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Abstract: Section 1 underline the limitations of standard multi-variable variational calculus and the sense of m
time. Section 1 formulates the controllability problem for a multiple integral functional or for a path independe
curvilinear integral subject to a multitime evolution of flow type. Section 2 describes a two-time optimal econom
growth modelled by Euler-Lagrange PDEs associated to a double integral functional or to a path indepenc
curvilinear integral in two dimensions. Section 3 motivates the optimal economic growth by two-time maximu
principles. Section 4 studies the two-time optimal economic growth with bang-bang policy based on a curviline

integral action.
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1 Multitime optimal control theory

The interval[0,7] = Qo 7, in R™ with product or-
der, is calledplanning horizon Geometrically, it is
a hyperparallelepiped fixed by the diagonal opposite
points0 and7'. Consider a dynamic system evolving
over multi-timet = (t',...,t™) € Qo r and an agent
(planner) who has the task to control the evolution of
m-sheets. We assunié = (T,...,7™) has finite
norm, but sometimes we can relax this assumption.
The dynamic behaviour of the system is described by
the state variables = (z!,...,2") : Qor — R",
x(t) € SV (state variables The planner knows the
initial stateof the systemx(0) = x( and thefinal state
of the system:(T") = 2 (boundary conditions

We accept that the state variables are affected
through a set of control variables= (ci,...,¢q) :
Qo — RY, ¢(t) € CV (control variableg. The
planner knows the relationship between the actions
taken and evolution of the states, which are summa-
rized by a "law of evolution” of the states, a (non-
autonomous) PDEs system of the type

ox’
ote

(t) = Xa(a(t),c(t), 1) (PDE)

1=1,....n; a=1,...,m,

defined by the vector fields

Xo: SV X CV x Qor — R"

*
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satisfying the completmtegrability conditions

 0Xadca 0Xpdc, 0Xo 0Xg
[Xa, X = dcqg O Dc, Ot OtB  ote”’
a=1,..,q.

Fixing the control variables at a given multi-instant
the evolution of the state variables at poirdare ob-
tained as solutions of the previous (PDE). Also given
the value of the state at pointthe future values are
determined.

Controllability problem : We are allowed to act
on them-sheets of the (PDE) system by means of a
suitable control (included in the right hand side, in the
boundary conditions, etc). Then, given a multitime
t € Qo 7, and initial and final states, we have to find a
control such that the solution matches both the initial
state at multi-time = 0 and the final one at multi-
timet ="T.

A way to choose properly the controls is to intro-
duce:

1) either amultiple integral functional

(e(1))

L(z(t), c(t), t)dt*...dt™,

Qo1

2) or apath independent objective functional

Je() = [ Lota(t),e(t), tydt’,

Lo,

wherel', 7 is aC! path joining the diagonal opposite
points0 andT.
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Each functional summarizethe values of any
given sheet of states and control on extremal points
0,T. The functionL (or the 1-formLg) is calledin-
stantaneous return or utility function (1-form)

The general control problem faced by the planner
is

max I(c(-)) or maxJ(c(+))
subject to

ox’ ;
o (6) = XA (1), (1), 1)

x(0) =z, z(T) = zp,x(t) € SV, c(t) € CV.

This kind of research started with [11], as appli-
cation of the theory from [6]-[9] to practical problems
suggested by [3], [4]. On the other hand, the theory
in [6]-[9], [11]-[12] follows the point of view in [1].
This theory can be extended for the PDEs in [4], [5],
[10].

(PDE)

2 Two-time economic

growth

The theory of optimal economic growth starts with the
following question: how much should be consumed
and how much should be invested for future consump-
tion? To formulate an answer, we accept that the evo-
lution is 2-dimensional. That is why we introduce the
following variables and functions:

t = (t4,t?) = 2 - moment of the economical
effect;

optimal

K(t) = capital;
L(t) = labour force; with partial growing at a
constant exogenous rate,, i.e., @mL = Nas

a = 1,2 or equivalentlyl, = cie™!";

Y, = F,(K,L) = homogeneous commodities
(production functions).

Each commodityY, (t) = F,(K(t),L(t)) de-
composes as sum of consumed paft), partial ve-

locity of capital g)fi(t) (further capital) and depreci-
ation capitalu, K (t), wherey,, is a constant rate:

K
Yo(t) = calt) + ata( )+ e K(t), a=1,2.
The production function¥,, = F,(K, L), as-

sumed homogeneous of degree one, could be written

K .
Y, = LF, (L’1> = Lfa(k), k = —. Putting

Yo = —, it follows y, = f.(k), where each func-

tion f, (k) is a strictly concave monotonically increas-
ing function of k, with slope f/, (k) decreasing from
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limy o f/,(k) = oo to limy_~ f4 (k) = 0. In this
way we obtain a two-time evolution

ok

at“( ) = fa(k(t)) = (tatna)k(t)—calt), a=1,2.

Also we accept that this PDEs system satisfies the
complete integrability conditions.

Let us apply the multi-time Euler-Lagrange the-
ory: let D = (D, D2) be a constant positive rate
vector of future discount; leh, = puo, + no and

ga(k> = fa(k) — Aok

2.1 Case of double integral functional

Let u(c) be the utility function which obeys the law
of diminishing marginal utilityd>u(c) < 0 (concave

function) > 0. Maximize the functional

dcy

T(e()) /Q e DN y(e(t))dt e, ¢ = (c1, ),

subject to

calt) = ga(k(1) ~ (1)

k(0) = ko, k(T) = kr, 0= (0,0), T = (T*,T?).

Eliminatingc, (¢), we find the Lagrangian
L(k(t), ky (1), 1) = e P30y

(c(t))
PN <gl(k(t)) _ Ok

o8 (1), 020k (1)) ~ O

o2

).

The extremals are solutions of theulti-time Euler-
Lagrange equation

0L

L 9 oL
ok -

a6 ok,
It follows the PDEs system

Pu_Oca
Ocqdcy OtY

ou  dg,

8c7(dk: by =0

8 1) = galk(1) — calt).

First we obtain arequilibrium point(k*, ¢*) at
ok dey,
hich@ 0, 0 = 0. It follows
ou ,dg, B B
ge. Cap = D) =0 ga(k(t) — calt) =0,

which must producé* andc}, = g, (k*).
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Second, aranalytical solutionis possible when
fa(k) and u(c) are explicitly given. For example,
fa(k) = agk,i.e.,g9a(k) = (aq — A\a)k, @andu(c) =

c2 + c3. Then the previous PDEs system is reduced to

Ocy  Oc
aiti‘F@it;—}—Cl(al—)\1—D1)+02(a2_)\2_D2) =0
ok
(1) = (a0 = M)k = calt).

A particular solution of the first PDE is

c1(t) = ep(t) = e~ (@ara=Da)t?

In the complete integrability conditions of the second
PDEs,

2a1 — 2A1 — 2a9 4+ 29 + Dy — Dy = 0,

we obtain the corresponding solutié(¥).

2.2 Case of path independent integral
functional

Let ug(c) be the utility 1-form whose elements obey
the law of diminishing marginal utilityl*usz(c) < 0

) Cy
tional

subject to

ca(t) = ga(k(t)) — @(t%
k(0) = ko, k(T) = kr, 0= (0,0), T = (T",T?).
Eliminatingc,(t), we find the Lagrangian 1-form

Lo(k(t), by (), £) = e~ PP g (c(t)) =
ok
- 8t2(t)>

_D. ok
= P2y (k1) — 1 (0. 92(k(E)

that must satisfy the complete integrability conditions.
The extremals are solutions of tineulti-time Euler-
Lagrange equations

—Dyt*

OLg
ok

_ 0oLy _
o ok,

It follows the PDEs system

Pug Oca | Oug (3%
JcyOcq Ot7  Ocy \ Ok
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ok
5o (1) = gal(k(t)) = calt).
First we obtain arequilibrium point (k*, c¢*) at
ok dey
which .= =0, 5.5 = 0. Itfollows
Ouﬁ 89,}, >
— _— D = o k t — Cq t =0,
807(6k gl ag, ga(k(t)) — ca(t) =0

which must producé™ andc}, = g, (k*).

Second, aranalytical solutionis possible when
fa(k) andug(c) are explicitly given. For example,
fa(k) = ank,i.e.,94(k) = (aq — Aok, and

c}j_”
if 0 1
ug(c) =< 1—v v>0,v#
Incg if v=1.

3 Reformulation as an optimal

control
Let us formulate the optimal growth as a multi-time
optimal control model (see [2], [6]-[9]) starting with

Ao = na + pe (constant population growth rates +
constant depreciation rates).

3.1 Case of double integral functional

For that we choose a rate of per capita consumption
c(t) = (ci(t),c2(t)) which satisfies the multi-time
growth law

ok

(1) = alk(t) -

and which minimizes the functional

I(e() = /Q e~ D3 u(e(t))di de?.

Aak(t) —co(t), a=1,2

The nonautonomous control Hamiltonian is
H = e P (u(e) + ¢*(falk) — Aak — ca))

where theco-states variablep®(t) = ¢%(t)e”
mean the discounted values of additional investment.
For an interior maximum with respect to the conitol

DAtA

we must haveaﬁ =0,ie., ou = p7. Theadjoint
Cy Ocy
equation
op® 3H
@ - 8]{5 (fa - a)
and transversality condition
p ()Nt () + p*(0)n’(1)]pg, » = 0
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are equialent to

9% _

ot (f(lx —Aa — Da)qay

g (' (t) + () (t)]gg, , = 0-

These PDEs produce the same information as those in

the previous paragraph.

3.2 Case of path independent integral
functional

For that we choose a rate of per capita consumption
c(t) (c1(t), c2(t)) which satisfies the multi-time
growth law

ok

7(75) = fa(k(t)) - )‘ak(t) - Ca(t)7

oo a=1,2

and which minimizes the functional
J(e()) = / DA (e(t))ditP
Lo
The nonautonomous control 1-form is
So = e P (ug(0) + q(falk) — Aok — ca))

where theco-states variablep(t) = q(t)e‘DWA
means the discounted value of additional investment.
For an interior maximum with respect to the control

we must havea& =0,ie., Oua = pé. Theadjoint
Jc, Ocy
equation
dp  0Sa , B

is equivalent to

9¢

ot = _(f& — Ao — Da)g, ¢(T) =0.

Of course, here we need the complete integrability
conditions. These PDEs produce the same informa-
tion as those in the previous paragraph.

4 Optimal economic growth with
bang-bang policy

In this section we adapt the multi-time controllabil-
ity, observability and bang-bang principle [8] to the
context of this paper. For that, let us accept that
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ug(c) = cg, a® = const,c,(t) = per capita consump-
tions,||T'|| = oo and that we use the path independent
curvilinear integral. Then
/ e_D*tACQ(t)dtﬂ

1—‘0,00

maximize J(c(-))

subject to

ok
%(t) = fa(k(t)) - Aak(t) - Ca(t)>
wherek = capital, and:(0) = ko, D4, A\, are positive
constants.
The nonautonomous control 1-form is

So = e 22 e 4 p(falk) — Aok — ca)

or, with the definitionp(t) = q(t)e"Prt", we can
write

S, = efD*tA(l —q)ca + eiDAtAq(foé(k:) — Aak).

We remark that the control tensor is linear in the con-
trol variablesc,(t). Also we acceptt, < ¢ <
fa(k), i.e., ¢y is the minimum level andf, (k) is
the maximum level. The switching functions, =
e—DAtA(l — q)cq Shows that the optimal policy is to
choose

Ea(: 0) >1
=1 0<cq < falk) if ¢g=4¢ =1
fa(k') <1
The dynamic state and adjoint systems are
ok .
a? - fa(k) - Aak - Ca(Q)v
dq B ¢l
— = —Xa—D
ata q (fa )\Oé O()7

which are solved after substituting the optimal control
" = (], ¢3).

Cases:

1) The first bang-bang policy should be used
wheng < 1, ¢}, = fa(k) = camax- The above dy-
namic system becomes

ok 3}
g = Nk g = Ot Da = falk)a

ot
In this way the capital stock decreases at 2-rate
()\1, )\2), i.e.,k(t) = ce Pat®,

2) The second bang-bang policy should be used
wheng > 1, ¢} = ¢4 = camin = 0. The multi-time
dynamic system is

= Jalk) ok, 9L = (ot Do~ fA(R))a
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3) A singularcontrol would be the appropriate
policyif g =1, 0, = 0.
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