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Abstract: Our theory of determining a tensor by boundary energy of a multitime first order PDE system
is similar to those developed by Sharafutdinov. Section 1 refines the theory of potential maps determined
by a first order multitime PDE system and a vertical metric. Section 2 defines the boundary energy
of a first order PDE system and proves that the problem of determining a vertical metric from the
boundary energy of a multitime PDE system cannot have a unique solution. Section 3 linearizes the
above mentioned problem and defines the notion of multi-ray transform.
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1 Potential maps

Let (M, g) be a compact Riemannian manifold
of dimension n with the boundary ∂M , x = (xi)
be local coordinates on (M, g) and (Gjk,i) (Gijk)
be the Christoffel symbols of (M, g) of the first
and second type respectively.

Let (T, h) be an oriented compact Rieman-
nian manifold of dimension p, with the bound-
ary ∂T , t = (tα) local coordinates on (T, h) and
(Hβγ,α), (Hα

βγ) its Christoffel symbols of the first
type and second type, respectively.

Consider ϕ:T → M , ϕ(t) = x, t =
(t1, . . . , tp), x = (x1, . . . , xn), a C∞-map. We

want to approximate the Jacobian matrix
(
∂xi

∂tα

)
by a matrix of gradients (Xi

α(t, x)) associated to
a C∞ - distinguished tensor field Xα (n gradients)
on T ×M , in the sense of least squares. For that
we build the PDE system

∂xi

∂tα
(t) = Xi

α(t, x(t)), x|∂T = χ,

and the least squares Lagrangian

L(t, xi(t), xiα(t)) =
1
2
hαβ(t)gij(x(t))[xiα(t)

−Xi
α(t, x(t))][xjβ(t)−X

j
β(t, x(t))]

√
h,

where xiα =
∂xi

∂tα
, and h = det(hαβ).

The Euler-Lagrange prolongation of the PDE
system describes the potential map in the multi-
time geometric dynamics.

The geometric dynamics (ODEs or PDEs) is
a Lagrangian dynamics (ODEs or PDEs) deter-
mined by a least squares Lagrangian attached to
a first order (single-time or multitime) ODE or
PDE system and a pair of Riemannian metrics,
one in the source space and other in the target
space [1], [2], [4]-[13].

Theorem 1.1 The extremals of L are de-
scribed by the PDEs

hαβxiαβ = giqhαβgkj(∇qX
k
α)Xj

β + hαβF i
j α x

j
β

+hαβDβX
i
α,

x|∂T = χ,

where

δ

∂tβ
xiα = xiαβ =

∂2xi

∂tα∂tβ
−Hγ

αβx
i
γ+Gijkx

j
αx

k
β, (1)

F i
j α = ∇jX

i
α − giqgkj∇qX

k
α, (2)

∇jX
i
α =

∂X i
α

∂Xj
+GijkX

k
α, DβX

i
α =

∂X i
α

∂tβ
−Hγ

αβX
i
γ .

(3)
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Proof. If we write L = E
√
h, where E is

the energy density, then the Euler-Lagrange equa-
tions of extremals

∂L

∂xk
− ∂

∂tα
∂L

∂xkα
= 0

can be written

∂E

∂xk
− ∂

∂tα
∂E

∂xkα
−Hγ

γα

∂E

∂xkα
= 0. (4)

We compute

∂E

∂xk
=

1
2
hαβ

∂gij
∂xk

xiαx
j
β − h

αβ ∂gij
∂xk

xiαX
j
β

+
1
2
hαβ

∂gij
∂xk

Xi
αX

j
β − h

αβgijx
i
α

∂Xj
β

∂xk

+hαβgij
∂X i

α

∂xk
Xj
β ,

∂E

∂xkα
= hαβgkjx

j
β − h

αβgkjX
j
β,

− ∂

∂tα
∂E

∂xkα
= −∂h

αβ

∂tα
gkjx

j
β − h

αβ ∂gkj
∂x`

x`αx
j
β

−hαβgkj
∂2xj

∂tα∂tβ
+
∂hαβ

∂tα
gkjX

j
β

+hαβ
∂gkj
∂x`

x`αX
j
β + hαβgkj(

∂Xj
β

∂tα
+
∂Xj

β

∂x`
x`α

)
.

We replace into (4) taking into account the
formulas (1), (3) and

∂gij
∂xk

= G`kig`j +G`kjg`i

∂hαβ

∂tγ
= −Hα

γλh
λβ −Hβ

γλh
αλ. (5)

We find

hαβgkjx
j
αβ = hαβgij(∇kX

i
α)Xj

β + hαβgkj(∇`X
j
β)x

`
α

−hαβgijxiα∇kX
j
β + hαβgkjDαX

j
β .

Transvecting by gik and using the formula (2),
we obtain

hαβxiαβ = gikhαβg`j(∇kX
`
α)Xj

β + hαβF i
j α x

j
β

+hαβDαX
i
β

Definition 1.1 The map ϕ ∈ C∞(T,M),
ϕ(t) = x, which verifies the PDEs from the above-
mentioned theorem is called potential map associ-
ated to the d-tensor Xα (n gradients).

Definition 1.2 Suppose that ∂M is foliated
by submanifolds of type σ. The pair (h, g) of Rie-
mannian metrics or the vertical metric h−1 ⊗ g
is called simple if there is a unique potential map
ϕ ∈ C∞(T,M), ϕ(t) = x , 2 ≤ p ≤ n, fixed by
a closed border σ of dimension p− 1, included in
∂M .

2 Determining a pair of metrics
by boundary energy associ-
ated to a first order PDE sys-
tem

Starting from the boundary energy, we study
the recovering of a tensor from the centered mo-
ments which determine the vertical metric h−1⊗g.
In this sense we continue the research in [14], [15],
generalizing the theory of Sharafutdinov [3].

Let (h, g) be a pair of simple metrics and ϕ ∈
C∞(T,M), ϕ(t) = x , 2 ≤ p ≤ n, dimT = p,
the corresponding potential map fixed by a closed
border σ of dimension p− 1, σ ⊂ ∂M . Let M be
the set of the closed borders σ of dimension p−1,
σ ⊂ ∂M .

Definition 2.1 Let σ ∈ M. The function
E(h,g):M→ R, σ 7→ E(h,g)(σ),

E(h,g)(σ) =
1
2

∫
T
hαβ(t)gij(x(t))[xiα(t)

−Xi
α(t, x(t))][xjβ(t)−X

j
β(t, x(t))] dvh,

is called the boundary energy of the multi-time
PDE system

∂xi

∂tα
(t) = Xi

α(t, x(t)), x|∂T = χ

along the potential map ϕ ∈ C∞(T,M), ϕ(t) = x.

Problem1 Given an energy function E, is
there a pair of simple metrics (h, g) that realizes
that energy? How can these metrics be found?

Let us show that the existence problem of the
metrics with the property that E:M→ R repre-
sents the boundary energy cannot have a unique
solution.
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Let Φ:T × M → T × M , Φ(t1, . . . , tp;
x1, . . . , xn) = (ψ(t), ϕ(x)) be a diffeomorphism
with the properties ψ|∂T = id, ϕ|∂M = id. The
diffeomorphism transforms the simple metrics h0,
g0 into the simple metrics h1 = ψ∗h0 and g1 =
ϕ∗g0, because we have

h1(t)(µ, ν) = h0((dtψ)µ, (dtψ)ν)ψ(t),

where dtψ:TtT → Tψ(t)T is the differential of ψ
and

g1(x)(ξ, η) = g0((dxϕ)ξ, (dxϕ)η)ϕ(x),

dxϕ:TxM → Tϕ(x)M is the differential of ϕ.
It can be noticed that

X ′i
α =

∂x′i

∂xj
∂tγ

∂t′α
Xj
γ ,

that is
dtψX

′ = dxϕX,

where t′ = ψ(t), x′ = ϕ(x) and X ′
γ represents the

distinguished tensor field Xγ with respect to t′,
x′.

The pairs (h0, g0) and (h1, g1) give different
families of potential maps with the same bound-
ary energy E.

Problem 2 The problem of finding a pair of
metrics by the boundary energy can be changed
into the following problem. Let (h0, g0) and
(h1, g1) be pairs of simple metrics, h0, h1 on
T , respectively g0, g1 on M . Does the equality
E(h0,g0) = E(h1,g1) imply the existence of a dif-
feomorphism Φ:T × M → T × M , Φ = (ψ,ϕ),
ψ|∂T = id, ϕ|∂M = id, h1 = ψ∗h0 and g1 = ϕ∗g0?

3 Linearization of the problem
of finding a pair of metrics by
the boundary energy

Let us linearize the problem 2. Let (hτ , gτ )
be a family of simple metrics which depends
smoothly on the parameter τ ∈ (−ε, ε), ε > 0.
Let σ be a closed border of dimension p − 1, in-
cluded in ∂M and a = E(σ), where E:M → R
is the given frontier energy. Consider xτ :T →M
the potential map corresponding to σ, T = [0, a]p,

t′ = (tτ,α), tτ,α = tα(τ),

xτ,i = xi(t′α, τ), i = 1, n.

Let x′ = (xτ,i) and X ′i
α be the representation of

Xi
α(t′, x′(t′), τ). We denote by hτ = (hαβτ ) and

gτ = (gτij).

The energy of the deformation xτ is

E(hτ ,gτ )(σ) =
1
2

∫
T
hαβτ (t′)gτij(x

′(t′))[xiα(t′, τ)

−Xi
α(t′, x′, τ)][xjβ(t

′, τ)

−Xj
β(t

′, x′, τ)] dvhτ .

Differentiating with respect to τ , we obtain

∂

∂τ
E(hτ ,gτ )(σ) =

∫
T

{
hαβ

τ (t′)
∂gτ

ij

∂τ
(xτ (t′)) +

[
∂hαβ

τ

∂τ
(t′)

+
∂hαβ

τ

∂t′ γ
(t′)

]
dt′ γ

dτ
(τ)gτ

ij(x
τ (t′))

}
[xi

α(t′, τ)xj
β(t′, τ)−

2xi
α(t

′, τ)Xj
β(t

′,xτ(t′), τ) +Xi
α(t′, xτ(t′), τ)Xj

β(t′, xτ (t′), τ)]

+hαβ
τ (t′)

∂gτ
ij

∂xk
(xτ (t′))

[
1

2
xi

α(t′, τ)xj
β(t′, τ)− xi

α(t′, τ)

Xj
β(t′, xτ (t′), τ) +

1

2
Xi

α(t′, xτ (t′), τ)Xj
β(t′, xτ (t′), τ)

]
[

∂xk

∂τ
(t′, τ) +

∂xk

∂t′ γ
(t′, τ)

dt′ γ

dτ
(τ)

]
+ hαβ

τ (t′)gτ
ij(x

τ (t′))

{[
∂xi

α

∂τ
(t′, τ) +

∂xi
α

∂t′ γ
(t′, τ)

dt′ γ

dτ

]
xj

β(t′, τ)− ∂xi
α

∂τ
(t′, τ)

Xj
β(t′, xτ (t′), τ)(τ)− xi

α(t′, τ)
∂Xj

β

∂xk
(t′, xτ (t′), τ)

∂xk

∂τ
(t′, τ) +

∂Xi
α

∂xk
(t′, xτ (t′), τ)(τ)

[
∂xk

∂τ
(t′, τ)

+
∂xk

∂t′ γ
(t′, τ)

dt′ γ

dτ
(τ)

]
Xj

β(t′, xτ (t′), τ)− xi
α(t′, τ)

∂Xj
β

∂τ
(t′, xτ(t′), τ)+

∂Xj
β

∂τ
(t′, xτ(t′), τ)Xi

α(t
′, xτ(t′), τ)

}
dvhτ

=

∫
T

{
hαβ

τ (t′)
∂gτ

ij

∂τ
(xτ (t′)) +

[
∂hαβ

τ

∂t′ γ

dt′ γ

dτ

+
∂hαβ

τ

∂τ
(t′)

]
gτ

ij(x
τ (t′))

}
[xi

α(t′, τ)xj
β(t′, τ)

−2xi
α(t′, τ)Xj

β(t′, xτ (t′), τ) + Xi
α(t′, xτ (t′), τ)

Xj
β(t′, xτ (t′), τ)]dvhτ +

∫
T

{
hαβ

τ (t′)
∂gτ

ij

∂xk
(xτ (t′))

[
1

2
xi

α(t′, τ)xj
β(t′, τ)− xi

α(t′, τ)Xj
β(t′, xτ (t′), τ)

+
1

2
Xi

α(t′, xτ (t′), τ)Xj
β(t′, xτ (t′), τ)

]

−hαβ
τ (t′)gτ

ij(x
τ (t′))

[
xi

α(t′, τ)
∂Xj

β

∂xk
(t′, xτ (t′), τ)
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−∂Xi
α

∂xk
(t′, xτ (t′), τ)Xj

β(t′, xτ (t′), τ)

]}[
∂xk

∂τ
(t′, τ)

+
∂xi

α

∂t′ γ
(t′, τ)

dt′ γ

dτ

]
dvhτ +

∫
T

hαβ
τ (t′)gτ

ij(x
τ (t′))

[xj
β(t′, τ)−Xj

β(t′, xτ (t′), τ)]

[
∂xi

α

∂τ
(t′, τ)

+
∂xi

α

∂t′ γ
(t′, τ)

dt′ γ

dτ
(τ)

]
dvhτ +

∫
T

hαβ
τ (t′)gτ

ij(x
τ (t′))

[xi
α(t′, τ)−Xi

α(t′, xτ (t′), τ)]

∂Xj
β

∂τ
(t′, xτ (t′), τ) dvhτ . (6)

Integrating by parts then considering τ = 0 and
using the fact that the total derivative of xi with
respect to τ is zero on ∂T , the third integral be-
comes:

I3 = −
∫

T

{
∂hαβ

0

∂tα
(t0)g0

ij(x
0(t0))[xj

β(t0, 0)

−Xj
β(t0, x0(t0), 0)] + hαβ

0 (t0)
∂gij

∂xk
(x0(t0))xk

α(t0, 0)

[xj
β(t0, 0)−Xj

β(t0, x0(t0), 0)] + hαβ
0 (t0)g0

ij(x
0(t0))[

∂2xj

∂tα∂tβ
(t0, 0)−

∂Xj
β

∂tα
(t0, x0(t0), 0)

−
∂Xj

β

∂xk
(t0, x0(t0), 0)xk

α(t0, 0)

]
+ hαβ

0 (t0)g0
ij(x

0(t0))

[xj
β(t0, 0)−Xj

β(t0, x0(t), 0)]
1

2
hγδ

0 (t0)
∂h0

γδ

∂tα
(t)

}
[

∂xi

∂τ
(t0, 0) +

∂xi

∂t′ γ
(t0, 0)

dt′ γ

dτ
(0)

]
dvh0 . (7)

Making the sum of the second and third inte-
grals of (6) and using (7), we obtain:

I2 + I3 =
1

2

∫
T

{
hαβ

0 (t0)
∂g0

ij

∂xk
(x0(t0))[xi

α(t0, 0)xj
β(t0, 0)

−2xi
α(t0, 0)Xj

β(t0, x0(t0), 0) + Xi
α(t0, x0(t0), 0)

Xj
β(t0, x0(t0), 0)]− 2hαβ

0 (t0)g0
ij(x

0(t0))
[
xi

α(t0, 0)

∂Xj
β

∂xk
(t0, x0(t0), 0)− ∂Xi

α

∂xk
(t0, x0(t0), 0)Xj

β(t0, x0(t0), 0)
]

−2
∂hαβ

0

∂t′ α
(t0)g0

kj(x
0(t0))[xj

β(t0, 0)−Xj
β(t0, x0(t0), 0)]

−2hαβ
0 (t0)

∂g0
kj

∂x`
(x0(t0))x`

α(t0, 0)[xj
β(t0, 0)

−Xj
β(t0, x0(t0), 0)]− 2hαβ

0 (t0)g0
kj(x

0(t0))

[
∂2xj

∂t′ α∂t′ β
(t0, 0)−

∂Xj
β

∂t′ α
(t0, x0(t0), 0)

−
∂Xj

β

∂x`
(t0, x0(t0), 0)x`

α(t0, 0)

]
−hαβ

0 (t0)hγδ
0 (t0)g0

kj(x
0(t0))

∂h0
γδ

∂t′ α
(t0)[xj

β(t0, 0)−Xj
β(t0, x0(t0), 0)]

}
[

∂xk

∂τ
(t0, 0) +

∂xk

∂t′ γ
(t0, 0)

dt′ γ

dτ
(0)

]
dvh0

=

∫
T

hαβ
0 (t0)xj

β(t0, 0)

[
− g0

ki(x
0(t0))

(∇jX
i
α)(t0, x0(t0), 0) + g0

`j(x
0(t0))

(∇kX`
α)(t0, x0(t0), 0)− g0

jq(x
0(t0))(∇kXq

α)(x0(t0))

+g0
qk(x0(t0))Gq

`j(x
0(t0), 0)X`

α(t0, x0(t0), 0)

+g0
k`(x

0(t0))
∂X`

α

∂xj
(t0, x0(t0), 0)

]
[

∂xk

∂τ
(t0, 0) +

∂xk

∂t′ γ
(t0, τ)

dt′ γ

dτ
(0)

]
dvh0 = 0.

Consequently,

∂

∂τ

∣∣∣∣∣
τ=0

E(hτ ,gτ )(σ) =

∫
T

F αβ
ij (t0, x0(t0), 0)[xi

α(t0, 0)

−Xi
α(t0, x0(t0), 0)][xj

β(t0, 0)−Xj
β(t0, x0(t0), 0)] dvh0

+

∫
T

hαβ
0 (t0)g0

ij(x
0(t0))

∂Xj
β

∂τ
(t0, x0(t0), 0) [xi

α(t0, 0)

−Xi
α(t0, x0(t0), 0)]dvh0 ,

where

F αβ
ij (t0, x0(t0), 0) = hαβ

0 (t0)fij(x
0(t0))

+

[
kαβ(t0) +

∂hαβ
0

∂t′ γ
(t0)

dt′ γ

dτ
(0)

]
g0

ij(x
0(t0)).

Let us consider that

∂Xj
β

∂τ
(t0, x0(t0), 0) = 0.

Considering the d-tensor field F = (Fαβij ) and
using the functional

IF (x0) =

∫
T

{
F αβ

ij (t0, x0(t0), 0)[xi
α(t0, 0)

−Xi
α(t0, x0(t0), 0)][xj

β(t0, 0)−Xj
β(t0, x0(t0), 0)]dvh0
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the previous relation becomes

∂

∂τ

∣∣∣
τ=0

E(hτ ,gτ )(σ) = IF (x0),

where x0 is a potential map corresponding to the
closed border σ of dimension p − 1, included in
∂M .

The function IF , determined by this equality
is called the multi-ray transform of the tensor field
F .

The existence of solutions of problem 1 for
the family (hτ , gτ ) implies the existence of a one
parameter group of diffeomorphisms Φτ (t, x) =
(ψτ (t), ϕτ (x)), such that gτ = (ϕτ )∗g0 and hτ =
(ψτ )∗h0. Explicitly

hταβ = (h0
µν ◦ ψτ )

∂t′µ

∂tα
∂t′ν

∂tβ
, (8)

where ψτ (t) = (ψ1(t, τ), . . . , ψp(t, τ)), t′ = ψτ (t),

gτij = (g0
k` ◦ ϕτ )

∂x′k

∂xi
∂x′`

∂xj
, (9)

where ϕτ (x)=(ϕ1(x, τ), . . . , ϕn(x, τ)), x′=ϕτ (x).

Theorem 3.1 Let vk(x)=
∂

∂τ

∣∣∣
τ=0

(x′k)(x, τ),

k = 1, n, vi = g0
ijv

j and vi;j the covariant
derivative of (vi). Also, we consider uα =
∂

∂τ

∣∣∣
τ=0

(ψα)(t, τ), α = 1, p, uα = h0
αµu

µ, α =

1, p, uα;β is the covariant derivative of (uα) and
uα;β = −hγα0 hµβ0 uγ;µ, α, β = 1, p.

Then, the following relations hold

fij =
1
2
(vi;j + vj;i), i, j = 1, n, (10)

kαβ =
1
2
(uα;β + uβ;α), α, β = 1, p. (11)

Proof. Differentiating the relation (9) with
respect to τ and then considering τ = 0, we find

2fij =
∂

∂τ

∣∣∣
τ=0

gτ
ij =

∂g0
k`

∂xm
vm ∂x′k

∂xi

∂x′`

∂xj

+g0
k`

∂

∂xi

(
∂

∂τ

∣∣∣
τ=0

x′k
)
∂x′`

∂xj

+g0
k`

∂x′k

∂xi

∂

∂xj

(
∂

∂τ

∣∣∣
τ=0

x′`
)

=
∂g0

ij

∂xq
vq + g0

jq

∂vq

∂xi
+ g0

iq

∂vq

∂xj
.

On the other hand

vi;j + vj;i =
∂vi

∂xj
−Gm

ij vm +
∂vj

∂xi
−Gm

jivm

=
∂g0

ij

∂xq
vq + g0

jq

∂vq

∂xi
+ g0

iq

∂vq

∂xj
,

and relation (10) is proved.
Because of the equality hµντ hτµγ = δνγ , the dif-

ferentiation with respect to τ leads to

∂

∂τ

∣∣∣
τ=0

(hµντ )h0
µγ + hµν0

∂

∂τ

∣∣∣
τ=0

(hτµγ) = 0,

that is

∂

∂τ

∣∣∣
τ=0

(hαντ ) = −hγα0 hµν0

∂

∂τ

∣∣∣
τ=0

(hτµγ). (12)

Differentiating the relation (8) with respect to
τ , it can be proved an equality similar to (10),

∂

∂τ

∣∣∣
τ=0

(hτµν) = uµ;ν + uν;µ.

By replacing into relation (12), we obtain the
equality (11)

Therefore, the following generalization of
open problem 2 appears. To what extent do the
integrals

IF (x) =

∫
T

{
F αβ

ij (t, x(t))[xi
α(t)

−Xi
α(t, x(t))][xj

β(t)−Xj
β(t, x(t))]dvh

determine the tensor field (Fαβij )?
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[9] C. Udrişte, From Integral Manifolds and Metrics
to Potential Maps, Atti dell’Academia Peloritana
dei Pericolanti, Classe I di Scienze Fis. Mat. et
Nat., 81-82, C1A0401008 (2003-2004), 1-16.
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