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Abstract: We establish a natural frame for affine Lagrangians and Hamiltonians. The focus is on the Hamiltoni:
applicable in classical fields and their generalizations. A unitary treatment of scalar and volume-valued Hamil
nians in a special class is obtained. Considering a variational problem of the action defined by a Hamiltoniar
this class, one obtains informations about the multitime dynamical solutions of the classical variational probl
for scalar and volume-valued Hamiltonians.
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1 Introduction ity that the solutions of the Hamilton-Jacobi PDESs of
an F-Hamiltonian can be obtained from the solutions

A large interest is currently manifested for La- 5 ppEs produced by natural F-HamiltoniaqTheo-
grangians and Hamiltonians on affine bundles. The o 2).

most known examples of affine bundle used in dif- Some examples ofF-Hamiltonians that are

ferential geometry is the higher order tangent space quadratic in momenta are given; these examples in-

and the jet space of a fibered manifold. These two ¢j,qe the lift of the electromagnetic Hamiltonian.
classical cases were recently studied in many papers.

The higher order spaces are studied from the affine

point of view in [4]. The jet spaces are studied inthe 2  Affine Lagrangians and Hamilto-
context of multitime Lagrangian and Hamiltonian ge- .

ometry in [5]-[11] and in an affine setting in [1]-[3]. nians

The purpose of our paper is to indicate a link between \yje preafly recall some facts about affine Lagrangians

these two cases, and also to give a general setting for gng Hamiltonian in an affine setting (see [4] for more
Lagrangians and Hamiltonians on affine bundles. An  getjis),

F-Hamiltonian (volume-valued) and an affine Hamil- Let 4 be an affine space modeled on the real (fi-
tonian (scalar valued) are sections in certains affine pjte dimensional) vector spadé. A Lagrangianon
bundles; they both naturally lift t6'-Hamiltonians. A is a differentiable functionl, : A — IR. An

In section 2 one analize the affine Lagrangians affine Hamiltoniaron A is a differentiable map (non-
and Hamiltonians on affine spaces and on affine bun- necessary linea#) : V* — Af such thatroh = 1+,

dles. The general setting in the second Section is used where AT = Aff(A,IR). Using coordinates, the
in the Section 3, on the jet space of a fibered manifold,
to prove the main results. Considering a Hamilton- : i
Jacobi variational principle fof-Hamiltonians, one ~ °rdinates change, therh (pir) = hoh(Pi) + pia’. For
obtains (Theorem 1) the Hamilton-Jacobi equations example, ifzo(a;) € A, then(p;) — (pi,aipi) is
(equations (HJ.1)- (HJ.3)). Ad-Hamiltonianh is an affine Hamiltonian. Theertical Hessiarof a La-
the lift of an F-Hamiltoniam iff the equation (HJ.3) grangianL is the bilinear form on the manifold, de-
is an identity (Proposition 4). In general, we prove 2

that the existence of a solution of equation (HJ.3) en- OyioyJ
sures, with some additional conditions, the posssibil- of an affine Hamiltoniarh is the bilinear form on the

affine Hamiltonian ip;) L (pis ho (pi)) .If the co-

fined byg,; (y*) = (y*). Thevertical Hessian
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2
manifold V*, defined by (p;,) = aig;- (p). The
(A ]

Legendre maplefined by a Lagrangiah : A — IR
is L : A — V* L) S;(yj)ei and the

co-Legendremap defined by an affine Hamiltonian
h : V* — Al as above isH : V* — A, L(p;)

Oho
(5)
The LagrangianL is regular (hyperregulaj if

the Legendre map is a local diffeomorphism (global
diffeomorphism). Analogous one say that an affine
Hamiltonian h is regular (hyperregula) if its co-
Legendre map is a local diffeomorphism (global dif-
feomorphism). A Lagrangian (affine Hamiltonian) is
singular if it is not regular. For example, the image
of the co-Legendre map of an affine Hamiltonian of
the formh,, is {zo} and its vertical Hessian is null
(degenerate; an extreme case.) Thefor i) is regu-

lar iff the vertical Hessian is non-degenerate at every
point (as a bilinear form).

Let L : A — IR be a hyperregular Lagrangian.
Then let us denote by ~! : V* — A the inverse
of the Legendre map; using coordinatés, ! (p;)
(L7 (pi). Thenh : V* — AT h(pi) = (pi, ho(pi)),
ho(pi) = pj L7 (pi) — L(L? (pi)), is an affine Hamilto-
nian.

Conversely, letr : V* — AT be a hyperregular
affine Hamiltonian and(~! : A — V* the inverse of
the co-Legendre map; using coordinatés; (") =
(H;(y*)). ThenL : A — IR, L(y") = v H;(y') —
ho(H;(y')), is an affine Lagrangian.

A surjective submersioR = M is usually called
afibered manifold A locally trivial fibration A = M
is anaffine bundldf its fiber is modeled by a (real)
affine spaced, and the structural functions are affine
transformations ofd;. We consider local coordinates
adapted to the bundle structur@:) onU ¢ M and
(2, y*)onm 1 (U) = U x Ay, that change according
to the rules

i
{ xal—_m (x")

y “ag (a") +a® (a").

(1)

A vector bundle is a particular case of an affine
bundle ¢* = 0 in relation (1)). Itis a locally trivial
fibration with a fiber type a vector space. An affine
bundler : A — M gives rise to the vector bundles
7 : A — M (given by the director vector spaces at
every point) and its dual vector bundié : A* —
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M, called thedual vector bundlef the given affine
bundle and usually denoted ky : A* — M, or A*
for shortness.

Let m; : FF — M be an affine bundle with
the affine linelR as typical fiber (i.e. with a one-
dimensional fiber). The local coordinates dn
change according to the rules

L )
v T, @)
If o =1andr =0, thenm; : F — F = M x
IR — M is the projection on the first factor, thus it is

the trivial vector bundle. If onlyr(z%) = 1 (for every
local chart), then the affine bundle is associated with
the trivial vector bundleM x IR — M; we say that
the affine bundle F hastructural translations

Letm : A — M be an affine bundle ang; :
F — M be an affine bundle with a one-dimensional
fiber. TheF-dual of A is L(A, F), denoted byA**",
The local coordinates oA*f' change according to the
rules

R
(o ) ©
OPo/ Ay (.T ) = Pa-
Let us considetf, c F, the fibered submani-

fold of the vector bundlery : F© — M, consisting in
non-null vectors. Denotd = A x,; E. The natural
projection® : A — F\ is the canonical projection of
an affine bundle. Let us denote alsoby= F' x s F}
and by#, : F — F the canonical projection.

Proposition 1 The projectioniy : F — F, is the
canonical projection of an affine bundle with struc-
tural translation (i.e. the associated vector bundle is
the trivial vector bundleVl x IR — M).

If - : E — M is a fibered manifold, its first
jet spaceJ'n can be regarded as an affine bundle
J'nm. — E. Using onE local coordinates that are
adapted to the submersion, then coordinates/ tin
have the form(z*, y*, y&*). They change according to
the rules:

o _ a0,

yr =yt (@) / @)
o0t Oy Oy

Vi gt ~Yi oye  Oxt

If s: M — Eis a section (it can be a local one),
then it lifts to a section’ : M — J'E of the fibered
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manifoldJ' E — M. Using local coordinates, ifhas
the local form(z*) — (z*, s*(x")), thens’ is (z*) —
. . s%

1 (0% 1
(@, 5%(a'), 5

Let us consider the vector bundlén* = V*E®
©*T'M — E; the coordinates lew* have the form
_(:uz, ya,_pg), The co_ordlnate@:l) and(y“) change as
in relations (4), while

9z

7
= Pa ot

/8y
aa

(5)

If £ = M xT, WhereT is a manifold, then
' = 27z, y* = y*(y*) and the coordinates
(y%) on J'7 change in a tensor manner, thilsr =
VE ® m*T*M is a vector bundle and'7* is its dual
vector bundle. This vector bundle is used in a sys-
tematic way in the study of multi-time Lagrangians

and Hamiltonians (see [9] and the references therein).

Another particular case, considered below, is when
1 : P — M is an affine bundle with a one dimen-

sional fiber. In this case the formulas (4) have the
form:
7V = (CL‘Z)
y = yff(mz) + 7(z") (6)
Yiggs — Yio\E Youi T ozt
If m : ' — M is a vector bundle, then = 0.

Let us suppose thatr F — M is an
affine bundle with structural translations. (l*) and
(x%,y) are local coordinates oM and onF' respec-
tlvely, then the local change of coordinates afe=
2¥'(2%), y' = y + f(z'). The first jet bundles'm;
has the coordinatds’, y, u;) and the coordinates:;)

change following the rulew = u; + % There

T
is an affine bundles : F; — M that has as coor-
dinates(x, u;) and the affine bundlg!r; is canon-
ically isomorphic with the induced bundlefv; we
write Jim = 7,
A sections € I'(m) lifts naturally to a sec-
tion s’ € I'(J'F, — M), given locally by(z?) —
. .0 , ,
(z*, s(x"), a—si). It induces a sectior” € T'(v) and
T
implicitely an affine sectios’ € I'(J'F — F) that
, 0s
has the local forniz®, y) — (2%, y, — e -). The section

s’ defines a connection in the bundiehat has a null
curvature. If a connection onis defined by a section
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y) — (@' y, &t y), it

£ e T(J'F — F), (%,
i 0§

has the curvature given locally by;; = 7T i

The curvature vanishes iff locallyhas thg formt =
s7,i.e. itis alift of a local sectios € I'(ry).

We are going to prove in what follows that one
can associate with every affine bundle with one di-
mensional fiber an affine bundle with one dimensional
fiber and with structural translations. Let A — M
be an affine bundle ang, : F' — M be an affine bun-
dle with a one-dimensional fiber. AR-lagrangian on
Eis afibered manifoldmap : A — F (i.e.moL =
7). Since every affine map induces a linear map on the
director vector space, there is a canonical projection
II: Aff(A, F*) — A*F'. An F-Hamiltonian onE
is a fibered manifold map : A*" — Aff(A, F*)
such thatl o = 1 4-~. For example, let us consider
F =M x IRandp, : M x IR — M be the projec-
tion on the first factor. The&'-dual of A is just A*.

An F-Lagrangian has the forth(e) = (7(e), Lo(e)),
whereLy : A — IR is usually called d.agrangian

An F-Hamiltonianon A has the formh : A* —
Aff(A, M x IR). This is the case considered in [3]
for affine Hamiltonians of higher order. Another ex-
ample, more elaborated, is given in the next section,
on jet spaces.

Then an F-LagrangianL has the local form

(z',y%) L (2%, Lo(z?,y®)) and the local functions
Ly change according to the rules given by (2):

Ly(@”,y*) = Lo(a',y*)o(2') + 7(2").  (7)
L ) o I/
Slncegy0 = agyo?, ZZZJ"‘ = ngo?’ a2, the for-
mula (2%, y*) — (2, a—ao) defines a_egendre map
Y

L : A — A*F of L. The local form of a map
Qe Aff(A, F*)is (1) 2 ((y%pa b ) andIl(Q)
has the local forniy) e (Y*Pa)-

The local form of I : Aff(A, F*) — A*F
is (pa ) S (pa).  An F-Hamiltonian h

A*.F — Aff(A, F*) has the local form(z?, pa) L,
(2, pas ho(2", pa)). The change rules of local coordi-

, agl aa/
natesaré p, p )=o-( po 1) 0

0’~(pap< >:

(/)71 anda

or (par p') =

where (a%,) =
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—a®a®,. Thush)(z" , po) = 01 (27) - (paa®(z?) +

ho(x%,ps)). It is easy to see that the formula

(2%, pa) — (zi,—a—o) defines aco-Legendre map
Pa

H* . A*F' — Aof h. AlagrangianL : A — F

is regular if its Legendre map is a local diffeomor-

phism; it is equivalent with the fact that thertical

2
hessiangiven by the local matri><gaﬁ = aiéﬁ)
y-oy

is non-singular. The Lagrangianhyperregularif its
Legendre map is a (global) diffeomorphism.

If L: A— FisanF-Lagrangian, thed : A —
L', y%)

F defined locally byL(z*, y*,7) = is an

F-Lagrangian oml. We say thal is thelift of L from
Ato A. ltis easy to see that the following statement
is true.

Proposition 2 The lift L is regular (hyperregular) iff
L is regular (hyperregular).

Analogously, ifh : A*F — Aff(A, F)is anF-
Hamiltonian, then one can consider&rHamiltonian
h . AF — Aff(A,F) defined byh(z',7,pa) =
1 -1 = .

—h(z', =pa). We say that is thelift of h (from A*F
Y Y

to A). Itis easy to see that the following statement is
true.

Proposition 3 The lift & is regular (hyperregular) iff
h is regular (hyperregular).

There are natural maph : A* x F = A* —
A*F andW : Aff(A,R) xy; F = Aff(A,IR) —
Aff(A, F) given in local coordinates by

(', Ba, 2) = (¢',pa = 27 Pa),

(O3
U (2", Doy 2,P) — (2, pa = Z 'Pay 2 1D).

One can consider also some natural mdps :
Aff(A,R) — A*andIl: Aff(A, F) — A*F.

If h : A* — Aff(A, IR) is an affine Hamilto-
nian, then one can consider @Hamiltonian? :
A*F — Aff(A, F*) defined byh(z!,7,5a) =
h(z, P, that we call thdift of & (from A* to A).
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3 Related Hamiltonians on a jet
space

Letw : E — M be a fibered manifold (or a bun-
dle). We consider the vector bundié&*(T'M) — M,

m = dim M, with a one-dimensional fiber, that has
as sections the top forms (or volume densitiesjidn
For our purpose we consider also the induced vec-
tor bundles with one dimensional fibers : ' =

™ A™(TM) — E, 7} : F* = 7*A™(T*M) — E.

A Hamiltonian considered in [1, 2, 3] is called, in our
terminology, as aF'-Hamiltonianon E. It is a sec-
tionh : J'r*F — JixTF and it has the local form

(2", 9%, ph) — (&', 4%, P, W' y%, ) (8)
The local coordinate§p?,) and the local function#
: . Oy . 0"
change according to the rulg§, = o pl ——
¢ g B Dyo B
and ¥ = ol |h+p Oy ; % — |.  An affine
oy® Ozt

Hamiltonianon J17* is a sectiom; : Jix* — Jixf
and it has the local form

(@', 4, Bo) — (2", 4%, o (2", 4%, ). (9)

The local coordinate§p?,) and the local functiong

/

. L, Oy“ Ozt

change according to the rulgg,—~— = p° .

g g e% aya pa axz
andh’ = h + pi 9" 95" \ne are going to put to-

Loy Oxt

gether F-Hamiltonians and affine Hamiltonians. In
order to do this we considdr-Hamiltonians. In or-
der to simplify notations and the exposition, we con-
sider F* instead ofF, in the previous section. We
denoteF = F x F* and we use the canonical pro-
jectiony : F — F*. Also, J = J'E x3; F* and
7:J — E = E x; F* (a canonical projection of a
fibered manifold). AnF-Hamiltonianon E is a sec-
tionh : J* — J' and it has the local form

(2%, y, @, 55) — (2%, 9%, @, ph, h(z', y, @, 5L)).

_ (10)
The local functionsh change according to the rules
. - oy oy _ :
n = h+p, i ,%. According to the previous
oy™ Ozt

section, arnf’-Hamiltonian, as well as an affine Hamil-
tonian, lifts to anf’-Hamiltonian. More specifically,
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— if h is an F-Hamiltonian that has the local
form (8), then its lifth has the local form (10), with
h<x17ya7@7ﬁla) = 5h($17ya7@ﬁz¥);

— if h is an affine Hamiltonian that has the lo-
cal form (9), then its lifth has the local form (10),
with h(z?, y*, @, pL) = h(z,y, p,). Animportant
tool in the study off’-Hamiltonians (Hamiltonians in
the classical terminology can be found in the multi-
symplectic formalism developped in [1, 2, 3] (see also
the bibliography therein). In [1] one define the action
of an F-Hamiltonianh on sections or? — M and
one deduce the equation of a critical section of this ac-
tion, deduced from a Hamilton-Jacobi principle. We
intend to define an action for aR-Hamiltonian, in
order to recover the same action for the lift of An
Hamiltonian.

Let m = dim M. The Hamilton-Cartan forms
C] pldy® A d"lx; — pdmx, Q —do
dpi, A dy® A d"tx; + dp A d™z on JIETF =
Aff(J'E, F) gives the pull-back formsi*© and
U Q on Jt = Aff(J,IR). We consider ani-
Hamiltoniank : J* — J'. It defines the pull-back
form on.J*, given by©; =h*© and; =h*(, that has
the local forms

U @E:w(pady Ad™ g
and

U*Q; = —do A (PLdy® Ad™ o — hd™x)—

o(dp, A dy® A d™ ey — dh A d™)

— h( ya,@,ﬁg)dmx)

respectively. (Her@® : J'n* x; F* = J* — Jip*F
and¥ : JT — J'7'F are defined in the general case
in the previous sectiom = J!r.) Let us consider the
natural fibered manifold : J* — M and denote by
Lo(M, J*) the set of its sectiong : M — J* such
that the pull-backn-form s*©; on M has a compact
support; a sectiog has the local form

Yo (a') = (2 y*(2h), 0(2"), ph(a"). (1)
It follows a mapH : I'o(M,J*) — R, ¢ —
/ ¥*0;. For a local compact-supported vector
fiei\éX € X(J*) that has a local one-parameter group
o, One can consider a variatign = o; 01. Thevari-

ational problem is the search of a sectiafy called a
critical section such that

d
— *©; = 0. 12
to/th ; (12)

dt
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(Hamilton-Jacobi principlg

Theorem 4 A sectiom) that has the local form (11)
is a critical section iff it satisfies the following system
of equations

oh  Ay*

_ - HJ.1
opt, Oz’ (HJ.1)

oh aﬂ 0w
D = i HJ.2
w@yo‘ “Yori ~ Paggi (HJ.2)

oh - ah

” —h— . HJ.3
O{a ’L aw 0 ( )

As an example, let us consider a section:

E — J'E, a two covariant tensa® on the fibers of
Jlm* — E, a one covariant tensdt and a function
N on E, having local formgz*, y*) — s&(2*,y%),
G = Gy« ") © By, K = KP (', y)p, and
N(2",y®) respectively. Letr be a volume form on
M andF = A™(M). ' 4

X The formula hq(z', y“, pL) s$'py, +
%pgpfﬂGf;ﬁJrKf‘ngraN defines arf’-Hamiltonian
onJ'E. Itis polynomial, of second degree in volume-
valued momentdpy,). The corresponding lift is the
F-Hamiltonian given by the formula

b2,y @, 5,) = 5700 + o el

K&ph + 5N. (13)

It is also polynomial, of second degree in scalar mo-

menta(p.,).

O _ -

W = 0. Considering the variational problem for
0y

this F-Hamiltonian (Theorem 4), the relation (HJ.3)
is automatically fulfilled, thus only equations (HJ.1)
and (HJ.2) must be satisfied.

A particular case is a global form of the electro-
magnetism equation, as follows. We consider=
T*M 5 M andg a (pseudo)riemannian metric on
M. ThenJ'z* = Ao(T*M) is the vector bundle

of 2—contravariant tensorg = (pij) on M. Then
H(z',p7) = *&;U where'/ = j' — pi* andg;; =

girgjsérs, is an well-defined real function oft7*. If
(I'};,) are the Christoffel coefficients of the metygc

Issue 1, Volume 7, January 2008



WSEAS TRANSACTIONS on MATHEMATICS

then the local function®';; (2", ps) = I'¥(2")py, de-
fine a global sectiod® : T*M — J'z*. Denoting
= /|g|, whereg = det(g;;), we obtain a volume
formon M.
ConsideringF’ = 7*A™(TM) and theF'-dual
(T*M)*F, then the formulab (%, p;, p7) = Typ" +
1 . _ I
2—£”£ij defines anF'-Hamiltonian on J'(T*M),
g

called theelectromagnetic Hamiltonian The cor-
respondlngF Hamiltonian is h(z x',pj,w,Dij) =

Lijp + %fwfij-

Proposition 5 An F-Hamiltonian is the lift of an F-
Hamiltonian/ if and only if h verifies the conditions
(HJ.3).

In the case considered in Proposition 5 (i.B.
is the lift of an F-Hamiltonian k), then equation
(HJ.3) is satisfied identically, while the other two
equations (HJ.1) and (HJ.2) follows from the classi-
cal Hamilton-Jacobi equation of h (see [1, 2]):

oh  Oy®

— = - HJ .1
opi, Oz’ (HT1)
oh opt
— =9, HJ' .2
oy~ ox’ (HJ'2)

In that follows we focus on the case when equa-
tion (HJ.3)is notsatisfied identically.

Let us consider an F-Hamiltonian given
by the formula hy(zf,y* @,p,) = 8¢9, +

o (C)amcs o () Kerr u ()N

where f, g andu are some real functions. Then by a
straightforward computatlon one has

paghf a5 (1= 27) il -
gKO‘ pl —|—<u+wu>N

g
where the real functlonﬁ g, v and their derivatives
have as variablé .

g .
Since the above expression is a polinomiapn
the F-Hamiltonian F, given by (13), is the only-
Hamiltonian that fulfills the relation (HJ.3).

Proposition 6 Let us suppose that the equation
(HJ.3) can be solved with respect with Then:

1) The solutionw = so(zi,y*,7,) defines a
volume-valued Hamiltoniah : Ji7n* — F*.
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~2) The local functions hi(z',y* p,) =
h(z',y®, so(z*, y%, p.,), pi,) define an affine Hamilto-
nianhy : Jin* = Jixt.

We say that anF-Hamiltonian & has anF-
Hamiltonian » as aHamilton-Jacobi projection(or
HJ-projectionfor short) if there is a non-null volume-
valued hamiltoniansy : J'7* — F* such that
the solutions of the Hamilton-Jacobi equationshof
(equations (HJ.1) — (HJ.3)) have the property that
@ = sq verify (HJ.3) and the local functiong’) —

(xf, y*(2%), p’. () = so(z®)p (2%)) are solutions
of (classical) Hamilton-Jacobi equations bf i.e.
(HJ'.1) and (HJ'.2).

Theorem 7 Let us suppose that the equation (HJ.3)
of an F’-Hamiltonian’ can be solved with respect to
w = hg. Then the local functiona(z*,y%,p,,) =

hgﬁ(xi,ya,ho,%) define an F-Hamiltoniank
O ~
JinF — JintF that is an HJ-projection of.

Let us consider that gﬁ-Haijtonianﬁ is the lift
of an affine Hamiltoniam, thush(z*,y*, @, p,) =
h(a: y“,p.,) does not depend ow. The relation
oh

ow
dition thath is the lift of an affine Hamiltonianh. The
equations (HJ.1) — (HJ.3) become in this case

= 0 (i.e. h does not depend an) is the con-

oh oy”
i HJ1'
opt, Oz’ ( )

Oh _ 0Py 0w
o = HJ2'
“aga T You Paggr (HJ2)
aaafj —h=0. (H33")

In the setting of Proposition 6, the solutions of
Hamilton-Jacobi equations of thE-Hamiltoniansh
and of the lifth; (of k1) are not the same.
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