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Abstract: in this paper we propose a descent method for solving variational inequality problems where the under-
lying operator is nonsmooth, locally Lipschitz, and monotone over a closed, convex feasible set. The idea is to
combine a descent method for variational inequality problems whose operators are nonsmooth, locally Lipschitz,
and strongly monotone, with the Tikonov-Browder regularization technique. Finally, numerical results are pre-
sented and discussed.
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1 Introduction

Let X a nonempty, closed and convex subset ofIRn

and F : IRn → IRn a given map. The variational
inequality (VI) problem is to find a pointx∗ ∈ X such
that

〈F (x∗), x− x∗〉 ≥ 0, ∀ x ∈ X, (P)

where 〈·, ·〉 denotes the inner product inIRn.
This problem is becoming an increasingly powerful
methodological tool for the study of many problems
arising in different fields such us economics, engi-
neering, mechanics and physics. Indeed, this problem
contains systems of nonlinear equations, optimization
problems and complementarity problems as special
cases, and it is also related to fixed point problems.
Several methods including projection and its variant
forms, auxiliary principle, decomposition and descent
methods have been developed for solving VIs. For
a complete discussion and history of the VI prob-
lem and associated solution methods we refer to [2]
and references therein. One of the most popular ap-
proaches to solve a VI consists in reformulating it as
an equivalent optimization problem. The underlying
idea is to use an artificial gap function which is a real
valued function whose global minima coincide with
the solutions of VI. Gap functions give rise to itera-
tive descent methods for their minimization and, as
a consequence, for the solution of the VI problem.
Most existing descent methods are shown to converge
when the underlying operatorF of the VI is con-

tinuously differentiable and satisfies suitable mono-
tonicity assumptions. Recently, in [4, 5] two descent
methods, with respect to gap functions, for solving
a VI with nonsmooth, locally Lipschitz and strongly
monotone operator have been proposed. Moreover,
in [6] the authors proposed a descent method which
is shown to be globally convergent when the opera-
tor F is nonsmooth, locally Lipschitz and (not neces-
sarily strongly) monotone, and the feasible setX is
bounded.

In this paper, we combine the descent method
proposed in [4] and the Tikhonov-Browder regu-
larization technique (see e.g. [1, 7]) to provide a
globally convergent algorithm for solving a VI with
nonsmooth, locally Lipschitz and (not necessarily
strongly) monotone operator, over a not necessarily
bounded feasible set. In section 2, we describe the
combined method and prove its global convergence.
In section 3, some numerical results are reported,
which provide useful considerations on the parameter
settings.

For the sake of convenience, we first recall some
definitions which will be used in our further consid-
erations. Given a symmetric positive definite ma-
trix G, we denote by‖ · ‖G the norm in IRn de-
fined by ‖x‖G =

√
〈x,G x〉. In particular, ‖ · ‖

denotes the classical Euclidean norm induced by unit
matrix I. The projection of a pointx ∈ IRn onto the
closed convex setX with respect to‖ · ‖G, denoted
by ΠX,G(x), is defined as the unique solution of the
problemmin

y∈X
‖y − x‖G. We recall that the mapping
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F is said to bemonotone onX if

〈F (x)− F (y), x− y〉 ≥ 0, ∀ x, y ∈ X,

andstrongly monotone onX with constantτ > 0 if

〈F (x)−F (y), x−y〉 ≥ τ ‖x−y‖2, ∀ x, y ∈ X.

In the rest of the paper we utilize the following
assumptions.

(A1) The setX ⊆ IRn is nonempty, closed, and con-
vex.

(A2) The mappingF : Y → IRn is locally Lipschitz
at each point of an open convex setY such that
X ⊂ Y , andF is monotone onY .

2 A combined descent and regular-
ization method

In this section we present a combined descent and reg-
ularization approach to solve a VI with nonsmooth,
locally Lipschitz and (not necessarily strongly) mono-
tone operator, over a (not necessarily bounded) closed
and convex feasible set. The Tikhonov-Browder reg-
ularization method was originally proposed in [1, 7]
to overcome some ill-posedness related difficulties in
the resolution of VIs. Its basic idea is to substitute the
original VI with a sequence of “regularized” VIs, ob-
tained by replacing the operatorF by F + ε I where
ε is a positive parameter. This regularization can be
generalized to a nonlinear regularization whereF is
replaced by the mappingFε defined as:

Fε(x) = F (x) + ε M(x),

whereε > 0 andM : IRn → IRn is locally Lipschitz
and strongly monotone onY . The regularization map-
ping Fε leads to the following auxiliary VI problem:
find a pointx∗ε ∈ X such that

〈Fε(x∗ε), x− x∗ε〉 ≥ 0, ∀ x ∈ X. (Pε)

Note that, under assumptions(A1) − (A2), the map-
ping Fε is locally Lipschitz continuous (generally
nonsmooth) and strongly monotone onY for each
ε > 0, hence each auxiliary problem (Pε) has a unique
solutionx∗ε. Furthermore, if the setS of solutions of
the original problem (P) is nonempty, then it follows
from [2, Theorem 12.2.5] that the family of solutions
{x∗ε} converges to a solutionx∗ of (P), asε tends to
zero, andx∗ is uniquely characterized by the follow-
ing property:

〈M(x∗), x− x∗〉 ≥ 0, ∀ x ∈ S. (1)

In particular, ifM is the identity map (i.e. we consider
the Tikhonov-Browder regularization), thenx∗ is the
solution of (P) with least Euclidean norm.

In order to solve each auxiliary problem (Pε), we
can apply the descent method described in [4] which
is globally convergent to the solution of a VI with lo-
cally Lipschitz and strongly monotone operator. This
method is based on the minimization of a gap function
with an Armijo-type line search. To this end, we con-
sider the following gap function [3] associated to the
problem (Pε):

ϕε(x) = max
y∈X

[
〈Fε(x), x− y〉 − ε

2 ‖x− y‖2
G

]
= 〈Fε(x), x− yε(x)〉 − ε

2 ‖x− yε(x)‖2
G,
(2)

where yε(x) = ΠX,G

(
x− (ε G)−1Fε(x)

)
is the

unique maximizer. Sinceϕε(x) ≥ 0 for all x ∈ X
andϕε(x∗) = 0 if and only if x∗ is a solution of (Pε),
the problem (Pε) is equivalent to the following con-
strained optimization problem:

min
x∈X

ϕε(x). (3)

Applying the descent method described in [4] for min-
imizing the gap functionϕε, we can find an approxi-
mate solution of the problem (Pε). However, in order
to obtain the convergence to a solution of the original
problem (P), we need to guarantee that the error for
the solution of (Pε) tends to zero, asε tends to zero.
To this end, we can exploit the following result which
establishes an error bound for the solution of the aux-
iliary problem (Pε) with the help of the gap function
ϕε.

Proposition 1. Let assumptions(A1) − (A2) be ful-
filled and the mapM be strongly monotone onY with
constantτ > 0. Then for eachε > 0 we have:

ϕε(x) ≥ ε C ‖x− x∗ε‖2, ∀ x ∈ X, (4)

where

C =


τ − 1

2
λmax(G) if τ ≥ λmax(G),

τ2

2 λmax(G)
if τ < λmax(G),

andλmax(G) is the maximum eigenvalue ofG.

Proof. It is well known that

max
‖x‖=1

〈x,G x〉 = λmax(G),

where λmax(G) is the maximum eigenvalue ofG.
Hence, for eachx ∈ IRn one has

‖x‖2
G = 〈x, G x〉 ≤ λmax(G) ‖x‖2. (5)
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Let us choose an arbitrary pointx ∈ X andµ ∈ (0, 1],
we setx(µ) = µx∗ε + (1− µ) x. Taking into account
the strong monotonicity ofM and the relation (5), we
obtain:

ϕε(x) ≥ 〈Fε(x), x− x(µ)〉 − ε
2 ‖x− x(µ)‖2

G

= µ 〈Fε(x), x− x∗ε〉 − ε
2 µ2 ‖x− x∗ε‖2

G

≥ µ
[
〈Fε(x∗ε), x− x∗ε〉+ ε τ ‖x− x∗ε‖2

]
+

− ε
2 µ2 ‖x− x∗ε‖2

G

≥ µ ε τ ‖x− x∗ε‖2 − ε
2 µ2 ‖x− x∗ε‖2

G

≥ ε
[
µ τ − 1

2 µ2 λmax(G)
]
‖x− x∗ε‖2.

Therefore

ϕε(x) ≥ ε max
µ∈(0,1]

[
µ τ − 1

2
µ2 λmax(G)

]
‖x− x∗ε‖2

= ε C ‖x− x∗ε‖2,

where

C =

 τ − 1
2 λmax(G) if τ ≥ λmax(G),

τ2

2 λmax(G) if τ < λmax(G).

Now we state the algorithm for solving the orig-
inal problem (P), obtained combining the nonlin-
ear regularization with the descent method proposed
in [4] applied to the gap functionϕε to approximate
the solution of (Pε).

Algorithm

0. (Initial step)

Let G be a symmetric positive definite matrix.

Let {δk} and{εk} be sequences decreasing to 0.

Let γ ∈ (0, 1) and{βk} be a sequence such thatβk ∈
(0, 1) for all k ∈ N.

Choose anyx0 ∈ X and setk = 1.

1. (Minimization ofϕεk
)

1a. (Initialization)

Seti = 0 andz0 = xk−1.

1b. (Stopping criterion)

If ϕεk
(zi) ≤ εk δk, then go to step 2.

1c. (Line search)

Computeyi = ΠX,G

(
zi − (εk G)−1Fεk

(zi)
)

setdi = yi − zi

compute the smallest nonnegative integerm such
that:

ϕεk
(zi + γm di)− ϕεk

(zi) ≤ −βk γm ‖di‖2.

1d. (Update ofzi)

Setzi+1 = zi +γm di, i = i+1, and return to step
1b.

2. (Update ofxk)

Setxk = zi, k = k + 1, and return to step 1.

Theorem 2. Let assume that assumptions(A1) −
(A2) are fulfilled and that (P) has a solution. Let the
mapM be locally Lipschitz and strongly monotone on
Y with constantτ > 0 andβk < τ εk for all k ∈ N.
Then the sequence{xk} generated by the algorithm
converges to the solutionx∗ of (P) such that (1) holds.

Proof. For each iterationk, the mappingFεk
is lo-

cally Lipschitz and strongly monotone onY , that is it
satisfies the convergence conditions for the algorithm
described in [4], and thuslim

i→∞
ϕεk

(zi) = 0. There-

fore, for each outer iterationk, the stopping criterion
at step 1b is verified after a finite number of inner iter-
ationsi, and hence the sequence{xk} is well defined.

Moreover, from Proposition 1, we have:

ϕεk
(xk) ≥ εk C ‖xk − x∗εk

‖2, ∀ k ∈ N, (6)

where

C =


τ − λmax(G)

2
if τ ≥ λmax(G),

τ2

2 λmax(G)
if τ < λmax(G).
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¿From (6) and the stopping criterion 1b, we obtain:

‖xk − x∗εk
‖2 ≤ ϕεk

(xk)
εk C

≤ εk δk

εk C
=

δk

C
∀ k ∈ N.

Since lim
k→∞

δk = 0, one has

lim
k→∞

‖xk − x∗εk
‖ = 0 (7)

Furthermore, on account of [2, Theorem 12.2.5] it fol-
lows that

lim
k→∞

x∗εk
= x∗, (8)

wherex∗ is the solution of (P) such that (1) holds.
Finally, since we have:

‖xk − x∗‖ ≤ ‖xk − x∗εk
‖+ ‖x∗εk

− x∗‖,

from (7) and (8) we conclude thatlim
k→∞

xk = x∗.

Remark 3. Observe that, instead of using the descent
method proposed in [4], based on an Armijo-type line
search, it could be analogously considered the combi-
nation of the descent method proposed in [5], based
on an exact line search rule, with the nonlinear regu-
larization.

3 Numerical experiments

In this section we show some numerical results for
the algorithm proposed in Section 2 on a couple of
examples and we provide some comments about the
sensitivity of the parameters to the computational ef-
fort. The algorithm has been implemented in MAT-
LAB 7.0.4 and the regularization mapM has been set
as the identity map. As stopping criterion of the al-
gorithm we used the natural residual:‖x−ΠX,I(x−
F (x))‖∞ < 10−4. In both the test problems we chose
the feasible setX = [1,+∞)×· · ·× [1,+∞) and the
mapF : IRn → IRn as

F (x) = A x + H(x), (9)

where A is a random skew-symmetric matrix and
H : IRn → IRn is such that each componentHi is
a locally Lipschitz nondecreasing function of the only
variablexi, for all i = 1, . . . , n. Under these condi-
tions it is easy to check thatF is a locally Lipschitz
and monotone (but not strongly monotone) map on
IRn. We set the sequenceβk = β εk whereβ ∈ (0, 1).
Example 3.1Consider the VI problem where the map
F has the form (9) with

A =


0 6 −2 −5 2

−6 0 −5 −1 −4
2 5 0 0 1
5 1 0 0 1

−2 4 −1 −1 0



andHi(x) = max{x2
i , 9} for all i = 1, . . . , 5. Pre-

liminary computational results show that settingG =
100 I, δk = 1/k, εk = 1/10k, γ = 0.1, andβk =
0.5 εk provides a good parameter choice. We ap-
plied the algorithm, with such choice of parameters, to
solve the considered example starting from 20 points
randomly chosen in the box[1, 10]×· · ·× [1, 10]. Nu-
merical results are summarized in Table 1 containing
seven columns: starting point, number of outer iter-
ations, number of inner iterations, number of projec-
tions, number of evaluations of the operator, natural
residual atx, and approximate solution foundx.

Table 1 shows that the algorithm is quite robust
with respect to the starting point. In fact, besides con-
verging to the same solution, as proved in Theorem 2,
the number of outer iterations is always equal to 5 and
the number of inner iterations is always between 10
and 16. The number of projections and of evaluations
is stable as well, always between 51 and 64, and be-
tween 61 and 80, respectively.

Computational tests have been then carried out to
investigate the behavior of the algorithm with differ-
ent parameter values. First the behavior with respect
to different choices of the matrixG is shown in Ta-
ble 2. The other parameters are set as in Table 1:
δk = 1/k, εk = 1/10k, γ = 0.1, andβk = 0.5 εk.
Each different choice of the matrixG has been tested
over 100 starting points randomly chosen in the box
[1, 10] × · · · × [1, 10]. In Table 2, for each choice
of G, the average and maximum number of outer it-
erations, inner iterations, projections, and evaluations
of F are given. Computational results show that the
best behavior is provided by settingG = 100 I. In
fact, this choice provides the minimum average num-
ber of inner iterations, projections, and evaluations of
F . Besides, even the maximum number of projections
(and evaluations ofF ) is smaller than average number
provided by other choices ofG. However, the number
of projections and evaluations at most double even for
the worst choices ofG. Thus, such parameter seems
less significant than others.

In Table 3 results with different values of the se-
quenceδk are shown, obtained keeping values of other
parameters as in Table 1. For each choice ofδk, the av-
erage and maximum number of outer iterations, inner
iterations, projections, and evaluation ofF are given.
In Table 4 results with different values of the sequence
εk are given. Results are obtained keeping values of
other parameters as in Table 1. For each choice ofεk,
the average and maximum number of outer iterations,
inner iterations, projections, and evaluation ofF are
given.

From the tables the best choice ofδk seems to be
1/k, while the best choice ofεk is 1/10k. Results
show that the choice ofεk is more significant than the
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choice ofδk. In fact, choosing aδk value different
from the best one causes an increase in the number of
projections and evaluations ofF , but they at most dou-
ble even for the worst choice. On the other hand, a bad
choice ofεk may cause an increase of the number of
projections and evaluations up to 10 times compared
to the choiceεk = 1/10k. Results suggest a general
rule for choosingδk andεk: they suggest to choose a
“quite fast” decreasing sequence forεk (although “not
too fast”), while they suggest to choose a “slow” de-
creasing sequence forδk.

In Table 5 results with different values of param-
eterγ (from 0.1 to 0.9) are shown. Results are ob-
tained keeping values of other parameters as in Ta-
ble 1. For each choice ofγ, the average and maxi-
mum number of outer iterations, inner iterations, pro-
jections, and evaluation ofF are given. According
to the results the algorithm seems to perform well for
0.1 ≤ γ ≤ 0.2, while the number of needed iterations,
projections, and evaluations increases forγ ≥ 0.3.

Finally, in Table 6 we show results with differ-
ent values of the sequenceβk. We chooseβk = β εk

whereβ is between 0.1 and 0.9. Results are obtained
keeping values of other parameters as in Table 1. The
choice ofβ seems to be less important than the choice
of γ: in fact the average number of projections is be-
tween 54 and 57 for any chosen value, and the average
number of needed evaluations is between 67 and 70.

For the first considered example the most impor-
tant role seems to be played byεk andγ, while G, δk,
andβ seem to be less important. Althoughγ does not
influence asεk, its value has a quite significant impor-
tance.
Example 3.2Consider the VI problem where the map
F has the form (9) with

A =


0 0 0 −2 −4 −1 −3 1 3 −4
0 0 −4 −3 1 1 −2 −1 −1 1
0 4 0 −2 2 2 −3 2 1 −1
2 3 2 0 −1 4 −2 −1 0 1
4 −1 −2 1 0 −2 0 −2 −1 1
1 −1 −2 −4 2 0 −3 2 −1 −2
3 2 3 2 0 3 0 0 4 −3
−1 1 −2 1 2 −2 0 0 1 −3
−3 1 −1 0 1 1 −4 −1 0 1

4 −1 1 −1 −1 2 3 3 −1 0


and Hi(x) = max{exi , 6} for all i = 1, . . . , 10.
Preliminary computational results show that a good
choice of parameters also for this example is given
by G = 100 I, δk = 1/k, εk = 1/10k, γ =
0.1, andβk = 0.5 εk. Results for such parameters
with 20 starting points randomly chosen in the box
[1, 10]× · · · × [1, 10] are shown in Table 7.

In Tables 8-12 the behavior of the algorithm with
respect to different choices of the parameters is inves-
tigated.

In Table 8 the behavior with respect to different
choices of the matrixG is shown. The other param-
eters are set as in Table 7:δk = 1/k, εk = 1/10k,

γ = 0.1, andβk = 0.5 εk. Each different choice of
the matrixG has been tested over 100 starting points
randomly chosen in the box[1, 10]× · · · × [1, 10]. In
Table 8, for each choice ofG, the average and maxi-
mum number of outer iterations, inner iterations, pro-
jections, and evaluations ofF are given.

In Tables 9 and 10 results for different choices of
sequencesδk andεk are given, respectively, keeping
fixed the other parameters.

Finally, in Tables 11 and 12 results for different
choices of sequencesγ andβ are given, respectively,
keeping fixed the other parameters.

As pointed out by the results on the first example,
εk andγ seem to play a more significant role thanG,
δk, andβ.

4 Conclusions

We proposed an algorithm which combines a well
known descent method and the Tikhonov-Browder
regularization technique and provides global conver-
gence in solving a VI with nonsmooth, locally Lip-
schitz and (not necessarily strongly) monotone oper-
ator, on a (not necessarily bounded) closed and con-
vex feasible set. We showed some computational ex-
periments which provide insight on the algorithm be-
havior with respect to the parameters choice. Further,
results give useful suggestions for the parameters set-
tings.
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Table 1: Numerical results for Example 3.1 withG = 100 I, δk = 1/k, εk = 1/10k, γ = 0.1, andβk = 0.5 εk.

starting outer inner proj. eval. natural approximate
point iter. iter. of F residual solution

(10, 2, 2, 7, 1) 5 11 53 64 6.55E-05 (1, 3.999992, 1, 1, 1)
(8, 9, 8, 7, 4) 5 15 61 76 6.48E-05 (1, 3.999992, 1, 1, 1)
(4, 7, 6, 3, 8) 5 15 61 76 6.48E-05 (1, 3.999992, 1, 1, 1)
(4, 3, 10, 3, 8) 5 15 61 76 6.48E-05 (1, 3.999992, 1, 1, 1)
(6, 3, 3, 5, 8) 5 14 59 73 6.47E-05 (1, 3.999992, 1, 1, 1)
(2, 10, 4, 2, 9) 5 11 53 64 6.49E-05 (1, 3.999992, 1, 1, 1)
(3, 7, 10, 4, 5) 5 15 61 76 6.48E-05 (1, 3.999992, 1, 1, 1)
(4, 4, 10, 10, 6) 5 15 61 76 6.44E-05 (1, 3.999992, 1, 1, 1)
(10, 9, 1, 6, 2) 5 12 55 67 6.75E-05 (1, 3.999992, 1, 1, 1)
(2, 9, 10, 3, 9) 5 15 61 76 6.48E-05 (1, 3.999992, 1, 1, 1)
(9, 8, 7, 3, 9) 5 15 61 76 6.48E-05 (1, 3.999992, 1, 1, 1)
(10, 7, 7, 7, 7) 5 16 64 80 6.48E-05 (1, 3.999992, 1, 1, 1)
(6, 5, 3, 4, 2) 5 12 55 67 6.53E-05 (1, 3.999992, 1, 1, 1)
(5, 1, 6, 8, 6) 5 11 53 64 6.61E-05 (1, 3.999992, 1, 1, 1)

(1, 10, 10, 8, 6) 5 12 55 67 6.74E-05 (1, 3.999992, 1, 1, 1)
(3, 5, 8, 3, 8) 5 15 61 76 6.48E-05 (1, 3.999992, 1, 1, 1)
(5, 2, 5, 3, 9) 5 14 59 73 6.44E-05 (1, 3.999992, 1, 1, 1)
(2, 9, 7, 3, 9) 5 13 57 70 6.66E-05 (1, 3.999992, 1, 1, 1)
(9, 7, 2, 3, 9) 5 15 61 76 6.48E-05 (1, 3.999992, 1, 1, 1)
(5, 6, 2, 6, 2) 5 10 51 61 6.75E-05 (1, 3.999992, 1, 1, 1)

Table 2: Behavior of the algorithm with respect to different choices of the matrixG.

outer iterations inner iterations projections evaluations ofF
G avg. max avg. max avg. max avg. max
I 5 5 20.1 21 119.2 123 139.3 144

10 I 5 5 16.9 18 83.6 87 100.5 105
100 I 5 5 13.3 18 57.2 70 70.5 88
200 I 5 5 22.6 23 94.6 98 117.2 121
500 I 5 5 35.8 46 112.4 146 148.2 192

Table 3: Behavior of the algorithm with respect to differentδk choice.

outer iterations inner iterations projections evaluations ofF
δk avg. max avg. max avg. max avg. max

10/k 5.9 6 12.7 18 62.8 79 75.4 97
1/k 5 5 12.6 17 55.1 67 67.7 84
1/k2 5 5 12.9 18 56.1 70 69.0 88
1/k3 5 5 14.9 19 67.0 77 81.8 96
1/2k 5 5 13.3 17 58.1 67 71.4 84
1/10k 5 5 21.4 25 94.8 104 116.3 129
1/100k 5 5 30.5 35 139.1 151 169.6 186
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Table 4: Behavior of the algorithm with respect to differentεk choice.

outer iterations inner iterations projections evaluations ofF
εk avg. max avg. max avg. max avg. max

1/k2 214.8 218 44.7 53 587.5 623 632.1 674
1/k3 39.2 40 36.7 44 196.9 228 233.6 272
1/2k 14.1 17 21.7 28 90.0 120 111.7 148
1/10k 5 5 12.9 18 56.0 70 69.0 88
1/100k 3 3 14.7 16 69.8 76 84.5 92

Table 5: Behavior of the algorithm with respect to differentγ choice.

outer iterations inner iterations projections evaluations ofF
γ avg. max avg. max avg. max avg. max

0.1 5 5 13.3 19 56.9 73 70.1 92
0.2 5 6 16.1 22 76.1 111 92.3 133
0.3 5 5 58 66 397.8 459 455.8 525
0.4 5 5 12.8 15 81.3 90 94.1 105
0.5 5.4 6 86.8 229 867.5 961 954.3 1190
0.6 5 6 21 34 186.2 444 207.2 478
0.7 5 5 52.9 66 604.3 706 657.1 772
0.8 5 5 65.3 74 1619.3 1806 1684.7 1880
0.9 5.2 6 134.6 202 7950.6 13404 8085.3 13606

Table 6: Behavior of the algorithm with respect to differentβ choice.

outer iterations inner iterations projections evaluations ofF
β avg. max avg. max avg. max avg. max

0.1 5 5 12.9 18 56.1 70 68.9 88
0.2 5 6 12.9 17 56.2 67 69.1 84
0.3 5 5 12.9 18 56.2 70 69.1 88
0.4 5 5 13.1 18 56.5 70 69.6 88
0.5 5 5 12.3 16 54.5 64 66.8 80
0.6 5 5 12.4 16 54.6 64 67.0 80
0.7 5 5 13.1 18 56.7 70 69.8 88
0.8 5 5 12.8 18 55.4 70 68.2 88
0.9 5 5 12.8 18 55.9 70 68.6 88
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Table 7: Numerical results for Example 3.2 withG = 100 I, δk = 1/k, εk = 1/10k, γ = 0.1, andβk = 0.5 εk.

starting outer inner proj. eval. natural approximate
point iter. iter. of F residual solution

(2, 8, 1, 8, 3, 2, 3, 3, 8, 9) 5 41 159 200 3.01E-05 (2.158317, 2.037456, 1, 1, 1, 2.165077, 1, 1, 1.836163, 1)
(10, 3, 2, 7, 9, 2, 4, 7, 4, 7) 5 34 124 158 3.07E-05 (2.158317, 2.037456, 1, 1, 1, 2.165077, 1, 1, 1.836163, 1)
(6, 2, 2, 2, 7, 5, 7, 1, 8, 7) 5 24 92 116 6.00E-05 (2.158319, 2.037455, 1, 1, 1, 2.165073, 1, 1, 1.836165, 1)
(5, 6, 9, 7, 7, 5, 8, 6, 5, 7) 5 23 88 111 5.31E-05 (2.158318, 2.037455, 1, 1, 1, 2.165074, 1, 1, 1.836165, 1)
(3, 9, 4, 2, 3, 5, 3, 4, 6, 6) 5 40 140 180 6.43E-05 (2.158320, 2.037454, 1, 1, 1, 2.165073, 1, 1, 1.836165, 1)
(3, 3, 8, 4, 3, 2, 5, 9, 8, 4) 5 42 145 187 5.57E-05 (2.158319, 2.037455, 1, 1, 1, 2.165074, 1, 1, 1.836164, 1)
(3, 9, 6, 3, 1, 1, 3, 6, 10, 8) 5 19 76 95 4.60E-05 (2.158322, 2.037454, 1, 1, 1, 2.165074, 1, 1, 1.836162, 1)
(7, 3, 9, 9, 10, 5, 5, 8, 2, 2) 5 22 83 105 3.72E-05 (2.158318, 2.037456, 1, 1, 1, 2.165078, 1, 1, 1.836158, 1)
(2, 5, 5, 8, 6, 9, 4, 3, 7, 8) 5 28 107 135 3.13E-05 (2.158317, 2.037456, 1, 1, 1, 2.165077, 1, 1, 1.836164, 1)
(9, 2, 3, 3, 8, 2, 2, 3, 1, 4) 5 32 124 156 3.02E-05 (2.158317, 2.037456, 1, 1, 1, 2.165077, 1, 1, 1.836163, 1)

(2, 2, 4, 6, 4, 2, 5, 10, 10, 6) 5 24 91 115 3.03E-05 (2.158317, 2.037456, 1, 1, 1, 2.165077, 1, 1, 1.836163, 1)
(4, 8, 5, 9, 3, 2, 4, 5, 5, 8) 5 24 88 112 5.59E-05 (2.158319, 2.037455, 1, 1, 1, 2.165074, 1, 1, 1.836164, 1)
(4, 2, 2, 6, 2, 10, 6, 9, 5, 7) 5 32 118 150 3.18E-05 (2.158318, 2.037456, 1, 1, 1, 2.165077, 1, 1, 1.836163, 1)
(8, 7, 5, 8, 2, 6, 5, 4, 2, 7) 5 25 98 123 2.99E-05 (2.158317, 2.037456, 1, 1, 1, 2.165077, 1, 1, 1.836163, 1)
(8, 8, 6, 2, 1, 4, 5, 4, 3, 4) 5 27 100 127 5.35E-05 (2.158318, 2.037455, 1, 1, 1, 2.165074, 1, 1, 1.836165, 1)
(7, 8, 8, 1, 8, 7, 2, 7, 6, 3) 5 23 88 111 5.31E-05 (2.158318, 2.037455, 1, 1, 1, 2.165074, 1, 1, 1.836165, 1)
(10, 2, 7, 3, 3, 9, 7, 3, 5, 4) 5 36 126 162 4.57E-05 (2.158323, 2.037454, 1, 1, 1, 2.165074, 1, 1, 1.836162, 1)
(7, 2, 2, 9, 2, 7, 6, 5, 3, 6) 5 33 116 149 4.30E-05 (2.158315, 2.037456, 1, 1, 1, 2.165076, 1, 1, 1.836164, 1)
(4, 8, 8, 6, 4, 3, 2, 4, 9, 7) 5 22 85 107 4.97E-05 (2.158322, 2.037454, 1, 1, 1, 2.165074, 1, 1, 1.836163, 1)
(1, 3, 4, 9, 9, 9, 1, 8, 1, 5) 5 34 124 158 6.25E-05 (2.158319, 2.037455, 1, 1, 1, 2.165073, 1, 1, 1.836166, 1)

Table 8: Behavior of the algorithm with respect to different choices of the matrixG.

outer iterations inner iterations projections evaluations ofF
G avg. max avg. max avg. max avg. max
I 5 5 75.2 80 444.5 464 519.7 543

10 I 5 5 29 46 130.8 196 159.9 242
100 I 5 5 27.4 43 103.4 160 130.8 202
200 I 5.1 6 47.6 183 182.1 726 229.6 909
500 I 5.7 6 81 155 337.9 693 418.9 848

Table 9: Behavior of the algorithm with respect to differentδk choice.

outer iterations inner iterations projections evaluations ofF
δk avg. max avg. max avg. max avg. max

10/k 5.2 6 156.3 7429 839.6 41486 995.8 48915
1/k 5 5 25.9 44 98.2 168 124.1 212
1/k2 5 5 27.2 46 104.0 173 131.2 219
1/k3 5 5 29.2 43 112.2 165 141.4 208
1/2k 5 5 28.0 44 105.8 164 133.8 207
1/10k 5 5 39.5 61 156.2 228 195.7 289
1/100k 5 5 60.4 82 249.7 312 310 394
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Table 10: Behavior of the algorithm with respect to differentεk choice.

outer iterations inner iterations projections evaluations ofF
εk avg. max avg. max avg. max avg. max

1/k2 151.1 167 49.2 72 461.9 537 511.1 596
1/k3 29.8 34 40.8 59 190.7 242 231.5 297
1/2k 15.6 16 41.3 67 166.3 246 207.7 313
1/10k 5 5 27.4 43 103.1 160 130.6 202
1/100k 3 3 39.5 47 172.6 197 212.1 244

Table 11: Behavior of the algorithm with respect to differentγ choice.

outer iterations inner iterations projections evaluations ofF
γ avg. max avg. max avg. max avg. max

0.1 5 5 27.2 43 103.3 158 130.5 200
0.2 5 5 31.1 46 140.8 200 172.0 244
0.3 5 5 28.9 44 171.6 235 200.5 279
0.4 5 5 25.4 36 153.8 209 179.2 242
0.5 5 5 29.6 39 231.8 314 261.4 350
0.6 5 5 36.6 42 343.9 427 380.5 467
0.7 5 5 40.9 51 574.2 710 615.1 759
0.8 5 5 63.0 74 1367.9 1619 1430.9 1693
0.9 5 5 112.3 130 5242.9 5975 5355.2 6105

Table 12: Behavior of the algorithm with respect to differentβ choice.

outer iterations inner iterations projections evaluations ofF
β avg. max avg. max avg. max avg. max

0.1 5 5 26.3 47 100.2 170 126.5 217
0.2 5 5 26.7 43 100.6 169 127.2 209
0.3 5 5 26.0 42 99.1 159 125.1 201
0.4 5 5 26.7 44 101.3 175 128.0 219
0.5 5 5 25.5 40 96.4 152 121.9 192
0.6 5 5 29.0 46 108.7 173 137.7 219
0.7 5 5 27.9 86 105.4 331 133.3 417
0.8 5 5 38.3 123 147.2 488 185.5 611
0.9 5 5 47.5 237 185.0 948 232.6 1185
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