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Abstract: Our theory of determining a tensor by boundary energy of a multitime first order PDE system
is similar to those developed by Sharafutdinov. Section 1 refines the theory of potential maps determined
by a first order multitime PDE system and a vertical metric. Section 2 defines the boundary energy
of a first order PDE system and proves that the problem of determining a vertical metric from the
boundary energy of a multitime PDE system cannot have a unique solution. Section 3 linearizes the
above mentioned problem and defines the notion of multi-ray transform.
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1 Potential maps

Let (M, g) be a compact Riemannian manifold
of dimension n with the boundary OM, x = (z*)
be local coordinates on (M, g) and (Gj,;) (G;k)
be the Christoffel symbols of (M, g) of the first
and second type respectively.

Let (T,h) be an oriented compact Rieman-
nian manifold of dimension p, with the bound-
ary 0T, t = (t) local coordinates on (T, h) and
(Hpy,a), (HE,) its Christoffel symbols of the first
type and second type, respectively.

Consider ¢:T — M, ¢(t) = =z, t =
(t,...,tP), = = (z%,...,2"), a C®-map. We

. . . [ Ox
want to approximate the Jacobian matrix e

by a matrix of gradients (X7 (¢,)) associated to
a O - distinguished tensor field X, (n gradients)
on T x M, in the sense of least squares. For that
we build the PDE system

ox’ ;
ote (t) = Xa(t, .CC(t)), 'r’é)T =X,

and the least squares Lagrangian
i i Lo i
L(t,z'(t), za(t)) = 5h O (t)gij (x (1)) [ ()
— X4tz ())[eh() — X3t x(1)Vh,
o’
ote’
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where z!, =

and h = det(hqp).
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The Euler-Lagrange prolongation of the PDE
system describes the potential map in the multi-
time geometric dynamics.

The geometric dynamics (ODEs or PDEs) is
a Lagrangian dynamics (ODEs or PDEs) deter-
mined by a least squares Lagrangian attached to
a first order (single-time or multitime) ODE or
PDE system and a pair of Riemannian metrics,
one in the source space and other in the target
space [1], [2], [4-13].

Theorem 1.1 The extremals of L are de-
scribed by the PDEs

hals = g h*P g (Vo XE X, + hPE, o]

+h*PDg X,
x’(’)T =X,
where
o . 9%t
58 %a = Tag = W_Haﬂm +Ghhaf, (1)
= VjX’ q 191;Vq X (2)
8X 6Xi
7 7 i Y 7
VX, = X +G DﬁX e HaﬁXW

3)
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Proof. If we write L = Evh, where E is
the energy density, then the Euler-Lagrange equa-
tions of extremals

oL 9 0L
Ok

ot dxk
can be written

o _ 0 OF .. OF

ot oxk
We compute

oF 1haﬁ8gw Z haﬁagw zX]

oxk — 2" Oak dak
Ly giz’g XiX5 — BB gyt ‘ZXJ
+h*P g %X;jxf

gfk WP gyjaty — hoP g X7,
—h“ 591@ afjgiﬁ + 8;?9ij%
+hf %g’jj 2, X0+ h0g,,

0x%  0x) .
by 7 .
gto " gzl e
We replace into (4) taking into account the
formulas (1), (3) and

9y
aSCZJ legfj + Gijgfi
ahaﬁ Ha B Hﬁ al
ot = - 'y)\h - y)\h : (5)
We find

hgpiald 5 = Wi (ViXL) X} + hP gi; (Vo XT)al,
—haﬂgijging + haﬂgijaXé.

Transvecting by g** and using the formula (2),
we obtain

WPl = gikh“ﬁgzj(VkXﬁ)Xé +hF, @]
+h’ Do X}y
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Definition 1.1 The map ¢ € C=(T,M),
o(t) = x, which verifies the PDFEs from the above-
mentioned theorem is called potential map associ-
ated to the d-tensor X, (n gradients).

Definition 1.2 Suppose that OM is foliated
by submanifolds of type o. The pair (h,g) of Rie-
mannian metrics or the vertical metric h~' ® g
is called simple if there is a unique potential map
p € CX(I,M), p(t) =z ,2 <p<n, fired by
a closed border o of dimension p — 1, included in
oM.

2 Determining a pair of metrics
by boundary energy associ-

ated to a first order PDE sys-
tem

Starting from the boundary energy, we study
the recovering of a tensor from the centered mo-
ments which determine the vertical metric h~'®g.
In this sense we continue the research in [14], [15],
generalizing the theory of Sharafutdinov [3].

Let (h, g) be a pair of simple metrics and ¢ €
C®(T,M), o(t) =z ,2 <p<n,dmT = p,
the corresponding potential map fixed by a closed
border o of dimension p — 1, 0 C OM. Let M be
the set of the closed borders ¢ of dimension p—1,
o C oM.

Definition 2.1 Let ¢ € M. The function
Epg: M — R, 0= Eg,g)(0),

B@) =5 [ 100 (®)lak 0

= X4 (t (D)) [ () = X)(t, 2(t))] dop,

1s called the boundary energy of the multi-time
PDFE system

ox’

(1) = X4t (1)), 7lr = x

along the potential map p € C*(T, M), ¢(t) = x.

Probleml Given an energy function FE, is
there a pair of simple metrics (h, g) that realizes
that energy? How can these metrics be found?

Let us show that the existence problem of the
metrics with the property that E: M — R repre-
sents the boundary energy cannot have a unique
solution.
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Let ®:T x M — T x M, ®(!, ... 17
xl, . 2" = ((t),o(x)) be a diffeomorphism
with the properties 1|5, = id, ¢|y,, = id. The
diffeomorphism transforms the simple metrics h?,
¢" into the simple metrics h' = *hY and ¢! =

©*g°, because we have

R () (1, v) = BO((deh) s (A )0 o),
where dyp: TyT — Ty T is the differential of ¢
and
9" (@)(&,n) = ¢°((de @), (deP)N) ()
dypp: T M — T, )M is the differential of .
It can be noticed that
i dx' o
¢ Qxd otV

that is
dp X' = dpX,

where t' = 1(t), 2’ = p(z) and X’ represents the
distinguished tensor field X, with respect to t/,
x'.

The pairs (hY, g°) and (h!,g') give different
families of potential maps with the same bound-
ary energy FE.

Problem 2 The problem of finding a pair of
metrics by the boundary energy can be changed
into the following problem. Let (h°, ¢°) and
(h',g') be pairs of simple metrics, h°, h! on
T, respectively ¢°, g' on M. Does the equality
Eo g0y = Epi g1y imply the existence of a dif-
feomorphism ®: 7' x M — T x M, ® = (¢, ¢),
V|gp = id, ¢lyy = id, Bt = ¢*h® and g' = ¢*¢%?

3 Linearization of the problem
of finding a pair of metrics by
the boundary energy

Let us linearize the problem 2. Let (h7,g")
be a family of simple metrics which depends
smoothly on the parameter 7 € (—e,¢), € > 0.
Let ¢ be a closed border of dimension p — 1, in-
cluded in OM and a = E(0), where E: M — R
is the given frontier energy. Consider z7:T — M
the potential map corresponding to o, T' = [0, a?,

#= (7)o = (),

=2t 1), i=1,n.

Let 2/ = (™) and X/ be the representation of
Xi(t', 2/ ('), 7). We denote by hy = (h2?) and
g = (97;)-
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The energy of the deformation z7 is

Be ) (0) =5 [ B0 @)l (¢7)

=Xt )b, 7)
—Xé(t', 2, 7)] dopr.

Differentiating with respect to 7, we obtain

P B w095 =y L [OREC
srEuman@) = [ {1+ |G

+

of el . .
T ’)} %(T)gfj(f(t'))}[w’a(t’ﬁ)w]ﬁ(t’,T) -

2zt 7) Xg(t/,azf(t/ ), 1) XL, (), ) Xé (™ (t'), )]

[eY lagiT' T (4 1 L i 4! Y
) G ()| b ¢ D7) = )

j (! T 1 T j T
Xé(t,f (t,)77—)+§Xa(t,7w (t/),T)Xé(t/,J} (t,)77—)

az* oz* L dt' QBN Tt

[;(tm o (1) (r)} + W2 ()97 (@7 (1)
ozt ozt ,, . dt'” G 78w§; ,

{52 en+ Sz |awn - S

ox*
o'

dt'”

o () T 0| Xh()o) — a7

0X é
or

’ ’ aXé ’ i) ’
(t ) xT(t )7 T)+ or (t ) mT(t,)v T)thx(t ) mT(t )7 T)}dvhT

' g% OhSP dt'Y
_ afB gy %] T/, T
- [{rror e wn+ |55

OhP

G LA Q) XUEIES

—2x5 (', ") X5t 2" ('), 7) + Xo(t', 2" ('), 7)

X% (', 27 (t'), )] dvnr + /
T

{mr o35 @ @)

SR ) — (¢, )XY 2 (), 7)

1 i T j T
XA )XY () 7)

. ax?
—hP (gl (a7 (1)) {xl(t’w) &rf ', (t), )
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ﬁaf;} (2" (1), T) XA a7 (1), T)} } {C?;T (t',7)

ozt dt'”

!
+8t’7(t 7) dr

]dW 4 /T B ()95 (27 ()

ozt

(1, 7) — XA 7 (1), >][

aT)

ozt v dt’”

0 ) )| o+ [ 2077 0)
(oA (¢ 7) = XA(ta” (). )]
X7

af ', 2" (t'), 1) dopr. (6)
Integrating by parts then considering 7 =0 and
using the fact that the total derivative of x* with

respect to 7 is zero on OT, the third integral be-
comes:

af )
b= {85; Y HE DN EAGHD

X4, 2),00) + B (1) 2 (a0 (1°))ak (1, 0)
[5(£°,0) = XA, 2°(1°),0)] + B ()98, (="(¢"))

0%z’ 0X}
|:ataat5 (t07 0) - ataﬁ (t07 xo(to)v O)

0
(7,1, 0) = X3(1°,2°(0),0)] S (1) 22 (t)}

da' da’ dt'”
{ o(t°,0) + atw(t 0 (0)} dvyo. (7)

Making the sum of the second and third inte-
grals of (6) and using (7), we obtain:

5/ {ha*ﬁ(t%gf;(x“(t“))[x

—225,(t°,0) X% (t°, 2°(t°),0) + X5, (¢°,2° ("), 0)

L+1I;= 2 (t°,0)27%(t°,0)

X5(t°,2°(t"),0)] — 2h57 (%) g1} (2 (O))[xé(toﬁ)

oX¢ ;
— 5102 (1), 0) X5 (1% e, 0)

Nk (t°,0) — X5(t°,2°(1°),0)]

2hg?(1) %gm ()
—X5(t°,2°(t%),0)] — 2h§° (1) g8, (2°(¢%))
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82l'j 0
{waaﬂﬂ (t,0) -

ox7
mj 122%t%, 0)z to)} heP(t0)hY° (1) g, (z°(°)

SO0 X321, 0) }}

ozF oz dt’

{ L (1°,0) + (1,00 (0)}1%0

- /T B3P (1) (10 o>[ (1))

(V5 XE)(E°,2°(1°),0) + g% (a°(t°))

(Vi X5)(t°,2°(t),0) — g5, (2" (t°)) (Ve X2) (2°(t°))
g0 (2 ()G, (2°(1°), 0) XL (1°, 2 (1), 0)

(G a0

+ghe(x

ok o oz®
{ﬁ(t 00+ By

o .dt'"
(t,7) e

(0)} dvpo = 0.

Consequently,

9
or

Egur () = /T F2 (19, 2°(1°), 0) [ (£°, 0)

7=0

X4 (%, 2°(t%),0)][z5 (2", 0) — X3(t°, 2°(t"), 0)] dvpo
ax?
+ /T By (t°)gy (2 (%) .

(t°,2°(¢),0) [z5(t°, 0)

_Xcix (tov wo(to)v 0)]dvh07

where
aB/,0 07,0 _
Fij (taw (t )50)_

e (1) fi;(2°(t%))

ong” ) d¢'
ot dr

T+ EP 0 + (0)| g% (" (°)).

Let us consider that

0X?
5 (#.2°(t),0) = 0.

Considering the d-tensor field F' =
using the functional

of
(Fi;") and

IF(‘TO):L{Fio;'ﬁ(toaxo(to)?o)[xfl(toao)

—X5(t°,2°(t°), 0)][17?3 (t°,0) — Xé(to, 2°(t°), 0)dvyo
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the previous relation becomes

9 0
E T:OE(hT7gT)(0—) = IF(J] ),
where 20 is a potential map corresponding to the

closed border o of dimension p — 1, included in
oM.

The function I, determined by this equality
is called the multi-ray transform of the tensor field
F.

The existence of solutions of problem 1 for
the family (h7,¢") implies the existence of a one
parameter group of diffeomorphisms ®7(¢,z) =
(¥7(),¢7(x)), such that g7 = (¢7)*¢" and A” =
(¥7)*hY. Explicitly

- L Ot ot
af = (h?w o1 )615‘1 918 (8)

where 7 (t) = (YL(t,7),...,YP(t, 7)), t' =7 (1),

8$/k 81,/@
T 0 T
9i; = (ggeow )76331' E 9)

/

where ©7(z) = (! (z,7),...,¢"(z,7)), 2’ =" (z).

Theorem 3.1 Let vk(az):aa O(x'k)(:v,T),
T lr=

k= 1,n, v = g?jvf and v;,; the covariant
derivative of (v;).  Also, we consider u® =

0 _
E T:o(wa)(t’T)’ a = 1,p, ug = hguuu; o =
1,p, uap is the covariant derivative of (u®) and
ut = —hIhP ., o, B =T, p.

Then, the following relations hold

1 .
fij = 5( i +v6),  G,j=1,n,  (10)

1, . .
kaﬁ = 5(,”04,,8 +U'B’a), Cl,ﬂ = ]_,p (11)

Proof. Differentiating the relation (9) with
respect to 7 and then considering 7 = 0, we find

0 ‘ . 0gY, ,,0x'% o't
— T = v - .
o7 lr=o”ii = gum’ Bzt i

74

1k O
X -
7=0 oxI

x/é
7=0

2fij =

0o 0 (0
T 50 \ a7

o 0z’ 9 (0
YOk g0 i

ar
09 ov? ovl
= ZJUQJFQ?q 3 +9217"
oz ox oxJ
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On the other hand

ovt ov;
(] + Vi = @ — G;';Um + ale — G;’;’Um
dg?: vt ov?
= J 4 0 0"
T Oxd vt 95 Ox? *9ig Oxd’

and relation (10) is proved.
Because of the equality hy"h], = 0%, the dif-
ferentiation with respect to 7 leads to

0 0
= Ly 0 py ™) =
87‘ T:O(hT )h’u,y + ho 87"7:0(h“7) O’
that is
8 avy __ Y& pv a T
e TZO(hT ) = —hg"hgy P Tzo(h’”)' (12)

Differentiating the relation (8) with respect to
T, it can be proved an equality similar to (10),

9

or

By replacing into relation (12), we obtain the
equality (11) m

Therefore, the following generalization of

open problem 2 appears. To what extent do the
integrals

(hjw) = Uy + Uiy

=0

IF(fL")=/T{F§§/6(t7w(t))[xi(t)

—Xalt @) () — X5t 2 (t)))dva
determine the tensor field (FZ‘;‘B )?

References:

[1] M. Neagu, Riemann-Lagrange Geometry on 1-Jet

Spaces, Matriz Rom, Bucharest, 2005.
[2] M. Neagu, C. Udrigte, A. Oana, Multi-Time

Sprays and h-Traceless Maps, Balkan Journal of
Geometry and Its Applications, Vol. 10, No. 2

(2005), 76-92.
[3] A. Sharafutdinov: Integral Geometry of Tensor

Fields, VSPBV Utrecht, 1994,
[4] C. Udrigte, Nonclassical Lagrangian Dynam-

ics and Potential Maps, Conference in Math-
ematics in Honour of Professor Radu Rosca
on the occasion of his Ninetieth Birthday,
Katholieke University Brussel, Katholieke Uni-
versity Leuwen, Belgium, December 11-16, 1999;

http://xxx.Janl.gov/math.DS /0007060, (2000).
[5] C.Udrigte, Geometric Dynamics, Southeast Asian

Bulletin of Mathematics, Springer-Verlag, 24, 1
(2000), 313-322.

Issue 1, Volume 7, January 2008



[6]

[7]

WSEAS TRANSACTIONS on MATHEMATICS

C. Udriste, Geometric Dynamics, Kluwer Aca-
demic Publishers, 2000.

C. Udriste, Solutions of DEs and PDEs as Poten-
tial Maps Using First Order Lagrangians, Balkan
Journal of Geometry and Its Applications, Vol.6,
No.1 (2001), 93-108.

C. Udrigte, Tools of Geometric Dynamics,
Buletinul Institutului de Geodinamicd, Academia
Romana, 14, 4 (2003), 1-26; Proceedings of the
XVIII Workshop on Hadronic Mechanics, honor-
ing the 70-th birthday of Prof. R. M. Santilli, the
ortginator of hadronic mechanics, University of
Karlstad, Sweden, June 20-22, 2005; Eds. Valer
Dwoeglazov, Tepper L. Gill, Peter Rowland, Er-
ick Trell, Horst E. Wilhelm, Hadronic Press, In-
ternational Academic Publishers, December 2006,
ISBN 1-5748.

C. Udriste, From Integral Manifolds and Metrics
to Potential Maps, Atti dell’Academia Peloritana
dei Pericolanti, Classe I di Scienze Fis. Mat. et
Nat., 81-82, C1A0401008 (2003-2004), 1-16.

C. Udriste, Geodesic Motion in a Gyroscopic
Field of Forces, Tensor, N. S., 66, 3 (2005), 215-
228.

C. Udrigte, M. Neagu, Geometrical Interpretation
of Solutions of Certain PDEs, Balkan Journal of
Geometry and Its Applications, 4,1 (1999), 138-
145.

C. Udriste, M. Postolache: Atlas of Magnetic Ge-
ometric Dynamics, Geometry Balkan Press, 2001.
C. Udrigte, M. Ferrara, D. Oprig, Economic Ge-
ometric Dynamics, Monographs and Textbooks 6,
Geometry Balkan Press, Bucharest, 2004.

C. Udriste, A. Pitea, J. Mihaila: Determination
of Metrics by Boundary Energy, Balkan J. Geom.
Appl, 11, 1 (2006), 131-143.

C. Udriste, A. Pitea, J. Mihaila: Kinetic PDEs
System on the First Order Jet Bundle, The 4-th
International Colloquium of Mathematics in En-
gineering and Numerical Physics, University Po-
litehnica of Bucharest, 6-8 Oct. 2006; BSG Pro-
ceedings 14, Geometry Balkan Press (2007), 195-
208.

ISSN: 1109-2769

50

Ariana Pitea, Constantin Udriste

Issue 1, Volume 7, January 2008



