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Abstract: in this paper we propose a descent method for solving variational inequality problems where the under-
lying operator is nonsmooth, locally Lipschitz, and monotone over a closed, convex feasible set. The idea is to
combine a descent method for variational inequality problems whose operators are nonsmooth, locally Lipschitz,
and strongly monotone, with the Tikonov-Browder regularization technique. Finally, humerical results are pre-
sented and discussed.
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1

Let X a nonempty, closed and convex subseiRsf
andF' : R™ — IR™ a given map. The variational
inequality (V1) problem is to find a point* € X such
that

Introduction

(F(z"),z—2") 20, VzeX, (P
where (-,-) denotes the inner product idR".
This problem is becoming an increasingly powerful
methodological tool for the study of many problems
arising in different fields such us economics, engi-
neering, mechanics and physics. Indeed, this problem
contains systems of nonlinear equations, optimization
problems and complementarity problems as special
cases, and it is also related to fixed point problems.
Several methods including projection and its variant
forms, auxiliary principle, decomposition and descent
methods have been developed for solving VIs. For
a complete discussion and history of the VI prob-
lem and associated solution methods we refer to [2]
and references therein. One of the most popular ap-
proaches to solve a VI consists in reformulating it as
an equivalent optimization problem. The underlying
idea is to use an artificial gap function which is a real
valued function whose global minima coincide with
the solutions of VI. Gap functions give rise to itera-
tive descent methods for their minimization and, as
a consequence, for the solution of the VI problem.
Most existing descent methods are shown to converge
when the underlying operatdf” of the VI is con-
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tinuously differentiable and satisfies suitable mono-
tonicity assumptions. Recently, in [4, 5] two descent
methods, with respect to gap functions, for solving
a VI with nonsmooth, locally Lipschitz and strongly
monotone operator have been proposed. Moreover,
in [6] the authors proposed a descent method which
is shown to be globally convergent when the opera-
tor F' is nonsmooth, locally Lipschitz and (not neces-
sarily strongly) monotone, and the feasible 3efis
bounded.

In this paper, we combine the descent method
proposed in [4] and the Tikhonov-Browder regu-
larization technique (see e.g. [1, 7]) to provide a
globally convergent algorithm for solving a VI with
nonsmooth, locally Lipschitz and (not necessarily
strongly) monotone operator, over a not necessarily
bounded feasible set. In section 2, we describe the
combined method and prove its global convergence.
In section 3, some numerical results are reported,
which provide useful considerations on the parameter
settings.

For the sake of convenience, we first recall some
definitions which will be used in our further consid-
erations. Given a symmetric positive definite ma-
trix G, we denote by|| - ||¢ the norm inIR" de-
fined by ||z|¢ V{x,Gx). In particular,|| - |
denotes the classical Euclidean norm induced by unit
matrix I. The projection of a point € IR™ onto the
closed convex seX with respect to|| - ||, denoted
by Ix (), is defined as the unique solution of the
problemrréi)r(l |y — z||q. We recall that the mapping

Y
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F is said to bemonotone orX if
(F(z) - F(y),z—y) 20, Va,y€eX,

andstrongly monotone oX with constant > 0 if

(F(z) = F(y),z—y) > 7lz—yl?

In the rest of the paper we utilize the following
assumptions.

Va,y e X.

(A1) The setX C IR™is nonempty, closed, and con-
Vex.

(A2) The mappingF’ : Y — IR"™ is locally Lipschitz
at each point of an open convex §étsuch that
X CY,andF is monotone ory.

2 A combined descent and regular-
ization method

In this section we present a combined descent and reg-
ularization approach to solve a VI with nonsmooth,
locally Lipschitz and (not necessarily strongly) mono-
tone operator, over a (not necessarily bounded) closed
and convex feasible set. The Tikhonov-Browder reg-
ularization method was originally proposed in [1, 7]
to overcome some ill-posedness related difficulties in
the resolution of VIs. Its basic idea is to substitute the
original VI with a sequence of “regularized” VIs, ob-
tained by replacing the operatérby F' + ¢ I where

¢ is a positive parameter. This regularization can be
generalized to a nonlinear regularization whétes
replaced by the mapping. defined as:

F.(x) = F(z) + e M(x),

wheree > 0 andM : R — IR" is locally Lipschitz
and strongly monotone dni. The regularization map-
ping F_ leads to the following auxiliary VI problem:
find a pointz? € X such that
(F.(z%),x —x%) >0, Vee X, (P.)
Note that, under assumptiofd1) — (A2), the map-
ping F. is locally Lipschitz continuous (generally
nonsmooth) and strongly monotone &h for each
e > 0, hence each auxiliary problemFhas a unique
solutionz?. Furthermore, if the sei of solutions of
the original problem (P) is nonempty, then it follows
from [2, Theorem 12.2.5] that the family of solutions
{z%} converges to a solution* of (P), ass tends to
zero, ande™ is uniquely characterized by the follow-

ing property:
(M(z*),z —2*) >0,
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In particular, if M is the identity map (i.e. we consider
the Tikhonov-Browder regularization), theri is the
solution of (P) with least Euclidean norm.

In order to solve each auxiliary problem.jPwe
can apply the descent method described in [4] which
is globally convergent to the solution of a VI with lo-
cally Lipschitz and strongly monotone operator. This
method is based on the minimization of a gap function
with an Armijo-type line search. To this end, we con-
sider the following gap function [3] associated to the
problem (R):

pe(z) = max [(Fe(z),z —y) — & |z — y[|3]

yeX
= (Fe(x),z —ye(x)) — 5 [l

where y.(z) = Ilx¢(z— (¢G)'Fe(z)) is the
unique maximizer. Since.(x) > 0 forallz € X
andp.(z*) = 0 if and only if z* is a solution of (B),
the problem (P) is equivalent to the following con-
strained optimization problem:

- y&‘(l‘)”%%
(2

(3)

Applying the descent method described in [4] for min-
imizing the gap functiorp., we can find an approxi-
mate solution of the problem (P However, in order

to obtain the convergence to a solution of the original
problem (P), we need to guarantee that the error for
the solution of (B) tends to zero, as tends to zero.
To this end, we can exploit the following result which
establishes an error bound for the solution of the aux-
iliary problem (R) with the help of the gap function

Pe-
Proposition 1. Let assumption§Al) — (A2) be ful-

filled and the map\/ be strongly monotone aoni with
constantr > 0. Then for eaclz > 0 we have:

min e (x).

pe(x) > e C ||z — 2|, VeeX, (4)
where
1 .
T — 5 Amax(G)  if 7> Amax(G),
C= )
S if 7 < Amax(G)
2)\max(G) T 7 ma 9

and Amax(G) is the maximum eigenvalue Gf

Proof. Itis well known that

||m|f’i}§<ff’ Gz) = Amax(G),

where Amax(G) is the maximum eigenvalue of.

Hence, for each € IR™ one has
213 = (2, G z) < Amax(G) [|z]]*. (5)
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Let us choose an arbitrary pointe X andy € (0, 1],
we setr(u) = pak + (1 — p) z. Taking into account
the strong monotonicity ab/ and the relation (5), we
obtain:

Y

(Fe(@),z —2(p) — 5 llo — 2(w)1Z

*

= p(Fe(z),z —a) = 5 p* o — 27l

pe(T)

v

p[(Fe(al) o — o) +e7|lo —2f[P] +

—£ p? o -z

Y

pet o —a|? - 5 p? o — aZllE

€ [MT - %MQ )\maX(G)] |z — 95:”2

v

Therefore

L 5 2
€ max T—=u\ G x—xr
e 2 9 H maX( ) H e H

= eCllz— 2|,
where

T — %)\max(G) |f T Z )\max(G),

2

m if T < )\max(G)

Now we state the algorithm for solving the orig-
inal problem (P), obtained combining the nonlin-

ear regularization with the descent method proposed

in [4] applied to the gap functiop. to approximate
the solution of (P).
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Algorithm

0. (Initial step)
Let G be a symmetric positive definite matrix.
Let {6;} and{e; } be sequences decreasing to O.
Lety € (0,1) and{fx} be a sequence such that €
(0,1) forall k € N.
Choose any’ € X and set = 1.

1. (Minimization ofp,, )

la. (Initialization)
Seti = 0 andz® = zF 1L

1b. (Stopping criterion)
If ., (2") < e 6k, then go to step 2.

lc. (Line search)
Computey’ = Ix,¢ (2' — (e, G) ' F., (27))
setd’ = y* — 2*
compute the smallest nonnegative integeisuch
that:

Qe (2 ™ dY) — e, (2') < —Bey™ ||d|I.

1d. (Update of?)
Setzt! = 2 4™ d', i = i+ 1, and return to step
1b.

2. (Update of:*)
Setz* = 2%, k = k + 1, and return to step 1.

Theorem 2. Let assume that assumptiofdl) —
(A2) are fulfilled and that (P) has a solution. Let the
mapM be locally Lipschitz and strongly monotone on
Y with constantr > 0 andg;, < 7¢; forall £ € N.
Then the sequencir”} generated by the algorithm
converges to the solutiori* of (P) such that (1) holds.

Proof. For each iteratiork, the mappingF;, is lo-
cally Lipschitz and strongly monotone af, that is it
satisfies the convergence conditions for the algorithm
described in [4], and thugim ., (2?) = 0. There-
1—00

fore, for each outer iteratioh, the stopping criterion

at step 1b is verified after a finite number of inner iter-
ationsi, and hence the sequenge®} is well defined.

Moreover, from Proposition 1, we have:

e (2") 2 e, Clla* —aZ |’ VEEN, (6)
where
T — )\ma;(G) |f T Z )\max(G),
C = 9
-
_ if 7 <\ G).
9 /\max(G) T max( )
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¢From (6) and the stopping criterion 1b, we obtain:

k
k * 112 Qng(IL’ ) Ek 5k 5k
_ < < == VkeN.
”x xsk” T g C T g C C
Since lim §; = 0, one has
k—o0
Jim [|z* — a7, || =0 (7)

Furthermore, on account of [2, Theorem 12.2.5] it fol-
lows that
lim z =%, (8)
k—o0

wherez* is the solution of (P) such that (1) holds.
Finally, since we have:

k k
[ = 2*| < 2% — a2 [ + [l2Z, — 27

from (7) and (8) we conclude thdim z* = z*. [

k—o0
Remark 3. Observe that, instead of using the descent
method proposed in [4], based on an Armijo-type line
search, it could be analogously considered the combi-
nation of the descent method proposed in [5], based
on an exact line search rule, with the nonlinear regu-
larization.

3 Numerical experiments

In this section we show some numerical results for
the algorithm proposed in Section 2 on a couple of
examples and we provide some comments about the
sensitivity of the parameters to the computational ef-
fort. The algorithm has been implemented in MAT-
LAB 7.0.4 and the regularization mdd has been set
as the identity map. As stopping criterion of the al-
gorithm we used the natural residugd: — Iy ;(z —
F(x))|ls < 10~%. In both the test problems we chose
the feasible sek = [1, +o0) x - - - X [1,+00) and the
mapF : IR™" — IR" as

F(z)=Az+ H(z), 9)

where A is a random skew-symmetric matrix and
H : R™ — IR"™ is such that each compone#t is

a locally Lipschitz nondecreasing function of the only
variablexz;, foralli = 1,...,n. Under these condi-
tions it is easy to check thdt is a locally Lipschitz
and monotone (but not strongly monotone) map on
IR™. We set the sequenck = (¢, wheres € (0,1).
Example 3.1Consider the VI problem where the map
F has the form (9) with

06 -2 -5 2

-6 0 -5 -1 —4

A= 25 0 0 1
51 0 0 1

-2 4 -1 -1 0
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and H;(z) = max{z?,9} foralli = 1,...,5. Pre-
liminary computational results show that settiig=
1001, 6 = 1/k, e, = 1/10F, v = 0.1, and By =
0.5¢, provides a good parameter choice. We ap-
plied the algorithm, with such choice of parameters, to
solve the considered example starting from 20 points
randomly chosen in the bdx, 10] x - - - x [1, 10]. Nu-
merical results are summarized in Table 1 containing
seven columns: starting point, number of outer iter-
ations, number of inner iterations, number of projec-
tions, number of evaluations of the operator, natural
residual atz, and approximate solution found

Table 1 shows that the algorithm is quite robust
with respect to the starting point. In fact, besides con-
verging to the same solution, as proved in Theorem 2,
the number of outer iterations is always equal to 5 and
the number of inner iterations is always between 10
and 16. The number of projections and of evaluations
is stable as well, always between 51 and 64, and be-
tween 61 and 80, respectively.

Computational tests have been then carried out to
investigate the behavior of the algorithm with differ-
ent parameter values. First the behavior with respect
to different choices of the matri& is shown in Ta-
ble 2. The other parameters are set as in Table 1:
6p = 1/k, e, = 1/10%, v = 0.1, and By = 0.5 .
Each different choice of the matrt¥ has been tested
over 100 starting points randomly chosen in the box
1,10] x --- x [1,10]. In Table 2, for each choice
of GG, the average and maximum number of outer it-
erations, inner iterations, projections, and evaluations
of F' are given. Computational results show that the
best behavior is provided by settiig = 100 7. In
fact, this choice provides the minimum average num-
ber of inner iterations, projections, and evaluations of
F. Besides, even the maximum number of projections
(and evaluations of’) is smaller than average number
provided by other choices ¢f. However, the number
of projections and evaluations at most double even for
the worst choices off. Thus, such parameter seems
less significant than others.

In Table 3 results with different values of the se-
guence);, are shown, obtained keeping values of other
parameters as in Table 1. For each choicg, pthe av-
erage and maximum number of outer iterations, inner
iterations, projections, and evaluationBfare given.

In Table 4 results with different values of the sequence
€ are given. Results are obtained keeping values of
other parameters as in Table 1. For each choicg of
the average and maximum number of outer iterations,
inner iterations, projections, and evaluationfofare
given.

From the tables the best choicedfseems to be
1/k, while the best choice of; is 1/10%. Results
show that the choice af;, is more significant than the

—
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choice ofd,. In fact, choosing a&; value different ~ = 0.1, and 3, = 0.5¢,. Each different choice of
from the best one causes an increase in the number of the matrixG has been tested over 100 starting points
projections and evaluations &f, but they at mostdou- ~ randomly chosen in the bdx, 10] x --- x [1,10]. In

ble even for the worst choice. On the other hand, a bad Table 8, for each choice @, the average and maxi-
choice ofz;, may cause an increase of the number of mum number of outer iterations, inner iterations, pro-
projections and evaluations up to 10 times compared jections, and evaluations @f are given.

to the choices;, = 1/10*. Results suggest a general In Tables 9 and 10 results for different choices of

rule for choosing), andey: they suggest to choose a  sequences, ande, are given, respectively, keeping

“quite fast” decreasing sequence fqr(although “not fixed the other parameters.

too fast”), while they suggest to choose a “slow” de- Finally, in Tables 11 and 12 results for different

creasing sequence fof. choices of sequencesandj are given, respectively,
In Table 5 results with different values of param-  keeping fixed the other parameters.

eter~ (from 0.1 to 0.9) are shown. Results are ob- As pointed out by the results on the first example,

tained keeping values of other parameters as in Ta- ¢, and~y seem to play a more significant role th@n
ble 1. For each choice of, the average and maxi-  §;, andg.

mum number of outer iterations, inner iterations, pro-

jections, and evaluation of' are given. According )

to the results the algorithm seems to perform well for 4 Conclusions

0.1 <~ < 0.2, while the number of needed iterations,

projections, and evaluations increasesyor 0.3. We proposed an algorithm which combines a well
Finally, in Table 6 we show results with differ-  known descent method and the Tikhonov-Browder
ent values of the sequengg. We choose3, = B¢y, regularization technique and provides global conver-

whereg is between 0.1 and 0.9. Results are obtained gence in solving a VI with nonsmooth, locally Lip-

keeping values of other parameters as in Table 1. The schitz and (not necessarily strongly) monotone oper-

choice of3 seems to be less important than the choice ator, on a (not necessarily bounded) closed and con-

of ~: in fact the average number of projections is be- vex feasible set. We showed some computational ex-

tween 54 and 57 for any chosen value, and the average periments which provide insight on the algorithm be-

number of needed evaluations is between 67 and 70. havior with respect to the parameters choice. Further,
For the first considered example the most impor- results give useful suggestions for the parameters set-

tant role seems to be played byand~, while G, é, tings.

andg seem to be less important. Althougldoes not

influence asy, its value has a quite significant impor-
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Table 1: Numerical results for Example 3.1 with= 1001, 6 = 1/k, e = 1/10¥, 4 = 0.1, andBy = 0.5 ¢4,.

starting outer | inner | proj. | eval. | natural approximate
point iter. | iter. of F | residual solution
(10,2,2,7,1) 5 11 | 53 | 64 | 6.55E-05| (1,3.999992,1,1,1)
(8,9,8,7,4) 5 15 61 76 | 6.48E-05| (1,3.999992,1,1,1)
(4,7,6,3,8) 5 15 61 76 | 6.48E-05| (1,3.999992,1,1,1)
(4,3,10,3,8) 5 15 | 61 | 76 | 6.48E-05| (1,3.999992,1,1,1)
(6,3,3,5,8) 5 14 59 73 | 6.47E-05| (1,3.999992,1,1,1)
(2,10,4,2,9) 5 11 | 53 | 64 | 6.49E-05| (1,3.999992,1,1,1)
(3,7,10,4,5) 5 15 61 76 | 6.48E-05| (1,3.999992,1,1,1)
(4,4,10,10,6) | 5 15 | 61 | 76 | 6.44E-05| (1,3.999992, 1,1,1)
(10,9,1,6,2) 5 12 | 55 | 67 | 6.75E-05| (1,3.999992,1,1,1)
(2,9,10,3,9) 5 15 61 76 | 6.48E-05| (1,3.999992,1,1,1)
(9,8,7,3,9) 5 15 | 61 | 76 | 6.48E-05| (1,3.999992,1,1,1)
(10,7,7,7,7) 5 16 | 64 | 80 | 6.48E-05| (1,3.999992,1,1,1)
(6,5,3,4,2) 5 12 | 55 | 67 | 6.53E-05| (1,3.999992, 1,171)
(5,1,6,8,6) 5 11 53 64 | 6.61E-05| (1,3.999992,1,1,1)
(1,10, 10,8,6) 5 12 55 | 67 | 6.74E-05| (1,3.999992,1,1,1)
(3,5,8,3,8) 5 15 61 76 | 6.48E-05| (1,3.999992,1,1,1)
(5,2,5,3,9) 5 14 | 59 | 73 | 6.44E-05| (1,3.999992,1,1,1)
(2,9,7,3,9) 5 13 | 57 | 70 | 6.66E-05| (1,3.999992, 1,1,1)
(9,7,2,3,9) 5 15 61 76 | 6.48E-05| (1,3.999992,1,1,1)
(5,6,2,6,2) 5 10 51 61 | 6.75E-05| (1,3.999992,1,1,1)

Table 2: Behavior of the algorithm with respect to different choices of the m@trix

outer iterations| inner iterations| projections | evaluations of’
G | avg. max| avg. max| avg. max| avg. max
I 5 5| 20.1 21| 119.2 123| 139.3 144
107 5 5| 16.9 18| 83.6 87| 100.5 105
1001 5 5| 133 18| 57.2 70| 70.5 88
2001 5 51226 23| 94.6 98| 117.2 121
5001 5 51 35.8 46| 112.4 146| 148.2 192

Table 3: Behavior of the algorithm with respect to differénthoice.

outer iterations| inner iterations| projections | evaluations off’

O avg. max| avg. max| avg. max| avg. max

10/k 5.9 6| 12.7 18| 62.8 79| 754 97

1/k 5 51126 17| 55.1 67| 67.7 84

1/k? 5 51129 18| 56.1 70| 69.0 88

1/k3 5 5114.9 19| 67.0 77| 81.8 96

1/2F 5 51133 17| 58.1 67| 71.4 84

1/10* 5 5| 214 25| 94.8 104 116.3 129
1/100% 5 51305 35| 139.1 151| 169.6 186

ISSN: 1109-2769 Issue 1, Volume 7, January 2008

62



WSEAS TRANSACTIONS on MATHEMATICS

ISSN: 1109-2769

Barbara Panicucci, Massimo Pappalardo, Mauro Passacantando

Table 4: Behavior of the algorithm with respect to differepthoice.

outer iterations| inner iterations| projections | evaluations off”
Ek avg. max| avg. max| avg. max| avg. max
1/k* | 214.8 218| 44.7 53| 587.5 623| 632.1 674
1/k3 39.2 40| 36.7 441 196.9 228| 233.6 272
1/2% 141 17| 21.7 28| 90.0 120| 111.7 148
1/10% 5 51129 18| 56.0 70| 69.0 88
1/100% 3 3| 147 16| 69.8 76| 845 92

Table 5: Behavior of the algorithm with respect to differerghoice.

outer iterations| inner iterations|  projections | evaluations off’
~ | avg. max| avg. max avg. max avg. max
0.1 5 5| 13.3 19 56.9 73 70.1 92
0.2 5 6| 16.1 22 76.1 111 923 133
0.3 5 5 58 66| 397.8 459| 455.8 525
0.4 5 5| 12.8 15 81.3 90 924.1 105
05| 54 6| 86.8 229| 867.5 961| 954.3 1190
0.6 5 6 21 34| 186.2 444| 207.2 478
0.7 5 5| 529 66| 604.3 706 657.1 772
0.8 5 5| 65.3 74| 1619.3  1806| 1684.7 1880
09| 5.2 6| 134.6 202| 7950.6 13404 8085.3 13606

Table 6: Behavior of the algorithm with respect to differgnthoice.

outer iterations| inner iterations| projections | evaluations o'
6 | avg. max| avg. max| avg. max| avg. max
0.1 5 51129 18| 56.1 70| 68.9 88
0.2 5 6| 12.9 17| 56.2 67| 69.1 84
0.3 5 5| 129 18| 56.2 70| 69.1 88
0.4 5 5| 13.1 18| 56.5 70| 69.6 88
0.5 5 51123 16| 54.5 64| 66.8 80
0.6 5 5| 124 16| 54.6 64| 67.0 80
0.7 5 51131 18| 56.7 70| 69.8 88
0.8 5 5| 12.8 18| 55.4 70| 68.2 88
0.9 5 51128 18| 55.9 70| 68.6 88
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Table 7: Numerical results for Example 3.2 with= 1001, 6, = 1/k, e, = 1/10¥, v = 0.1, andBj, = 0.5 ;.

starting outer | inner | proj. | eval. natural approximate
point iter. iter. of F residual solution
(2,8,1,8,3,2,3,3,8,9) 5 41| 159 | 200 | 3.01E-05| (2.158317,2.037456,1,1,1,2.165077,1,1,1.836163, 1)
(10,3,2,7,9,2,4,7,4,7) 5 34 | 124 | 158 | 3.07E-05| (2.158317,2.037456,1,1,1,2.165077,1,1,1.836163,1)
(6,2,2,2,7,5,7,1,8,7) 5 24| 92| 116 | 6.00E-05| (2.158319,2.037455,1,1,1,2.165073,1,1,1.836165, 1)
(5,6,9,7,7,5,8,6,5,7) 5 23 88 | 111 | 5.31E-05| (2.158318,2.037455,1,1,1,2.165074,1,1,1.836165, 1)
(3,9,4,2,3,5,3,4,6,6) 5 40 | 140 | 180 | 6.43E-05| (2.158320,2.037454,1,1,1,2.165073,1,1,1.836165, 1)
(3,3,8,4,3,2,5,9,8,4) 5 42 | 145| 187 | 5.57E-05| (2.158319,2.037455,1,1,1,2.165074,1,1,1.836164, 1)
(3,9,6,3,1,1,3,6,10,8) 5 19 76 95 | 4.60E-05| (2.158322,2.037454,1,1,1,2.165074,1,1,1.836162, 1)
(7,3,9,9,10,5,5,8,2,2) 5 22 83 | 105 | 3.72E-05| (2.158318,2.037456,1,1,1,2.165078,1,1,1.836158, 1)
(2,5,5,8,6,9,4,3,7,8) 5 28 | 107 | 135 | 3.13E-05| (2.158317,2.037456,1,1,1,2.165077,1,1,1.836164, 1)
(9,2,3,3,8,2,2,3,1,4) 5 32| 124 | 156 | 3.02E-05| (2.158317,2.037456,1,1,1,2.165077,1,1,1.836163, 1)
(2,2,4,6,4,2,5,10,10,6) 5 24| 91| 115| 3.03E-05| (2.158317,2.037456,1,1,1,2.165077,1,1,1.836163,1)
(4,8,5,9,3,2,4,5,5,8) 5 24| 88| 112 | 5.59E-05| (2.158319,2.037455,1,1,1,2.165074,1,1,1.836164, 1)
(4,2,2,6,2,10,6,9,5,7) 5 32| 118 | 150 | 3.18E-05| (2.158318,2.037456,1,1,1,2.165077,1,1,1.836163, 1)
(8,7,5,8,2,6,5,4,2,7) 5 25| 98| 123 | 2.99E-05| (2.158317,2.037456,1,1,1,2.165077,1,1,1.836163,1)
(8,8,6,2,1,4,5,4,3,4) 5 27 | 100 | 127 | 5.35E-05| (2.158318,2.037455,1,1,1,2.165074,1,1,1.836165, 1)
(7,8,8,1,8,7,2,7,6,3) 5 23 88 | 111 | 5.31E-05| (2.158318,2.037455,1,1,1,2.165074,1,1,1.836165, 1)
(10,2,7,3,3,9,7,3,5,4) 5 36| 126 | 162 | 4.57E-05| (2.158323,2.037454,1,1,1,2.165074,1,1,1.836162,1)
(7,2,2,9,2,7,6,5,3,6) 5 33| 116 | 149 | 4.30E-05| (2.158315,2.037456,1,1,1,2.165076,1,1,1.836164, 1)
(4,8,8,6,4,3,2,4,9,7) 5 22 85 | 107 | 4.97E-05| (2.158322,2.037454,1,1,1,2.165074,1,1,1.836163, 1)
(1,3,4,9,9,9,1,8,1,5) 5 34 | 124 | 158 | 6.25E-05| (2.158319,2.037455,1,1,1,2.165073,1,1,1.836166, 1)

Table 8: Behavior of the algorithm with respect to different choices of the m@trix

outer iterations| inner iterations| projections | evaluations off’
G avg. max| avg. max| avg. max| avg. max
1 5 51 75.2 80| 4445 464| 519.7 543
1017 5 5| 29 46| 130.8 196| 159.9 242
1001 5 51274 43| 103.4 160| 130.8 202
2007 | 51 6| 47.6 183| 182.1 726| 229.6 909
5001 | 5.7 6| 81 155| 337.9 693| 418.9 848

Table 9: Behavior of the algorithm with respect to differépthoice.

outer iterations| inner iterations| projections | evaluations of”

O avg. max| avg. max| avg. max| avg. max

10/k 5.2 6| 156.3  7429| 839.6 41486| 995.8 48915
1/k 5 5| 25.9 44| 98.2 168| 124.1 212

1/k2 5 5| 27.2 46| 104.0 173| 131.2 219
1/k3 5 5| 29.2 43| 112.2 165| 141.4 208
1/2k 5 5| 28.0 441 105.8 164| 133.8 207
1/10% 5 5| 395 61| 156.2 228| 195.7 289
1/100% 5 5| 60.4 82| 249.7 312] 310 394
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Table 10: Behavior of the algorithm with respect to differgpthoice.

outer iterations| inner iterations| projections | evaluations off”

Ek avg. max| avg. max| avg. max| avg. max

1/k* | 151.1 167| 49.2 72| 4619 537| 511.1 596
1/k3 29.8 34| 40.8 59| 190.7 242| 231.5 297
1/2% 15.6 16| 41.3 67| 166.3 246| 207.7 313
1/10% 5 5| 274 43| 103.1 160| 130.6 202
1/100% 3 31| 395 47| 172.6 197| 212.1 244

Table 11: Behavior of the algorithm with respect to differerahoice.

outer iterations| inner iterations| projections | evaluations of”
~ | avg. max| avg. max avg. max avg. max
0.1 5 5| 27.2 43| 103.3 158 130.5 200
0.2 5 5| 31.1 46| 140.8 200, 172.0 244
0.3 5 5| 289 44| 171.6 235/ 200.5 279
0.4 5 5| 254 36| 153.8 209| 179.2 242
0.5 5 5| 29.6 39| 2318 314| 2614 350
0.6 5 5| 36.6 42| 343.9 427| 3805 467
0.7 5 5| 40.9 51| 574.2 710/ 615.1 759
0.8 5 5| 63.0 74| 1367.9 1619 1430.9 1693
0.9 5 5| 112.3 130| 5242.9 5975 5355.2 6105

Table 12: Behavior of the algorithm with respect to differénthoice.

outer iterations| inner iterations| projections | evaluations of'
8 | avg. max| avg. max| avg. max| avg. max
0.1 5 5126.3 47| 100.2 170| 126.5 217
0.2 5 51 26.7 43| 100.6 169| 127.2 209
0.3 5 5| 26.0 42| 99.1 159| 125.1 201
0.4 5 5| 26.7 44| 101.3 175| 128.0 219
0.5 5 51255 40| 96.4 152| 1219 192
0.6 5 5129.0 46| 108.7 173| 137.7 219
0.7 5 5279 86| 105.4 331 133.3 417
0.8 5 5| 383 123| 147.2  488| 185.5 611
0.9 5 51475 237| 185.0 948| 232.6 1185
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