes that the integrand is evaluated at
time variablet’. Then the expression (18) implies
that (H(L)—6) =0, therefore we take as V(r,0,L)
in (10) the expression
H(L)—- 6 = const. (20)

The system (17) is known to possess the Hamilton
vector Kand the Laplace-Runge-Lenz vectorJ
given by [5]

K =(L2x) = L2(x-LPrx),

and J =-L K, 1)
provided that
B =3P (LP+3P). (22)
The expressions for the constants
K, =K, +iK, (23)
J,=J, *iJ,, (24)
turn out to be
K, = L2[(F =L Pr) £ir-Lles, (25)
J. = L2[rLFi( =L Pr)les. (26)
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Using (10), (20) and (26) the expression for
(v;,v,)in (11) are given by

v, :r—lL%, v, =H(L)-0 .

4 Exact symmetries of the Kepler problem and
the generalized Kepler problem in two-
dimensions

We report here that the symmetries of dynamical
systems can be accurately calculated from the Lie
symmetries of the reduced systems. We shall only
give few actual calculations. The Lie symmetry
generators of the reduced dynamical system (11) are
as follows:

Vi=v,0,5 V=0, Vi=wo,; V, =e*90;
Vi, =e?[0,tiv0,]; Vy, =e*?[v,0, ivi0o,],
whered, =0/ 0v,.

4.1 The Kepler Problem in 2-dimensions

We now proceed to find the symmetry
transformations generated by the vector field
aV, =av,0, in two-dimensions. The flow of the

vector field is the function
f(vlsvzse) = (‘71,‘_}230)

where@=0; @=a§2;ﬁ=0. (26)
dA dA dA
Solving system (26) we have the following
Vo=V, 5 v, =e“v,;0 =0. 27)
The second equation in (27) implies L = CL while
the first equation implies that
271 —u=0Lr"—pu
re. C2L2r ' —pu=0r"—pu
where C = e, then
LoCr=i=C (28)
B
L = CL implies that
b7 = o= 99 — 290
t dt

this implies that

dr _ c? (29)

dt ’

i.e. t =d+ C3t,where d is an arbitrary constant.
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Consequently the exact symmetry transformations
generated by the vector field above for the Kepler
problem is given by equations (28) and (29). If

(x,,x,)=(rcos@,rsin@) denotes the Cartesian

coordinates of xin the plane of motion then 0 =@
implies that
x=C2x, (30)

where x=xi+x,j is the two dimensional Carte-
sian vector. The transformation defined by (29) and
(30) is also a three-dimensional symmetry transfor-
mation of the Kepler problem when x is made three-
dimensional. We note that the vector fields oV, and

V, =(a,cos@+a,sinf)0, also generate symmetry
transformations with@ =@, v, =v, ie L =1L.
Applying the same manner of calculations we obtain
the symmetry transformations f,, f, given by

fi(x,0) =(X,1)
X=Hx; ﬂ =H?
dt
where

H, = ul?2r+C(— pulL?r)
H,=1+AL?a-x, C=e*,
o-X=ax +a,x, . 31

The transformations f,, f, are again symmetry

transformations when x and a-x are made three-
dimensional.

4.2 Generalized Kepler Problem in 2-dimensions
Using the expressions forv, and v, just after (14) and

(16) 1e. v, =A4%r'-pu,v,=A4, the symmetry
transformation generated by the vector field
aV, =av,0,1s given by
X=C2x, dr _ | g(r) (32)
dt g(C2r)
where C = et .
The wvector fields oV, i=2,.,9 generate
transformation where v, = v, which implies that
d_f_z{i g(r) }2 (33)
dt r g(C?r)
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In particular the transformations f,, f, generated by
aV,, and V, =(a,cos@+a, sin@)0,are given by
fi(x,t) = (X,t)where f satisfies (33) andXis given
by X=H/'x; i=24 (34)
where H),H| are obtained from H,,H , in (31) by
replacing Lby 4.

5 The case of three-dimension motion

The reduction of Kepler problem and the MICZ
problem to a system of harmonic oscillators and a
conservation law is well known [1, 2]. But it is not
reported in the literature the generic natural
variables for the reduction of the general dynamical
systems of the form (1) with a LRL vector (2). We
report in this section the generic natural variables
for reducing such systems. In the three dimensional
case when expressed in spherical coordinates
(r,60,¢)the Ermanno-Bernoulli constants are given
by

J.=J,tiJ, =(u, tiu))e*?. (35)

Similarly, the Quasi- Ermanno-Bernoulli constants
are of the form

K, =K, tiK, =(v, £iv|)e*. (36)

The direction of the angular momentum L in the
Cartesian coordinates is given by
I:=i1i+i2j+i3k.

Similar toJ, the constancy of L ie. (I:)' =0
implies that there exists a function u, (of xandx)
such that

L, =L, +iL, = (u, +iu})e . (37)
Consequently, we have that
L =L til, =L(u, tiu))es. (38)

We assume that in terms of spherical coordinates
the solution to the second equation in (3) (corres-
pondding to (10)) takes the form
W(r,0,4,L)=const.i.e. Wdepends on xonly

through L (the expression for L is given by

L> = r4(0? +sin? 642)).

Definingu, =W, the triple (u,,u,,u;) satisfies the
coupled equations,

u'+u, =0
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uy +u, =0 (39)
uy, =0.

The expressions for L, , are given in [1], they are as

follows

L =L tiL, =(w, tiw))e*s.

where w, =r2¢sinfcosé, w, =

(40)
—r20.
Thus the expressions foru,, u,in (38) and (39) are
as follows
L, =L +iL, = L\(L, +iL,) = (u, +iu})e*#, (41)
where u, = L'r2gsinfcos @, u, = —L'r20.
In ref. 1, which deals with the Kepler problem,
Leach et al reported that (u,,u;)=(w,,L;)where
Ly=LL,.

choices of these variables viz u, =w, or L'w,,

For this problem there are several

U, :L3,IA,3 or L. This is not the case with dyna-
mical systems describing motion in a plane where
Lis not constant. We note that the choice u; = i3
analogous to (38) cannot be made along with
u, =L'w, since in this case
L2 =1-L =L, =1-(u2 +u?) (u, be

functionally independent ofu,,u,u,,u;). Using the

must

expression for J just after (13) the generalized
Kepler problem possesses the three-dimensional
Ermanno-Bernoulli constants J, =(u, tiu))e*

whereu, = (é— M—2jsin0—L—2r2f6}cost9

and u] = —L2r2/@sin 6 . (42)
By replacing 4 by L in (42), we obtain the
corresponding variables for the Kepler problem as
1 . L/
u, :(——Lzyjsme—Lzﬂr@cos@
r
andu| = —L2r27¢sin@ . (43)
5.1 Exact symmetry transformations of the
Kepler problem in 3-dimensions
We report here also that the symmetries of
dynamical systems in three-dimensions can be
obtained from the Lie symmetries of the reduced
systems as in section 4. We list here the Lie
symmetry generators of the reduced system (39).
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They consist of sixteen generators, one viz I, for
the conservation law u; =0 and the fifteen Lie

symmetry generators for the pair of harmonic
oscillators in (39). They are as follows

[, =u0,, I} =u;0,,

I,=0,, r/ =e0,,

[y =e®¥(0,+iu-0),

I/ = e*u (0, +iu-0) (44)
where j,k=12;0;, =0/0u;andu-0=u,0, +u,0,.
We now compute the symmetry transformation

generated by the vector field I')' =u,0, for the

Kepler problem. The symmetry transformation
generated by this vector field is the transformation

f givenby (ir,,$) = f(u,,$) where

LTIZCMI,LTZZMZ,L_[3=L{3’ (1;:¢9C=9M (45)
from which it follows that
w=Cuj, w=uy, L=1L. (46)

The relations in (46) imply that
u?secr@+uy)? =1.
Thus from the invariance of u,and u, in (44) and

(45) we deduce secd =sec,

ie. 0 =6. (47)
The relations in (43) imply that
1 )
u, =(——,uL—2jsm9—ul'9'cot0. (48)
r
Since L, @'and cot@are invariants of this

transformation, the first relation in (45) becomes

(é— ,uLZJSinH—LT{H'cotQ =

7

C(l—yL—zjsine—Cufﬁ'cot@, (49)

r

which reduces to

(1o )= a2 (50)
r r

ie. r=Hj'r,

where H,is given in (31). The relation u, =u, in
(46) implies that

L1720 = [r20
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(1)

In view of the (50),(51) and the relations 6 =6,
$ =¢ in (47) and (45) the required transformation
is the transformation f, in (31). We now consider
the Hamilton vector K which for the Kepler
problem is given by [1] K = x— gL 2r-'(L"x) (This
is a constant multiple of the expression for K given
just after (11)). This expression for Kyields the
relation
K, =K, +iK, = (v, £iv))e*?,
where

v, = Fsin@+r(1— puL2r)cos 60,

vl = (- pL2r)sin 64 . (52)
We note that one could consider instead of (39), the
same system of equations with u, replaced withv,,

and its Lie symmetries to obtain symmetries of the
original system. We report without proof that the
symmetry transformation generated by v,0, (where

0, =0/0v,) is also given by (50), (51) and (47) i.e.
the transformation f, in (31).

6 Concluding remarks
In this paper we note the following:

1) The Hamilton vector can be used to reduce
the dynamical system to coupled systems of
oscillator(s) and a conservation law just as
the Laplace-Runge-Lenz vector is used.

The Lie point symmetry groups of the
reduced systems are widely known in the
literature and the backward transformation
from the symmetries of the reduced systems
to symmetries in original variables of the
dynamical systems is schematically available.
We note that the symmetry groups from the
reduced systems using the Quasi-Ermanno-
Bernoulli constants are isomorphic although,
their forms in the original variables may defer
(realizations). One can obtain other nonlocal
symmetries of the dynamical system.

The generating algebras are not altered
consequence of 2) above.

2)

3)
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4) We obtained here symmetry transformations
of dynamical systems without any reference
to their generators in the original variables.

We have shown the generic natural variables for
reducing dynamical systems in two-dimensions and
three-dimensions to systems of harmonic oscillator(s)
and a conservation law.
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