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Abstract: - Auto Regressive Integrated Moving Average (ARIMA) is a broad class of time series models, and 
it has been achieved using the statistical differencing approach. It is normally being performed using the 
computational method. Thus, it is useful to choose the suitable model from a possibly large selection of the 
available ARIMA formulations. The ARIMA approach was then analysed with the presence of stationary 
behaviour in a nonstationary data. For the purpose of the random data analysis, a nonstationary data that 
exhibiting a random behaviour was used. This random data was measured in the unit of microstrain on the 
lower suspension arm or a car travelling on a country road surface. With this engineering unit, hence, the data 
is known as a variable amplitude fatigue loading. Experimentally, the data was collected for 225 seconds at the 
sampling rate of 200 Hz, which gave 45,000 discrete data points. Using the computational analysis by means 
of statistical software package, the ARIMA parameters were estimated by the application of the data 
smoothing technique in order to reduce the random variation of the fatigue data. Therefore, the significant 
ARIMA parameters were established and being applied in the study of the variation in nonstationary data. For 
this paper, finally, it is suggested that the ARIMA method provided a good platform to analyse fatigue random 
data, especially in the scope of the durability research. 
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1   Introduction 
A time series typically consists of a set of 
observations of a variable taken at equally spaced 
intervals of time [1]. Today, most experimental 
measurements, or data samples, are performed 
digitally. And it is also known as a discrete time 
series, which is formed as a function of time. The 
objective of time series analysis is to determine the 
statistical characteristics of the original function by 
manipulating the series of discrete numbers. Based 
on the different term of a time series, a signal is a 
series of numbers that come from measurement, 
typically obtained using some recording method as a 
function of time. In the case of fatigue research, the 
signal consists of a measurement of the cyclic loads, 
i.e. force, strain and stress against time. 

In addition to the data analysis of variable 
amplitude fatigue loadings, many data mining 
applications deal with privacy-sensitive data [2]. 
The best means of obtaining unpredictable random 
numbers is by measuring physical phenomena such 
as fatigue damage, radioactive decay, thermal noise 
in semiconductors and even digitized images of a 
lava lamp. However few computer users accessed to 
the specialized hardware that required for these 

sources, and must rely on other means of obtaining 
random data [2]. 

The objective of this study is to observe the 
capability of a technique called Auto Regressive 
Integrated Moving Average (ARIMA) in preserving 
a nonstationary behaviour of a data by underlying 
probabilistic properties. This study has been 
motivated from the development of a class of data 
algorithms [3,4] that were used to extract the data 
pattern without directly accessing the original data 
and guarantees that the process. A major advantage 
of performing this process is the ability of the 
modeller to select the proper model from possibly 
large selection of the available model formulation. 
This approach is used to preserve data privacy from 
random noise [5]. Typically, these data are the used 
with curve-fitting techniques to develop the average 
fatigue behaviour of the material over an appropriate 
range of stress levels.  
 
 
2   Literature Background  
Many signals in nature exhibit random or 
nondeterministic characteristics which provide a 
challenge in analysis [6]. A signal representing a 
random physical phenomenon cannot be described in 
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a point by point manner by means of a deterministic 
mathematical equation. A signal representing a 
random phenomenon can be characterised as either 
stationary or nonstationary.  

A stationary signal is characterized by values of 
the global signal statistical parameters, such as the 
mean, variance and root-mean-square, which are 
unchanged across the signal length. Stationary 
random processes can further be categorized as 
being ergodic or nonergodic. If the random process 
is stationary, and the mean value and the 
autocorrelation function do not differ when 
computed over different sample segments measured 
for the process, the random process is defined as 
ergodic. In the case of nonstationary signals the 
global signal statistical values are dependent on the 
time of measurement [7]. Nonstationary signals can 
be divided into two categories: mildly nonstationary 
and heavily nonstationary. A data is said does not 
satisfy the stationary condition is defined as non-
stationary data [8]. This characteristic is common 
among a fairly large number of time series met in the 
real world. Nonstationary pattern happens when the 
data is not constant about mean or level (due to trend 
or seasonal pattern) and hence can be expressed as 
deterministic function for example.  This situation is 
illustrated by a random data set as in Fig. 1, for 
which this data was experimentally measured for the 
purpose of this study on the lower suspension arm of 
a car, for which this car was travelling over a 
country road surface. 
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Fig. 1. A Nonstationary fatigue data which was 
measured on a lower suspension arm of a car  

 
Global signal statistics are frequently used to 

classify random signals. The most commonly used 
statistical parameters are the mean value, the 
standard deviation value. For a signal with a number 
n of data points, the mean value of  x  is given by  
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for the samples more than 30 [9]. The standard 
deviation value measures the spread of the data 
about the mean value.  

The nonstationarity of the random data can be 
easily determined from the calculation of the 
kurtosis value. Kurtosis, which is the signal 4th 
statistical moment, is the global signal statistic 
which is highly sensitive to the spikiness of the data. 
For discrete data sets the kurtosis value is defined as 
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where  is the instantaneous value, is the mean 
value of a signal, r.m.s. is the root-mean-square 
value (represents the amount of the time-domain 
vibrational energy of a signal ) and n is the number 
of values in the sampled sequence. For a Gaussian 
distribution the kurtosis value is approximately 3.0. 
Higher kurtosis values indicate the presence of more 
extreme values in a Gaussian distribution, showing 
the behaviour of a nonstationary signal. The kurtosis 
value is used in engineering for detection of fault 
symptoms because of its sensitivity to high 
amplitude events.  

jx
_
x

Since most of the nonstationary data exhibits the 
random pattern (especially for the data shown in Fig. 
1 with the kurtosis value is 13.745), the ARIMA 
method is introduced as one of the approaches for 
smoothing the time series data. It can be estimated 
by smoothing the data in order to reduce the random 
variation [10]. Although a range of smoothers is 
available from the current statistical applications, but 
it begin with the simplest and oldest smoother. 
ARIMA model is also a dependence relationship to 
set up among the successive error terms.  

The idea of applying the ARIMA concept is 
related to the data observations which are likely to 
be closed in value. By taking an average of the 
points near an observation, it provides a reasonable 
estimation of the data. Thus, it eliminates the 
randomness of the data, and producing a smooth 
trend with respect to the original nonstationary data 
pattern [10]. 

The ARIMA method is to identify the class of 
models most suitable to be applied to the data set 
[11]. The process of determining the final or ‘best’ 
model is an iterative one as indicated in Fig. 2. It 
means that before final model is arrived at the 
process of formulating and estimating, the model has 
to be performed repeatedly, going back and forth, 

WSEAS TRANSACTIONS on MATHEMATICS S. Abdullah, M. D. Ibrahim, A. Zaharim and Z. Mohd Nopiah 

ISSN: 1109-2769
60

Issue 2, Volume 7, February 2008



between the first two phases, each time revising and 
improving the model until one estimated model, 
which is superior to all other competing models, is 
found [12]. The main criterion used in the ARIMA 
analysis is based on the model forecasting 
performance [13].  

The advantage of ARIMA is its robustness and 
having an excellent data seasonality analysis. In 
addition, the ARIMA method provides fast 
computational analysis and easily to be use with any 
kind of nonstationary data. The steps in ARIMA are 
also constituted with the important aspect of the 
Box-Jenkins methodology. The basis of the Box-
Jenkins modelling approach consists of three main 
stages as listed in Table 1. Diagrammatically, the 
flow of the Box-Jenkins modelling can be referred in 
Fig. 2. 
 
Table 1. Stages of the Box-Jenkins Modelling 

Stage Process 
I Model Identification 
II Model Estimation and Validation 
III Model Application 

 
 

Identify the Model 

Estimate the Parameters 

Diagnostic 
checks and 
Statistical 

Tests: 
Validation 

Process 

If pass: 
Apply Model 

If Fail: Revise Model

Stage I 

Stage II 

Stage III 
 

Fig. 2. Stages of the Box-Jenkins methodology 
which can be applied in the ARIMA computational 

analysis 
 

The first step in ARIMA computational analysis 
is the model identification which is used to identify 
the class of models that is the most suitable to the 
data set. This approach is being performed by 
computing and analysing various statistics based on 
the data [14]. Once the particular subclass of the 
model has been identified, the next step is to identify 
the ‘best model’ to be fitted, such that the fitted 
values come as close as possible to capturing the 
pattern exhibit by the actual data set [15].  

There are two important objectives that need to 
be achieved. The first objective is the fitted values 
should be as close as possible to the actual values 
[15]. The model fits the data well if it minimises the 
error measure in the amplitude loading data. The 
process is more specifically to search the estimated 
parameter values that minimise the actual values. 
The second objective is the models should require 
the least possible parameters consistent with a 
‘good’ model fit [16].  

The model is considered to be correctly specified 
if it includes the correct set of independent variables. 
An independent variable is considered as correct if 
its inclusion in the model helps to explain the 
phenomenon under study [15]. Thus, a model is said 
to be mis-specified if it fails to meet some or all of 
these test criteria. There are four common types of 
misspecification error [17]: 
a. Relevant variables are omitted from the model. 
b. Irrelevant variables included in the model. 
c. The functional form of the model is questionable. 
d. Issues related to an analysis of the residuals or 

errors associated with any specific regression 
model are not satisfactorily answered. 

If all test criteria are met and that the model fitness 
has been confirmed, it is therefore can be used to 
generate the ARIMA significant parameters. Finally, 
the application of the Box-Jenkins methodology lies 
on the assumption that concerns the characteristic of 
the initial data [18].  

 
 
3 Computational Data Analysis: The 

ARIMA Application Using 
Nonstationary Data 

For the application of the nonstationary fatigue data 
(refer to Fig. 1 for the time series plot) with the 
computational analysis of this paper, the signal was 
measured on the front left lower suspension arm of 
an automobile which was travelling on the country 
road surface (mixture of smooth and irregular 
asphalt). In the data collection experiment, it was 
sampled at 200 Hz for 45,000 data points, and the 
record length of 225 seconds was obtained. Based on 
the simple statistical analysis, the data produced the 
mean and the standard deviation values of 2.337 
microstrains and 25.4657 microstrains, respectively.  

Using the ARIMA computational analysis with 
this data, a simple procedure was used to remove the 
presence of the nonstationary behaviour of this data. 
Thus, the differencing technique in ARIMA has 
been performed. A data that requires first difference 
to be stationary is said to be integrated of order one. 
However, there are cases in which a nonstationary 
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process does not achieve when it fluctuates 
randomly around some fixed values, generally either 
around the mean value of the data.  

On the other hand, a data is stationary if it does 
not show growth or decline or Yt is stationary if 
these following condition are fulfilled: 
a. The mean of Yt, E(Yt) = E(Yt -1) = E(Yt -2) = E(Yt 

-3) = …….. = μ, which μ is a constant.   (4) 
b. The variance  

var(Yt) = E(Yt - μ)2  = σ2 < ∞ (constant).       (5) 
c. The covariance between Yt and Yt-p is  
γp = cov(Yt,Yt-p) = E[(Yt- μ)( Yt-p- μ)].   (6) 
Another parameter which is used for the analysis 

is the Mean Squared Error (MSE), as being 
mathematically defined in Eq. (7).  

MSE = ∑
=

n

t
te

n 1

21
                 (7) 

where n is the number of observations in the series 
and e is a error terms. It is a measure of accuracy 
computed by squaring individual error for each item 
in a data set and then finding the average or mean 
value of the sum of those squares. The MSE value 
gives greater weight to the large errors than to the 
small errors.  

In addition, the Akaike’s Information Criterion 
(AIC) approach is also used and it is described as a 
measure of the goodness-of-fit of a model. The AIC 
approach is commonly applied with the ARIMA 
model in order to determine the appropriate model 
order. The AIC is equal to twice the number of 
parameters in the model minus twice the log of the 
likelihood function. The AIC was developed based 
on the entropy concept and it is mathematically 
formulated as the following equation 
AIC = -2 log L + 2m     (8) 
where L denoted as the likelihood of the data, m = p 
+ q + P + Q, the p and q parameters are the usual 
respective terms of the AR and MA part, and the P 
and Q parameters are the seasonality part of the 
ARIMA model. Most of the computer programs 
produced the value of σ2 so the AIC value can be 
approximately found as  
AIC     (9) mnn 2log)}2log(1{ 2 +++≈ σπ
where σ2 is the variance of the residuals and n is the 
number of observations in the series. 

Another parameter used for the analysis of this 
paper is the Bayesian Information Criteria (BIC). 
BIC is used to choose the optimal number of factors 
when q is not fixed and the number of factor and lag 
length where there are AR components in the 
specification. The BIC statistics provides a simple 
but accurate approximation of two times the log 
Bayes factor. For this reason, the baseline for the 
model comparison is a saturated model that fits the 

data perfectly. The BIC for a linear regression model 
k is written as 

( ) npRnBIC kkk log1log 2 +−=                           (10) 
where R2

k is the R2 from the least squares fit and pk is 
the number of coefficients in the model excluding 
the intercept. A negative BIC value indicates 
superior prediction of model k in comparison to the 
saturated model. The relevant statistical values 
which are based on other model comparisons can be 
found by simply taking the difference of two BIC 
statistics, i.e.  

1212log2 BICBICB −≈                           (11) 
The BIC approximation has been developed for a 

number of standard statistical procedures, such as 
linear regression, analysis of variance, logistic 
regression, log-linear modelling, event-history 
analysis and structural equation models. Bayes 
factor codifies rational rules for the evaluation of 
evidence. 

Other than the AIC and BIC parameters, 
Autocorrelation function (ACF) is used in the 
analysis in order to identify the seasonality of the 
data. For this case, the ACF indicates the specific 
situations and also to determine the stationary 
pattern of the data. In addition, the ACF was also 
being used to recognize appropriate models for 
nonstationarity of the random data. In addition to the 
ACF analysis, the Partial Autocorrelation Function 
(PACF) approach is also needed in order to identify 
the extent of relationship between current values of 
variable with the previous values. For this situation, 
the same variable is used between the current and 
previous elements in order to retain the same 
statistical effects to all related constant parameters.  

Both graphical ACF and PACF are 
computational constructed by performing the data 
set using the SPSS and Minitab software packages. 
Finally, the implementations of both ACF and 
PACF with the variable amplitude (having a 
nonstationary behaviour) fatigue data are vital due 
to their used to help identifying the most suitable 
characteristics of the ARIMA model.  
 
 
4 Results and Discussion 
The first step of ARIMA in the analysis of this paper 
is to inspect the sample by ACF, as its distribution of 
the given fatigue random data (refer to Fig. 1 for the 
data) is illustrated in Fig. 3. The term autocorrelation 
coefficient measure the correlation of data with 
itself, lagged either by 1 or 2 or 3 or more. Since the 
sample of the ACF values were large, therefore, the 
data was assumed to have the nonstationary pattern. 
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Fig. 3. The ACF distribution of the original data 

condition 
 

The next step is to observe the PACF distribution. 
In this aspect,  PACF were used to measure the 
degree of association between lag t and lag t+q, 
when the effect of other time lags 1, 2, 3, ……., up 
to q-1 (t and q are defined as time and time lags, 
respectively). The main purpose of this analysis is to 
identify an appropriate ARIMA model, which is 
suitable for analyzing random fatigue time history. 
The PACF distribution is illustrated in Fig. 4 and it 
shows a significant larger spike followed by smaller 
spikes at the lag value higher than unity. Thus, it is 
suggested that the data can be formed stationary 
after performing the first ARIMA difference of 
random fatigue time history. 
 

 
Fig. 4. The PACF distribution of the original data 

condition 
 
The first ARIMA difference of the original 

nonstationary data (refer to Fig. 1) was then 
performed in order to observe stationary. The ACF 
and PACF were then calculated and plotted in Fig. 5 
and 6, respectively. The result showed that the ACF 
distribution was drastically declined after the first 
lag. As the continuation to this situation, it is formed 
that the PACF has one significant spike. The results 

verified the earlier argument, as the results presented 
in Fig. 4, with respect to the nonstationarity 
characteristic of the data. 
 

 
Fig. 5. The ACF distribution for the analysed data 

after the first difference in ARIMA 
 

 
Fig. 6. The PACF distribution after the first 

difference in ARIMA 
 

This situation are illustrated by a random data set 
as in Fig. 7, Fig. 8 and Fig. 9, for which this data 
was experimentally measured for the purpose of this 
study on the lower suspension arm of a car after 
applied the ARIMA model process, for which this 
car was travelling over a country road surface.  
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Fig. 7. A Fatigue data which was measure by 

Model ARIMA (0,1,0) 
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Fig. 8. A Fatigue data which was measure by 

Model ARIMA (0,1,1) 
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Fig. 9. A Fatigue data which was measure by 

Model ARIMA (1,1,1) 
 
In order to determine the model which follows 

the ARIMA approach fit the best, two criteria were 
used in the analysis. The first criterion is the AIC 
value and the second is the MSE value. These values 
are tabulated in Table 2. The MSE and AIC 
formulations can be referred to Eq. (7) and (8), 
respectively. From this table, The ARIMA (1,1,1) is 
defined as AR (1), I (1) and MA (1) where one 
Autoregressive (AR), with only the first different 
and Moving Average (MA) is the first step ahead. 

 
 
 
 
 

Table 2. Global statistical parameter for the 
nonstationary fatigue data 

ARIMA Model  Statistical 
Criteria ARIMA 

(0,1,0) 
ARIMA 
(0,1,1) 

ARIMA 
(1,1,1) 

Kurtosis 13.75 13.93 14.26 
Skewness 1.87 1.89 1.94 

AIC 347294.1 346164.8 337796.3 
BIC 347312.1 346164.8 337832.4 

The information from this table can be used to 
identify the suitable ARIMA model, and it is based 
on the AIC and BIC values. Accordingly, it showed 
that ARIMA (1,1,1) is the best approach, since the 
lowest error value of 337796.3 microstrains was 
produced from the computational analysis using the 
Minitab software. This value is lower than the error 
produced by the ARIMA (0,1,1) and ARIMA (0,1,0) 
approaches. According to the computational analysis 
in Mintab using the BIC criterion, it showed that the 
ARIMA (1,1,1) model produced the lowest error 
value compared to other two models, i.e. at 
337832.4. Hence, it was found that (similar to the 
AIC criterion) this ARIMA model is the suitable 
model for the nonstationary fatigue data set. Based 
on two statistical criteria listed in Table 2, finally, it 
can be concluded that the smallest MSE values was 
obtained from the ARIMA (1,1,1) processing for 
both AIC and BIC statistical criteria. 

Figure 10 shows the probability distribution plot 
for model ARIMA (0,1,0). It is used to view and 
compare the shape of distribution curves and to view 
areas under distribution curves corresponding to 
either probabilities or data values. The skewness 
value for model ARIMA (0,1,0) was found to be 
1.87. Finally the distribution exhibited skewed to the 
right. 

 
Fig. 10. Normal Plot of ARIMA (0,1,0) 

 
Figure 11 shows the probability distribution plot 

for model ARIMA (0,1,1). It is used to view and 
compare the shape of distribution curves and to view 
areas under distribution curves corresponding to 
either probabilities or data values. The skewness 
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value for model ARIMA (0,1,1) was found to be 
1.89. Finally the distribution exhibited skewed to the 
right. 
 

 
 

Fig. 11. Normal Plot of ARIMA (0,1,1) 
 

Figure 12 shows the probability distribution plot 
for model ARIMA (1,1,1). It is used to view and 
compare the shape of distribution curves and to view 
areas under distribution curves corresponding to 
either probabilities or data values. The skewness 
value for model ARIMA (1,1,1) was found to be 
1.94. Finally the distribution exhibited skewed to the 
right. 
 

 
 

Fig. 12. Normal Plot of ARIMA (1,1,1) 
 

 
5. Conclusions 
The ARIMA generator has proven to be relatively 
portable across different systems, provide a good 
source of practically strong random data on most 
systems. Using the computational analysis of this 
ARIMA approaches, better and accurate results were 
obtained from the nonstationary fatigue loading. 
From the finding of this paper, it showed that 
ARIMA (0,1,0) was found to be the best model as it 
produced the lowest error value compared to the 
ARIMA (0,1,1) and the ARIMA (1,1,1) models. 
Therefore, the overall results of this study suggested 

that the model can give a better statistical technique, 
by means of the moving average approach in 
analysing variable amplitude fatigue loading. 
However, a conclusive study on this aspect should 
also be performed in order to know a better situation 
between ARIMA and fatigue damage characteristics. 
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