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Abstract: -The paper deals with a global optimization algorithm using hybrid approach. To take the advantage 
of global search capability the evolution strategy (ES) with some modifications in recombination formulas and elites 
keeping is used first to find the near-optimal solutions. The sequential quadratic programming(SQP) is then used to 
find the exact solution from the solutions found by ES. One merit of the algorithm is that the solutions for 
multimodal problems can be found in a single run. Eight popular test problems are used to test the proposed 
algorithm. The results are satisfactory in quality and efficiency. 
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1  Introduction 
The global optimization has been a hot research 
topic for a long time. With the progress of 
evolutionary computation, many global optimization 
algorithms have been developed using various 
evolutionary methods. Tu and Lu[1] proposed a 
stochastic genetic algorithm(StGA) to solve global 
optimization problems. They divided the search 
space dynamically and explored each region by 
generating five offspring. The method was claimed 
to be efficient and robust. Toksari[2] developed an 
algorithm based on ant colony optimization(ACO) 
to find the global solution. In his method each ant 
searches the neighborhood of the best solution in the 
previous iteration. Liang et al.[3] used particle 
swarm optimization (PSO) to find global solutions 
for multimodal functions. Their method modified 
the original PSO by using other particles’ historical 
best data to update the velocity of a particle. In 
doing so, the premature convergence can be avoided. 
Zhang et al.[4] proposed a method called estimation 
of distribution algorithm with local search(EDA/L). 
This method used uniform design to generate initial 
population in the feasible region. The offspring are 
produced by using statistical information obtained 
from parent population. The local search is used to 
find the final solution. 

In general the evolutionary algorithms are 
though to have a better chance to find the global 
solution from multiple search points. However, the 
evolutionary algorithms also have some drawbacks. 
The first one is that it takes significant number of 

function evaluations. This may consumes a lot of 
computational times especially used in structural 
optimization. The second drawback is that 
sometimes it only finds near-optimal solution. To 
reduce the effect of the first drawback some 
approximate analysis methods such as artificial 
neural network and response surface methodology 
may be employed to replace the time-consuming 
exact analyses. To overcome the second drawback 
some gradient-based local search method may be 
use to locate the exact solution.  

Taking the advantage of evolutionary 
algorithms and avoiding its disadvantage, a new 
hybrid global optimization algorithm GOES(global 
optimization with evolution strategy) is developed 
in this paper. This algorithm integrates evolution 
strategy with the sequential quadratic 
programming(SQP) to find the exact global solution. 
Eight widely used test problems are employed to 
test against the algorithm. The global solutions for 
all test problems are found. 

 
 

2  Brief Review of ES 
The evolution strategy(ES) was developed by 
Rechenburg[5] and extended later by Schwefel[6]. 
There are three evolutionary steps in ES. The first 
one is recombination and it is executed by one of the 
following formulas. 
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These two parents are used to generate a specific 
new individual using formulas (B) and (C).  
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individuals. However, in formulas (D) and (E) each 
new design variable may come from two different 
parents. The number of so generated new 
individuals is λ and this value is usually several 
times ofμ .  

To further refine the search space, Chen[7] 
developed another three formulas for recombination 
as follows: 
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Where is a uniformly distributed random 

number between 0 and 1. is a uniformly 
distributed random number between -0.5 and 0.5. 

is an arbitrary integer between 1 and 

1t

2t

m μ . 
The purpose of adding formula (2) is to 

provide the chance of generating any value between 
 and . Formula (3) gives the chance to 

generate a value neighboring or . Formula 
(4) finds the centroid of some randomly selected 

individuals. The adding of the three formulas to the 
original five formulas can increase the search area in 
the design space. 

iax , ibx ,

iax , ibx ,

The second step in ES is the mutation 
operation. The mutation is done by the following 
formulas. 
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where  is the mutated ith design variable 
from .  is the ith design variable of an 

individual after recombination.  is the change 

for the ith design variable of that individual.  is 
the updated self-adaptive variable associated with 
the ith design variable. 
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iσ  is the self-adaptive 
variable used for the previous mutation step in the 
last generation. The variable iσ  is also subjected 
to the same recombination operation.  is the 
number of design variables.  and  are two 
random numbers from a normal distribution 

with mean zero and standard deviation one. 
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where the mean value of the normal 

distribution is 0 and the standard deviation is 1.  
The last step in ES is the selection operation 

which is used to choose some best individuals 
resulted from mutation operation to enter the next 
generation. Two approaches are available. One is 
called ),( λμ selection and the other one is named 

)( λμ + selection. For ),( λμ selection, the best μ  
individuals are chosen from the λ  offspring to 
enter the next generation. The )( λμ + selection 
combines λ offspring with μ parents in current 
generation first and then chooses the best 
μ individuals from the combined pool to be parents 
in the next generation. The ),( λμ selection may 
have better chance to find the global solution while 
the )( λμ + selection may accelerate the 
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convergence rate. The flow chart of ES is shown in 
Fig. 1. 

  

 
     
 Fig. 1 Flow chart of evolution strategy 
 
 

3  GOES Algorithm 
The GOES algorithm is developed in this paper to 
find the global optimum solution(s). The algorithm 
can be divided into three phases. The first phase is 
basically ES with some modifications. The second 
phase is SQP search. The last phase is to determine 
the global solutions(s) from previous two phases. 
The followings are the steps of GOES algorithm. 
(1) Use random numbers to generateμ individuals 
in the design space as the initial population. 
Establish an external elite pool that contains some 
best individuals. 
(2) Perform recombination operation using equation 
(3) to produceλ temporary offspring.  
(3) Perform mutation operation using equation(5).  
(4)Compute objective function values for 
allλ individuals.  
(5) Compute constraint function values. If the 
problem has constraints, compute all constraint 
function values for all λ individuals. For 
unconstrained problems skip this step. 
(6) Select elites using ),( λμ approach and update 
the external elite pool. For unconstrained 
optimization problems if the individual with 
smallest objective function value is better than the 
one in the elite pool, replace the one in the pool by 
the best one obtained in this generation. For 
constrained optimization problems, choose the best 
feasible solution and update the one in the external 

pool if necessary. If no feasible solution is found, no 
updating is performed. For multimodal problems 
multiple global solutions may exist. In order to find 
these solutions in a single run, several different 
elites are saved in the external pool. To identify 
these global solutions during ES search, a criterion 
to differentiate different solutions is established as 
follows. 
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  where is the normalized distance 

between elite i and elite j.  and are the kth 
design variable for the ith and the jth elites, 
respectively.  and are the upper and lower 
bound for the kth design variable, respectively. 
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is a small value given by users. If the inequality is 
satisfied, the two individuals i and j are though to be 
two different solutions and saved in the external 
pool separately. Otherwise, they are the same 
solution.  
(7) Based on objective function value and constraint 
violation, select the best μ individuals to enter the 
next generation. For unconstrained minimization 
optimization problems, put the λ individuals in 
ascending order based on their objective function 
values. The first μ individuals are chosen to enter 
the next generation. For constrained optimization 
problems, the selection rules will be discussed in the 
next section. 
(8) If the maximum number of generation is reached, 
go to step (9). Otherwise, go to step (2). 
(9)Use the sequential quadratic programming(SQP) 
to find the exact solutions. The starting points for 
SQP are those individuals saved in the external elite 
pool.  
(10)Determine the global solution(s). The best 
solution or solutions resulted from SQP or ES search 
are taken as the global solutions. 

 
 

4 Selection Steps for Constrained 
Problems 
The selection rules for constrained problems in 
GOES are executed in the following order. 
(1)Select feasible solution to enter the next 
generation first. If the number of feasible solution is 
greater than μ , select the best μ individuals 
according to their objective function values. If the 
number of feasible solution is less than μ , select all 
feasible solutions first and go to step (2). 
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(2)For infeasible solutions compute the normalized 
violation for each violated constraint. Divide the 
infeasible solutions into several ranks based on the 
domination check of constraint violation. The 
domination check proceeds as follows: For any two 
individuals A and B, if every constraint violation of 
A is less than that of B, then B is dominated by A. 
Otherwise, A and B do not dominate each other.  

Perform domination check on all infeasible 
solutions using the normalized violations to find the 
non-dominated ones. These infeasible solutions are 
assigned to the first rank. Repeat the domination 
check for the rest infeasible solutions to allocate 
them to other ranks. The higher the rank is, the less 
the overall constraint violation. Go to step (3). 
(3)Select infeasible individuals from rank one first. 
If the number of individuals in rank one is less than 
the required number to fill upμ , go to rank two and 
repeat this process until the required number μ is 
reached. If the number of individuals in the lowest 
rank used to fill up μ is greater than the required 
number, use objective function values to determine 
the ones to be selected. Fig. 2 is the flow chart of 
GOES algorithm. 

 

 
         
Fig. 2 Flow chart of GOES 

 
 
5  Numerical Examples 
Eight test problems including four unconstrained 
and four constrained problems are used to test the 
proposed algorithm. The global solutions are found 
for all test problems.  

 
Problem 1: Branin RCOS function[8] 
This unconstrained optimization problem is 
formulated as follows: 
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where 1=a , )4(1.5 2π=b , π5=c , 6=d , 
10=e , )8(1 π=f  

Fig. 3 shows the contour of the objective 
function. Clearly it has three global solutions. Table 
1 shows the solutions of this problem. In order to 
understand the capability of GOES to find all global 
solutions in a single run, the algorithm is run 100 
times with different initial population. In Table 1 the 
fraction within the parentheses under ES in the 
second column means that in 29 times GOES 
algorithm finds all three global solutions. For the 
other 71 times two of the three global solutions are 
found. That is for this particular problem GOES has 
29% of chance to find all three global solutions in a 
single run and 71% of chance to find two of the 
three solutions. The reason for failing to find all 
three solutions is sometimes ES search fail to cover 
all three areas that contain the global solutions. The 
rest data in the table give results obtained by using 
SQP only. The SQP solver is executed 100 times 
with different initial pints. The SQP solver 
successfully finds the global solution from any 
initial point. However for any single run of SQP it 
can only find one of the three global solutions. 
Although GOES can not guarantee finding all global 
solutions in any single run, its advantage over 
gradient-based method is apparent. 

 
          

              
 
 Fig. 3 Branin RCOS function 
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Table 1 Global solutions of Branin RCOS function 
  Exact Solution ES 

  Global (29/100) 

x1 －π π 9.425 -3.129 3.143 9.367 

x2 12.275 2.275 2.475 12.156 2.276 2.437 

OBJ 0.398 0.398 0.398 0.407 0.398 0.414 

Table 1(continued) 
  GOES SQP 

    (30/100) (34/100) (36/100)

x1 -3.140 3.141 9.425 －π π 9.425 

x2 12.268 2.276 2.475 12.275 2.275 2.275 

OBJ 0.398 0.398 0.398 0.398 0.398 0.398 

 
 
Problem 2: Bumpy function[9] 
This is another unconstrained optimization problem. 
The mathematical formulation of this problem is 
given below. 

     

100

100

2)coscos2cos(cos)(.max

2

1

2
2

2
12

2
1

2
2

4
1

4

≤≤

≤≤

+−+=

x

xtosubject

xxxxxxxF

(10) 
Fig. 4 shows the contour of the function. 

Although it has only one global solution, it also has 
many local solutions. To solve this type of problem 
using gradient-based solver only, at most of time 
local solutions will be found. Table 2 lists the 
solutions by GOES and other papers. In this table 
Lee’s approach was called reproducing kernel 
approximation method using genetic algorithms. 
The GA solution at the last column in Table 2 was 
also provided by Lee’s paper. The hardware used by 
Lee was personal computer with Pentium 4 CPU 
3GHz and DDR Ram 1 GB which is the same as we 
use. It is clear that the solution found by GOES is 
closest to the exact solution. The number of function 
evaluations and the CPU time is also the least one of 
the three. 

        

         
 
   Fig. 4 Bumpy function 
 
 
Table 2 Global solutions of Bumpy function 

  Exact Solution[9] GOES Lee[10] GA [10] 
x1 1.3932 1.39522 1.3888 1.3942 
x2 0 0 0.00018 0.000153

OBJ 0.67367 0.67366 0.67364 0.67366 
No.e NA* 280 550 2500 
time(s) NA* <1 34 1 

No.e is number of function evaluations 
time(s) is CPS time(sec) 
NA* is not available 
 

Problem 3: Ackley function[11] 
This unconstrained optimization problem is defined 
as  
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(11)             
Fig. 5 is the contour of this function. It is clear 

that this problem has a single global solution 
surrounded by many local solutions. This increases 
the difficulty of finding the global solution. Table 3 
gives the solutions of this problem. Again the 
solution by GOES is closest to the exact solution 
and the CPU time is the least one compared with the 
other two solutions. 

 

WSEAS TRANSACTIONS on MATHEMATICS Ting-Yu Chen, Yi Liang Cheng 

ISSN: 1109-2769
258

Issue 5, Volume 7, May 2008



               

 
 
      Fig. 5 Ackley function 
 

Table 3 Global solutions of Ackley function 
  Exact 

Solution[11] 
GOES Lee[10] GA [10] 

 x1 0 -0.000001 -0.002899 0.000885

 x2 0 0 -0.00119 -0.001373

OBJ 0 0.000004 0.009126 0.004692

No.e NA* 1500 1200 2500 

time(s) NA* <1 86 1 

       
 

Problem 4: Rastrigin function[12] 
This unconstrained optimization problem is 
formulated as follows.   
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Fig. 6 shows the multimodal nature of the 
problem. Table 4 gives the solutions found by 
GOES and other papers. It is clear that GOES finds 
the best solution compared with other methods. Also 
the CPU time spent by GOES is less than those of 
the other two methods.  

 
 
      Fig. 6 Rastrigin function 

 
Table 4 Global solutions of Rastrigin Function 

  Exact 
Solution[12]

GOES Lee[10] GA [10] 

 x1 0 -1.50E-09 -0.002167 -0.000153

 x2 0 3.70E-08 -0.000214 0.00058 

OBJ 0 0.00E+00 0.00094 0.00007 

No.e NA* 2000 1400 2500 

time(s) NA* <1 109 1 

       
  

Problem 5: 
This constrained optimization problem is formulated 
as follows: 
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 This problem containing 13 design variables 

and 9 constraints is from Floudas and Pardalos’s 
book[13]. Two sets of solutions are given in Table 5. 
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Part (A) in Table 5 shows the exact solution of the 
problem and the solution by GOES. Apparently 
GOES didn’t find the global solution of this 
problem. However, if the recombination formula 
used in GOES is changed from equation (3) to 
equation (4) or (H) in equation (1), GOES still can 
find the global solution shown in Part (B). Therefore 
the recombination formulas in evolution strategy 
may produce different results for different problems. 
Further researches on recombination formulas may 
be needed.  

 
Table 5 Global solutions of problem 5 

(A)                   (B) 
Exact 

Solution[36] ES GOES  ES GOES 

  GLOBAL   Eqn(3)  Eqn(B) Eqn(4) Eqn(B) Eqn(4)

 x1 1 0.032 1  0.991 1 1 1 

 x2 1 0.169 1  0.978 1 1 1 

 x3 1 0.047 1  0.983 1 1 1 

 x4 1 0 0  0.983 1 1 1 

 y1 1 0.896 1  0.989 1 1 1 

 y2 1 0.718 1  0.96 1 1 1 

 y3 1 0.996 1  0.917 1 1 1 

 y4 1 0.672 1  0.878 1 1 1 

 y5 1 0.815 1  0.926 1 1 1 

 y6 3 0.101 1  2.725 3 3 3 

 y7 3 0.732 3  2.813 3 3 3 

 y8 3 0.299 3  2.679 3 3 3 

 y9 1 0.599 1  0.773 1 1 1 

OBJ -15 -4.75 -13  -13.3 -15 -15 -15 

No.e NA* 3500 3500  15000 15000 22500 22500

time(s)   <1 <1  1 1 1 1 

    
 

Problem 6:  
The formulation of the problem is given below. 
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This problem was provided by Hock and 

Schittkowsi[14]. Three recombination formulas (3), 
(4) and (B) are used to test GOES and the results are 
shown in Table 6. Part (A) in Table 6 contains the 
exact global solution and the solution from GOES 
by using recombination formula (3). Part (B) lists 
the results by using recombination formulas (B) and 
(4). It is seen that all three formulas find the global 
solution. The main difference between this problem 
and other test problems is it has three equality 
constraints. In general equality constraints are hard 
to satisfy. Therefore it is observed that at the end of 
ES search none of the three solutions are close to the 
global solution. But SQP search eventually manages 
to lead the way to the global solution. This example 
problem further proves that the integration of 
evolutionary computation with gradient-based 
search method can have a better chance to find the 
exact global solution. 

 
Table 6 Global solutions of problem 6 

(A)                   (B) 
Exact 

Solution[14] 
ES GOES  ES GOES 

  GLOBAL   Eqn(3)  Eqn(B) Eqn(4) Eqn (B) Eqn(4) 

 x1
2.3305 1.2775 2.3305  2.1571 2.331 -0.386 2.3303 

 x2
1.9514 2.0609 1.9514  1.9399 1.951 1.8731 1.9514 

 x3
-0.478 0.4073 -0.4778  -0.6348 -0.476 -0.744 -0.4786

 x4
4.3657 4.1129 4.3657  4.444 4.366 4.7045 4.3658 

 x5
-0.625 -0.017 -0.6245  -0.6309 -0.624 -0.014 -0.6243

 x6
1.0381 0.0144 1.038  1.1218 1.038 0.655 1.0383 

 x7
1.5942 0.9042 1.5942  1.4834 1.594 1.3584 1.5942 

OBJ 680.63 705.58 680.63  681.18 680.6 725.28 680.63 

No.e NA* 4500 4500  15000 6800 15000 6800 

time(s)   
1 1  1 1 1 1 
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Problem 7: C-Bumpy function[9] 
The objective function of this problem is the same 
as problem 2. But two constraints are added. The 
optimization problem is defined as 
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Fig. 7 shows the global and local solutions of 
the problem. Table 7 gives the solutions obtained by 
various approaches. Again GOES yields better 
solution than solutions by other methods. The 
computational time is also the least one. 

 

 
     Fig. 7 C-Bumpy function 
 
Table 7 Global solutions of Bumpy function 

Exact 
Solution[9] 

GOES Lee[10] DPF[10] APF[10]

 x1 1.593 1.601 1.639 1.65 1.563 
 x2 0.471 0.468 0.459 0.456 0.48 
OBJ 0.365 0.365 0.362 0.361 0.363 
No.e NA* 1900 900 2500 2500 
time(s) NA* <1 61 1 1 

 
Problem 8: Himmeblau problem[15] 
This constrained optimization problem having five 
design variables is defined as 
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 The optimum solutions are listed in Table 8. 

The objective function value from Coello’s solution 
is the smallest one. But one of the constraints is not 
satisfied, the solution is an infeasible solution. The 
best feasible solution is obtained by Homaifar. His 
approach used genetic algorithm with penalty 
function approach. The solution by GOES is the 
second best one and the result is very close to 
Homaifar’s solution. The CPU time for GOES is 
also the least one in the known data.  

 
 

Table 8 Global solutions of Himmeblau function 
GOES Lee[10] DPF[10] APF[10] Homaifar[16]

 x1 78 79.293 82.681 79.473 78 

 x2 33 34.186 34.502 34.163 33 

 x3 29.995 31.186 31.573 31.576 29.995 

 x4 45 39.92 40.07 43.267 45 

 x5 36.776 36.195 33.78 33.86 36.776 

OBJ -30665.5 -30225.7 -30033.6 -30237.5 -30665.6 

No.e 800 1650 5000 5000 NA* 

time(s) <1 138 2 2 NA* 

 
 
 
 
 
 
 
 
 
 
 
 

 

WSEAS TRANSACTIONS on MATHEMATICS Ting-Yu Chen, Yi Liang Cheng 

ISSN: 1109-2769
261

Issue 5, Volume 7, May 2008



Table 8(continued) 
  Gen [17] Himmelblau[15] Coello[18] 

 x1 81.49 78.62 78.05 

 x2 34.09 33.44 33.007 

 x3 31.24 31.07 27.081 

 x4 42.2 44.18 45 

 x5 34.37 35.22 44.94 

OBJ -30183.5 -30373.9 -31020.9 

No.e NA* NA* NA* 

time(s) NA* NA* NA* 

 
 

6  Conclusion 
The proposed global optimization algorithm GOES 
using hybrid approach of ES plus SQP has been 
proved to be successful in solving 8 test problems. 
For most test problems the proposed method not 
only finds the best solution compared with other 
methods but also spends the least computational 
time. 
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