Determining a Metric by Boundary Single-Time Flow Energy

ARIANA PITEA
Faculty of Applied Sciences, Department of Mathematics I, University "Politehnica" of Bucharest, Splaiul Independenței 313
RO-060042, Bucharest, Romania
apitea@mathem.pub.ro

Abstract: Our theory of determining a tensor by single-time flow energy is similar to those developed by Sharafutdinov. Section 1 refines the theory of potential curves determined by a flow and a Riemannian metric. Section 2 defines the boundary energy of a potential curve and proves that the problem of determining a metric from a single-time flow boundary energy cannot have a unique solution. Section 3 linearizes the above-mentioned problem and defines the notion of single-ray transform.

Key Words: potential curves, least squares Lagrangian, single-ray transform, boundary energy.

1 Potential curves

Let (M, g) be a compact Riemannian manifold with the boundary ∂M and of dimension n. We consider $x=\left(x^{i}\right)$ local coordinates on the manifold $(M, g),\left(G_{j k, \ell}\right)$ and $\left(G_{j k}^{i}\right)$ its Christoffel symbols of the first and of the second type, respectively.

Let $\varphi:[0,1] \rightarrow M, \varphi(t)=x, x(t)=$ $\left(x^{1}(t), \ldots, x^{n}(t)\right)$ be a C^{∞}-curve. We want to approximate the velocity $\frac{d x}{d t}$ of components $\frac{d x^{i}}{d t}$ by a C^{∞}-distinguished vector field X of components $X^{i}(x)$, in the sense of least squares. For that we build the flow $\frac{d x^{i}}{d t}(t)=X^{i}(x(t)), \overline{1, n}, x(0)=p$, $x(1)=q$, where p and q are two points from the boundary ∂M of the manifold M, and the least squares Lagrangian (flow energy density),

$$
\begin{aligned}
L(t, x(t), \dot{x}(t))= & \frac{1}{2} g_{i j}(x(t))\left[\dot{x}^{i}(t)-X^{i}(x(t))\right] \\
& {\left[\dot{x}^{j}(t)-X^{j}(x(t)],\right.}
\end{aligned}
$$

where $\dot{x}^{i}(t)=\frac{d x^{i}}{d t}(t)$.
The geometric dynamics (ODEs or PDEs) is a Lagrangian dynamics (ODEs or PDEs) determined by a least squares Lagrangian attached to a (single-time or multi-time) flow and a pair of Riemannian metrics, one in the source space and other in the target space.

Let us look for the Euler-Lagrange prolongation of the flow obtained as Euler-Lagrange ODEs produced by L. The extremals of L are called potential curves. These curves are geodesics [4].

Theorem 1.1 The extremals of L are described by the ODEs:

$$
\begin{aligned}
& \frac{\delta}{d t} \dot{x}^{i}=g^{i \ell} g_{k j}\left(\nabla_{\ell} X^{k}\right) X^{j}+F_{j}^{i} \dot{x}^{j}, \quad i=\overline{1, n} \\
& x(0)=p, \quad x(1)=q,
\end{aligned}
$$

where:

$$
\begin{align*}
& \frac{\delta}{d t} \dot{x}^{i}=\ddot{x}^{i}+G_{j k}^{i} \dot{x}^{j} \dot{x}^{k}, \quad i=\overline{1, n}, \\
& F_{j}^{i}=\nabla_{j} X^{i}-g^{i \ell} g_{k j} \nabla_{\ell} X^{k}, \quad i, j=\overline{1, n} ;(1) \\
& \nabla_{j} X^{i}=\frac{\partial X^{i}}{\partial x^{j}}+G_{j k}^{i} X^{k}, \quad i, j=\overline{1, n} . \tag{2}
\end{align*}
$$

Proof. We compute

$$
\begin{aligned}
\frac{\partial L}{\partial x^{k}}= & \frac{1}{2} \frac{\partial g_{i j}}{\partial x^{k}} \dot{x}^{i} \dot{x}^{j}-\frac{\partial g_{i j}}{\partial x^{k}} \dot{x}^{i} X^{j}+\frac{1}{2} \frac{\partial g_{i j}}{\partial x^{k}} X^{i} X^{j} \\
& -g_{i j} \dot{x}^{j} \frac{\partial X^{i}}{\partial x^{k}}+g_{i j} \frac{\partial X^{i}}{\partial x^{k}} X^{j} ; \\
\frac{\partial L}{\partial \dot{x}^{k}}= & g_{i k} \dot{x}^{i}-g_{i k} X^{i} ; \\
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}^{k}}\right)= & \frac{\partial g_{i k}}{\partial x^{\ell}} \dot{x}^{\ell} \dot{x}^{i}+g_{i k} \ddot{x}^{i}-\frac{\partial g_{i k}}{\partial x^{\ell}} \dot{x}^{i} X^{\ell} \\
& -g_{i k}\left(\frac{\partial X^{i}}{\partial t}+\frac{\partial X^{i}}{\partial x^{\ell}} \dot{x}^{\ell}\right) .
\end{aligned}
$$

We take into account formula (1) and

$$
\frac{\partial g_{i j}}{\partial x^{k}}=G_{k i}^{\ell} g_{\ell j}+G_{k j}^{\ell} g_{\ell i}, \quad i, j, k=\overline{1, n} .
$$

If we replace these relations in Euler-Lagrange equations,

$$
\frac{\partial L}{\partial x^{k}}-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}^{k}}\right)=0, \quad k=\overline{1, n},
$$

we find

$$
\begin{array}{r}
g_{k j} \frac{\delta \dot{x}^{j}}{d t}=g_{i j}\left(\nabla_{k} X^{i}\right) X^{j}+g_{k j}\left(\nabla_{\ell} X^{j}\right) \dot{x}^{\ell} \\
-g_{i j} \dot{x}^{i} \nabla_{k} X^{j}, \quad k=\overline{1, n} .
\end{array}
$$

Transvecting by $g^{\ell k}$ and using formula (2), we obtain

$$
\frac{\delta \dot{x}^{i}}{d t}=g^{i k} g_{\ell j}\left(\nabla_{k} X^{\ell}\right) X^{j}+F_{j}^{i} \dot{x}^{j}, \quad i=\overline{1, n}
$$

Definition 1.1 The map $\varphi \in C^{\infty}([0,1], M)$, $\varphi(t)=x$, which verifies the ODEs from the previous theorem is called potential curve associated to the d-vector field X.

Definition 1.2 The Riemannian metric g is called simple if there is a unique potential curve $x:[0,1] \rightarrow M, x(0)=p, x(1)=q, p, q \in \partial M$.

2 Determining a metric by boundary flow energy

Starting from the boundary flow energy, we study the recovering of a tensor from the centered moments which determine the metric g.

Let g be a simple metric and $x:[0,1] \rightarrow M$ the corresponding potential curve, $x(0)=p, x(1)=q$, $p, q \in \partial M$.

Definition 2.1 Let p and q be two points on the boundary ∂M of the manifold M. The function $E_{g}: \partial M \times \partial M \rightarrow \mathbb{R},(p, q) \mapsto E_{g}(p, q)$,

$$
\begin{aligned}
& E_{g}(p, q)= \frac{1}{2} \\
& \int_{0}^{1} g_{i j}(x(t))\left[\dot{x}^{i}(t)-X^{i}(x(t))\right]\left[\dot{x}^{j}(t)\right. \\
&\left.-X^{j}(x(t))\right] d t
\end{aligned}
$$

is called the boundary energy of the flow along the potential curve $x:[0,1] \rightarrow M, x(0)=p, x(1)=q$, $p, q \in \partial M$.

Open problem 1. Given an energy E, is there a metric g that realizes this energy? How can these metrics be found?

Let us show that the existence problem of the metrics with the property that $E: \partial M \times \partial M \rightarrow \mathbb{R}$ represents the boundary energy cannot have a unique solution.

Let $\varphi: M \rightarrow M$ be a diffeomorphism with the property $\left.\varphi\right|_{\partial M}=\mathrm{id}$. This diffeomorphism transforms the simple metric g^{0} into a simple metric $g^{1}=\varphi^{*} g^{0}$, because we have

$$
g^{1}(x)(\xi, \eta)=g^{0}\left(\left(d_{x} \varphi\right) \xi,\left(d_{x} \varphi\right) \eta\right)_{\varphi(x)},
$$

where $d_{x} \varphi: T_{x} M \rightarrow T_{\varphi(x)} M$ is the differential of φ.

It can be noticed that

$$
X^{\prime^{i}}=\frac{\partial x^{i^{i}}}{\partial x^{i}} X^{i},
$$

where $X^{i^{\prime}}$ represents the distinguished vector field X with respect to $x^{\prime}=\varphi(x)$.

The metrics g^{0} and g^{1} give different families of potential curves with the same boundary energy E.

Open problem 2. The problem of recovering a metric by boundary energy can be changed in the following way. Let g^{0} and g^{1} be simple metrics on M. Does the equality $E_{g^{0}}=E_{g^{1}}$ impliy the existence of a diffeomorphism $\varphi: M \rightarrow M$, $\left.\varphi\right|_{\partial M}=\mathrm{id}$ and $g^{1}=\varphi^{*} g^{0}$?

3 Linearization of the problem of finding a metric from the boundary energy

Let us linearize the open problem 1. Let $\left(g^{\tau}\right)$ be a family of simple metrics which depends smoothly on parameter $\tau \in(-\varepsilon, \varepsilon), \varepsilon>0$. Let p and q be two points of the border ∂M of the manifold M and $a=E(p, q)$, where $E: \partial M \times$ $\partial M \rightarrow \mathbb{R}$ is the given boundary energy. Consider $x^{\tau}:[0, a] \rightarrow M$ the potential curve corresponding to the pair $(p, q), x^{\prime}=\left(x^{\tau, i}\right), x^{\tau, i}(t)=x^{i}(t, \tau)$, $i=\overline{1, n}$. We denote $g^{\tau}=\left(g_{i j}^{\tau}\right)$.

The energy of deformation x^{τ} is

$$
\begin{gathered}
E_{g^{\tau}}(p, q)=\frac{1}{2} \int_{0}^{a} g_{i j}^{\tau}\left(x^{\tau}(t)\right)\left[\dot{x}^{i}(t, \tau)-X^{i}(x(t, \tau), \tau)\right] \\
{\left[\dot{x}^{j}(t, \tau)-X^{j}(x(t, \tau), \tau)\right] d t .}
\end{gathered}
$$

Differentiating with respect to τ we obtain

$$
\begin{align*}
& \frac{\partial}{\partial \tau} E_{g^{\tau}}(p, q)=\int_{0}^{a}\left\{\frac{\partial g_{i j}^{\tau}}{\partial \tau}\left(x^{\tau}(t)\right)\left[\dot{x}^{i}(t, \tau)-X^{i}\left(x^{\tau}(t), \tau\right)\right]\right. \\
& {\left[\dot{x}^{j}(t, \tau)-X^{j}\left(x^{\tau}(t), \tau\right)+\frac{\partial g_{i j}^{\tau}}{\partial x^{k}}\left(x^{\tau}(t)\right)\left[\frac{1}{2} \dot{x}^{i}(t, \tau) \dot{x}^{j}(t, \tau)\right]\right.} \\
& -\dot{x}^{i}(t, \tau) X^{j}\left(x^{\tau}(t), \tau\right)+\frac{1}{2} X^{i}\left(x^{\tau}(t), \tau\right) \\
& \left.X^{j}\left(x^{\tau}(t), \tau\right)\right] \frac{\partial x^{k}}{\partial \tau}(t, \tau)+g_{i j}^{\tau}\left(x^{\tau}(t)\right)\left[\frac{\partial \dot{x}^{i}}{\partial \tau}(t, \tau) \dot{x}^{j}(t, \tau)\right. \\
& -\frac{\partial \dot{x}^{i}}{\partial \tau}(t, \tau) X^{j}\left(x^{\tau}(t), \tau\right)-\dot{x}^{i}(t, \tau) \frac{\partial X^{j}}{\partial \tau}\left(x^{\tau}(t), \tau\right) \\
& -\dot{x}^{i}(t, \tau) \frac{\partial X^{j}}{\partial x^{k}}\left(x^{\tau}(t), \tau\right) \frac{\partial x^{k}}{\partial \tau}(t, \tau)+X^{i}\left(x^{\tau}(t), \tau\right) \\
& \frac{\partial X^{j}}{\partial \tau}\left(x^{\tau}(t), \tau\right)+X^{i}\left(x^{\tau}(t), \tau\right) \frac{\partial X^{j}}{\partial x^{k}}\left(x^{\tau}(t), \tau\right) \\
& \left.\left.\frac{\partial x^{k}}{\partial \tau}(t, \tau)\right]\right\} d t=\int_{0}^{a} \frac{\partial g_{i j}^{\tau}}{\partial \tau}(x(t, \tau))\left[\dot{x}^{i}(t, \tau) \dot{x}^{j}(t, \tau)\right) \\
& -2 \dot{x}^{i}(t, \tau) X^{j}\left(x^{\tau}(t), \tau+X^{i}\left(x^{\tau}(t), \tau\right) X^{j}\left(x^{\tau}(t), \tau\right)\right] d t \\
& +\int_{0}^{a}\left\{\frac { \partial g _ { i j } ^ { \tau } } { \partial x ^ { k } } (x ^ { \tau } (t)) \left[\frac{1}{2} \dot{x}^{i}(t, \tau) \dot{x}^{j}(t, \tau)\right.\right. \\
& \left.-\dot{x}^{i}(t, \tau) X^{j}\left(x^{\tau}(t), \tau\right)+\frac{1}{2} X^{i}\left(x^{\tau}(t), \tau\right) X^{j}\left(x^{\tau}(t), \tau\right)\right] \\
& -g_{i j}^{\tau}\left(x^{\tau}(t)\right)\left[\dot{x}^{i}(t, \tau)-X^{i}\left(x^{\tau}(t), \tau\right)\right] \\
& \left.\frac{\partial X^{j}}{\partial x^{k}}\left(x^{\tau}(t), \tau\right)\right\} \frac{\partial x^{k}}{\partial \tau}(t, \tau) d t+\int_{0}^{a} g_{i j}^{\tau}\left(x^{\tau}(t)\right)\left[\dot{x}^{j}(t, \tau)\right. \\
& \left.-X^{j}\left(x^{\tau}(t), \tau\right)\right] \frac{\partial \dot{x}^{i}}{\partial \tau}(t, \tau) d t-\int_{0}^{a} g_{i j}^{\tau}\left(x^{\tau}(t)\right)\left[\dot{x}^{i}(t, \tau)\right. \\
& \left.\left.-X^{i}\left(x^{\tau}(t), \tau\right)\right] \frac{\partial X^{j}}{\partial x^{k}}\left(x^{\tau}(t), \tau\right)\right\} \frac{\partial x^{k}}{\partial \tau}(t, \tau) d t+\int_{0}^{a} g_{i j}^{\tau}\left(x^{\tau}(t)\right) \\
& {\left[\dot{x}^{i}(t, \tau)-X^{i}\left(x^{\tau}(t), \tau\right)\right] \frac{\partial X^{j}}{\partial \tau}\left(x^{\tau}(t), \tau\right) d t .} \tag{3}
\end{align*}
$$

Integrating by parts, then considering $\tau=0$ and using the fact that

$$
\left.\frac{\partial x^{i}}{\partial \tau}\right|_{0} ^{a}=0
$$

the third integral from relation (3) becomes

$$
\begin{aligned}
I_{3}= & -\left.\int_{0}^{a} \frac{d}{d t}\right|_{\tau=0} g_{i j}^{\tau}\left(x^{\tau}(t)\right)\left[\dot{x}^{j}(t, \tau)-X^{j}\left(x^{\tau}(t), \tau\right)\right] \frac{\partial x^{i}}{\partial \tau}(t, 0) d t \\
= & -\int_{0}^{a}\left\{\frac{\partial g_{i j}^{0}}{\partial x^{\ell}}\left(x^{0}(t)\right) \dot{x}^{\ell}(t, 0)\left[\dot{x}^{j}(t, 0)-X^{j}\left(x^{0}(t), 0\right)\right]\right. \\
& \left.+g_{i j}^{0}\left(x^{0}(t)\right)\left[\ddot{x}^{j}(t, 0)-\frac{\partial X^{j}}{\partial x^{\ell}}\left(x^{0}(t), 0\right)\right] \dot{x}^{\ell}(t, 0)\right\} \frac{\partial x^{i}}{\partial \tau}(t, 0) d t .
\end{aligned}
$$

Relation (3) becomes, at $\tau=0$:

$$
\begin{align*}
& \left.\frac{\partial}{\partial \tau}\right|_{\tau=0} E_{g^{\tau}}(p, q)=\int_{0}^{a} f_{i j}\left(x^{0}(t)\right)\left[\dot{x}^{i}(t, 0) x^{j}(t, 0)\right. \\
& \left.\quad-2 \dot{x}^{i}(t, 0) X^{j}\left(x^{0}(t), 0\right)+X^{i}\left(x^{0}(t), 0\right) X^{j}\left(x^{0}(t), 0\right)\right] d t \\
& +\int_{0}^{a}\left\{\frac { \partial g _ { i j } ^ { 0 } } { \partial x ^ { k } } (x ^ { 0 } (t)) \left[\frac{1}{2} \dot{x}^{i}(t, 0) \dot{x}^{j}(t, 0)\right.\right. \\
& \left.-\dot{x}^{i}(t, 0) X^{j}\left(x^{0}(t), 0\right)+\frac{1}{2} X^{i}\left(x^{0}(t), 0\right) X^{j}\left(t, x^{0}(t), 0\right)\right] \\
& \left.\quad-g_{i j}^{0}\left(x^{0}(t)\right)\left[\dot{x}^{i}(t, 0)-X^{i}\left(x^{0}(t), 0\right)\right] \frac{\partial X^{j}}{\partial x^{k}}\left(x^{0}(t), 0\right)\right\} \\
& \frac{\partial x^{k}}{\partial \tau}(t, 0) d t+\left\{-\int_{0}^{a} \frac{\partial g_{i j}^{0}}{\partial x^{\ell}}\left(x^{0}(t)\right) \dot{x}^{\ell}(t, 0)\left[\dot{x}^{j}(t, 0)\right.\right. \\
& \left.\quad-X^{j}\left(x^{0}(t), 0\right)\right]+g_{i j}^{0}\left(x^{0}(t)\right)\left[\ddot{x}^{j}(t, 0)-\frac{\partial X^{j}}{\partial x^{\ell}}\left(x^{0}(t), 0\right)\right. \\
& \left.\left.\dot{x}^{\ell}(t, 0)\right] \frac{\partial x^{i}}{\partial \tau}(t, 0) d t\right\}-\int_{0}^{a} g_{i j}^{0}\left(x^{0}(t)\right)\left[\dot{x}^{i}(t, 0)\right. \\
& \left.\quad-X^{i}\left(x^{0}(t), 0\right)\right] \frac{\partial X^{j}}{\partial \tau}\left(x^{0}(t), 0\right) d t, \tag{4}
\end{align*}
$$

where $f_{i j}=\left.\frac{1}{2} \frac{\partial}{\partial \tau}\right|_{\tau=0} g_{i j}^{\tau}$.
Making the sum of the second and third integrals of (4), we obtain

$$
\begin{aligned}
& I_{2}+I_{3}=-2 \frac{\partial g_{k j}^{0}}{\partial x^{i}}\left(x^{0}(t)\right) \dot{x}^{i}(t, 0) \dot{x}^{j}(t, 0)+\frac{\partial g_{i j}^{0}}{\partial x^{k}}(t, 0) \\
& {\left[-2 \dot{x}^{i}(t, 0) X^{j}\left(x^{0}(t), 0\right)+X^{i}\left(x^{0}(t), 0\right) X^{j}\left(x^{0}(t), 0\right)\right]} \\
& \quad-2 g_{i j}^{0}\left(x^{0}(t)\right)\left[\dot{x}^{i}(t, 0) \frac{\partial X^{j}}{\partial x^{k}}\left(x^{0}(t), 0\right)-\frac{\partial X^{i}}{\partial x^{k}}\left(x^{0}(t), 0\right)\right. \\
& \left.X^{j}\left(x^{0}(t), 0\right)\right]+2 \frac{\partial g_{k j}^{0}}{\partial x^{\ell}}\left(x^{0}(t)\right) \dot{x}^{\ell}(t, 0) X^{j}\left(x^{0}(t), 0\right) \\
& \left.-2 g_{k j}^{0}\left(x^{0}(t)\right)\left[\ddot{x}^{j}(t, 0)-\frac{\partial X^{j}}{\partial x^{\ell}}\left(x^{0}(t), 0\right) \dot{x}^{\ell}(t, 0)\right]\right\} \frac{\partial x^{k}}{\partial \tau}(t, 0) d t \\
& \quad+\left[G_{k i, j}\left(x^{0}(t), 0\right)+G_{k j, i}\left(x^{0}(t), 0\right)\right]\left[-2 \dot{x}^{i}(t, 0) X^{j}\left(x^{0}(t), 0\right)\right. \\
& \left.+X^{i}\left(x^{0}(t), 0\right) X^{j}\left(t, x^{0}(t), 0\right)\right]-2 g_{i j}^{0}\left(x^{0}(t)\right) \\
& \\
& \quad\left[\dot{x}^{i}(t, 0) \frac{\partial X^{j}}{\partial x^{k}}\left(x^{0}(t), 0\right)-\frac{\partial X^{i}}{\partial x^{k}}\left(x^{0}(t), 0\right) X^{j}\left(x^{0}(t), 0\right)\right] \\
& +2\left[G_{k \ell, j}\left(x^{0}(t), 0\right)+G_{\ell j, k}^{\ell}\left(x^{0}(t), 0\right)\right] \dot{x}^{\ell}(t, 0) X^{j}\left(x^{0}(t), 0\right) \\
& \quad-2 g_{k j}^{0}\left(x^{0}(t)\right)\left[\ddot{x}^{j}(t, 0)-\frac{\partial X^{j}}{\partial t}\left(x^{0}(t), 0\right)-\frac{\partial X^{j}}{\partial x^{\ell}}\left(x^{0}(t), 0\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.\dot{x}^{\ell}(t, 0)\right]\right\} \frac{\partial x^{k}}{\partial \tau}(t, 0) d t=\frac{1}{2} \int_{0}^{a}\left\{-2 g_{\ell k}^{0}\left(x^{0}(t)\right) G_{i j}^{\ell}\left(x^{0}(t), 0\right)\right. \\
& \dot{x}^{i}(t, 0) \dot{x}^{j}(t, 0)-2 g_{i q}^{0}\left(x^{0}(t)\right) \dot{x}^{i}(t, 0) \nabla_{k} X^{q}\left(x^{0}(t), 0\right) \\
& +2 g_{j q}^{0}\left(x^{0}(t)\right)\left[G_{k \ell}^{q}\left(x^{0}(t), 0\right) X^{\ell}\left(x^{0}(t), 0\right) X^{j}\left(x^{0}(t), 0\right)\right. \\
& \left.+\frac{\partial X^{q}}{\partial x^{k}}\left(x^{0}(t), 0\right) X^{j}\left(x^{0}(t), 0\right)\right]+2 g_{q k}^{0}\left(x^{0}(t)\right) \\
& G_{j \ell}^{q}\left(x^{0}(t), 0\right) \dot{x}^{\ell} X^{j}\left(x^{0}(t), 0\right)+2 g_{k j}^{0}\left(x^{0}(t)\right) \\
& \left.\frac{\partial X^{j}}{\partial x^{\ell}}\left(x^{0}(t), 0\right) \dot{x}^{\ell}(t, 0)\right\} \frac{\partial x^{k}}{\partial \tau}(t, 0) d t \\
& =\int_{0}^{a}\left\{-g_{j k}^{0}\left(x^{0}(t)\right)\left[\ddot{x}^{j}(t, 0)-g_{i q}^{0}\left(x^{0}(t)\right)\right.\right. \\
& \dot{x}^{i}(t, 0) \nabla_{k} X^{q}\left(x^{0}(t), 0\right)+g_{q k}^{0}\left(x^{0}(t)\right) G_{j \ell}^{q}\left(x^{0}(t), 0\right) \\
& \dot{x}^{\ell}(t, 0) X^{j}\left(x^{0}(t), 0\right)+g_{k j}^{0}\left(x^{0}(t)\right) \frac{\partial X^{j}}{\partial x^{\ell}}\left(x^{0}(t), 0\right) \\
& \left.\dot{x}^{\ell}(t, 0)\right\} \frac{\partial x^{k}}{\partial \tau}(t, 0) d t=\int_{0}^{a}\left[-g_{\ell j}^{0}\left(x^{0}(t)\right)\right. \\
& \left(\nabla_{k} X^{\ell}\left(x^{0}(t), 0\right) X^{j}\left(x^{0}(t), 0\right)-g_{k i}^{0}\left(x^{0}(t)\right) F_{j}^{i}\left(x^{0}(t), 0\right)\right. \\
& \dot{x}^{j}(t, 0)-g_{i q}^{0}\left(x^{0}(t)\right) \dot{x}^{i}(t, 0) \nabla_{k} X^{q}\left(x^{0}(t), 0\right) \\
& +g_{j q}^{0}(t) \nabla_{k} X^{q}\left(x^{0}(t), 0\right) X^{j}\left(x^{0}(t), 0\right) \\
& +g_{q k}^{0}\left(x^{0}(t)\right) G_{j \ell}^{q}\left(x^{0}(t), 0\right) \dot{x}^{\ell}(t, 0) \\
& \left.X^{j}\left(x^{0}(t), 0\right)\right] \frac{\partial x^{k}}{\partial \tau}(t, 0) d t=\int_{0}^{a}\left[-g_{k i}^{0}\left(x^{0}(t)\right)\right. \\
& F_{j}^{i}\left(x^{0}(t), 0\right) \dot{x}^{j}(t, 0)-g_{i q}^{0}\left(x^{0}(t)\right) \dot{x}^{i}(t, 0) \\
& \left(\nabla_{k} X^{q}\right)\left(x^{0}(t), 0\right)+g_{q k}^{0}\left(x^{0}(t)\right) G_{j \ell}^{q}\left(x^{0}(t), 0\right) \dot{x}^{\ell}(t, 0) \\
& X^{j}\left(x^{0}(t), 0\right)+g_{k j}^{0}\left(x^{0}(t)\right) \frac{\partial X^{j}}{\partial x^{\ell}}\left(x^{0}(t), 0\right) \\
& \left.\dot{x}^{\ell}(t, 0)\right] \frac{\partial x^{k}}{\partial \tau}(t, 0) d t=\int_{0}^{a} \dot{x}^{j}(t, 0)\left\{-g_{k i}^{0}\left(x^{0}(t)\right)\right. \\
& {\left[\left(\nabla_{j} X^{i}\right)\left(x^{0}(t), 0\right)-g_{0}^{i q}\left(x^{0}(t)\right) g_{\ell j}^{0}\left(x^{0}(t)\right)\right.} \\
& \left.\left(\nabla_{q} X^{\ell}\left(x^{0}(t), 0\right)\right)\right]-g_{j q}^{0}\left(x^{0}(t)\right)\left(\nabla_{k} X^{q}\right)\left(x^{0}(t), 0\right) \\
& +g_{q k}^{0}\left(x^{0}(t)\right) G_{\ell j}^{q}\left(x^{0}(t), 0\right) X^{\ell}\left(x^{0}(t), 0\right) \\
& \left.+g_{k \ell}^{0}\left(x^{0}(t)\right) \frac{\partial X^{\ell}}{\partial x^{j}}\left(x^{0}(t), 0\right)\right\} \frac{\partial x^{k}}{\partial \tau}(t, 0) d t \\
& =\int_{0}^{a} \dot{x}^{j}(t, 0)\left[-g_{k i}^{0}\left(x^{0}(t)\right)\left(\nabla_{j} X^{i}\right)\left(x^{0}(t), 0\right)\right. \\
& +g_{\ell j}^{0}\left(x^{0}(t)\right)\left(\nabla_{k} X^{\ell}\right)\left(x^{0}(t), 0\right)-g_{j q}^{0}\left(x^{0}(t)\right) \\
& \left(\nabla_{k} X^{q}\right)\left(x^{0}(t), 0\right)+g_{q k}^{0}\left(x^{0}(t)\right) G_{\ell j}^{q}\left(x^{0}(t)\right) X^{\ell}\left(x^{0}(t), 0\right) \\
& \left.+g_{k \ell}^{0}\left(x^{0}(t)\right) \frac{\partial X^{\ell}}{\partial x^{j}}\left(x^{0}(t), 0\right)\right] \frac{\partial x^{k}}{\partial \tau}(t, 0) d t=0 .
\end{aligned}
$$

We have obtained that

$$
\begin{aligned}
& \left.\frac{\partial}{\partial \tau}\right|_{\tau=0} E_{g^{\tau}}(p, q)=\int_{0}^{a} f_{i j}\left(x^{0}(t)\right)\left[\dot{x}^{i}(t, 0)-X^{i}\left(x^{0}(t), 0\right)\right] \\
& \quad\left[\dot{x}^{j}(t, 0)\left(-X^{j}\left(x^{0}(t), 0\right)\right] d t-\int_{0}^{a} g_{i j}^{0}\left(x^{0}(t)\right)\left[\dot{x}^{i}(t, 0)\right.\right. \\
& \left.\quad-X^{i}\left(x^{0}(t), 0\right)\right] \frac{\partial X^{j}}{\partial \tau}\left(x^{0}(t), 0\right) d t
\end{aligned}
$$

where $f_{i j}\left(x^{0}(t)\right)=\left.\frac{1}{2} \frac{\partial}{\partial \tau}\right|_{\tau=0} g_{i j}^{\tau}$.
Considering that $\frac{\partial X^{j}}{\partial \tau}\left(x^{0}(t), 0\right)=0$, and using the functional

$$
\begin{aligned}
& I_{f}\left(x^{0}\right)=\int_{0}^{a} f_{i j}\left(x^{0}(t)\right)\left[\dot{x}^{i}(t, 0)-X^{i}\left(x^{0}(t), 0\right)\right] \\
& \quad\left[\dot{x}^{j}(t, 0)-X^{j}\left(x^{0}(t), 0\right)\right] d t
\end{aligned}
$$

the previous relation becomes

$$
\begin{equation*}
\left.\frac{\partial}{\partial \tau}\right|_{\tau=0} E_{g^{\tau}}(p, q)=I_{f}\left(x^{0}\right) \tag{5}
\end{equation*}
$$

where x^{0} is the potential curve corresponding to the points p, q from the border ∂M of the manifold M.

The function I_{f} is called the single-ray transform of the tensor field $\left(f_{i j}\right)$.

The existence of solutions of the open problem 1 for the family $\left(g^{\tau}\right)$ implies the existence of a one parameter group of diffeomorphisms $\varphi^{\tau}(x)$ such that $g^{\tau}=\left(\varphi^{\tau}\right)^{*} g^{0}$. Explicitly

$$
\begin{equation*}
g_{i j}^{\tau}=\left(g_{k \ell}^{0} \circ \varphi^{\tau}\right) \frac{\partial x^{\prime k}}{\partial x^{i}} \frac{\partial x^{\ell \ell}}{\partial x^{j}}, \tag{6}
\end{equation*}
$$

where $\varphi^{\tau}(x)=\left(\varphi^{1}(x, \tau), \ldots, \varphi^{n}(x, \tau)\right), x^{\prime}=\varphi^{\tau}(x)$.
Theorem 3.1 Let $v^{k}(x)=\left.\frac{\partial}{\partial \tau}\right|_{\tau=0}\left(x^{k}\right)(x, \tau)$, $k=\overline{1, n}, v_{i}=g_{i j}^{0} v^{j}$ and $v_{i ; j}$ be the covariant derivative of $\left(v_{i}\right)$. Then the following relation holds

$$
\begin{equation*}
f_{i j}=\frac{1}{2}\left(v_{i ; j}+v_{j ; i}\right), \quad i, j=\overline{1, n} \tag{7}
\end{equation*}
$$

Proof. Differentiating the relation (6) with respect to τ and then considering $\tau=0$, we find

$$
\begin{aligned}
& 2 f_{i j}=\left.\frac{\partial}{\partial \tau}\right|_{\tau=0} g_{i j}^{\tau}=\frac{\partial g_{k \ell}^{0}}{\partial x^{m}} v^{m} \frac{\partial x^{\prime k}}{\partial x^{i}} \frac{\partial x^{\prime \ell}}{\partial x^{j}} \\
& \quad+g_{k \ell}^{0} \frac{\partial}{\partial x^{i}}\left(\left.\frac{\partial}{\partial \tau}\right|_{\tau=0} x^{\prime k}\right) \frac{\partial x^{\prime \ell}}{\partial x^{j}}
\end{aligned}
$$

Issue 1, Volume 7, January 2008

$$
\begin{aligned}
& +g_{k \ell}^{0} \frac{\partial x^{\prime k}}{\partial x^{i}} \frac{\partial}{\partial x^{j}}\left(\left.\frac{\partial}{\partial \tau}\right|_{\tau=0} x^{\ell \ell}\right) \\
& \quad=\frac{\partial g_{k \ell}^{0}}{\partial x^{m}} v^{m} \delta_{i}^{k} \delta_{j}^{\ell}+g_{k \ell}^{0} \frac{\partial v^{k}}{\partial x^{i}} \delta_{j}^{\ell}+g_{k \ell}^{0} \delta_{i}^{k} \frac{\partial v^{\ell}}{\partial x^{j}} \\
& \quad=\frac{\partial g_{i j}^{0}}{\partial x^{q}} v^{q}+g_{j q}^{0} \frac{\partial v^{q}}{\partial x^{i}}+g_{i q}^{0} \frac{\partial v^{q}}{\partial x^{j}} .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
v_{i ; j}+v_{j ; i}= & \frac{\partial v^{i}}{\partial x^{j}}-G_{i j}^{m} v_{m}+\frac{\partial v_{j}}{\partial x^{i}}-G_{j i}^{m} v_{m}=\frac{\partial g_{i m}^{0}}{\partial x^{j}} v^{m} \\
& +g_{i m}^{0} \frac{\partial v^{m}}{\partial x^{j}}+\frac{\partial g_{j m}^{0}}{\partial x^{i}} v_{m}+g_{j m}^{0} \frac{\partial v^{m}}{\partial x^{i}} \\
& -g_{0}^{m q}\left(\frac{\partial g_{j q}^{0}}{\partial x^{i}}+\frac{\partial g_{i q}^{0}}{\partial x^{j}}-\frac{\partial g_{i j}^{0}}{\partial x^{q}}\right) g_{m s}^{0} v^{s} \\
= & \frac{\partial g_{i j}^{0}}{\partial x^{q}} v^{q}+g_{j q}^{0} \frac{\partial v^{q}}{\partial x^{i}}+g_{i q}^{0} \frac{\partial v^{q}}{\partial x^{j}},
\end{aligned}
$$

and relation (7) is proved
Therefore, the following generalization of the open problem 1 appears. To what extent do the integrals

$$
\begin{aligned}
& I_{f}(x)=\int_{0}^{a} f_{i j}(x(t))\left[\dot{x}^{i}(t)-X^{i}(x(t))\right] \\
& \quad\left[\dot{x}^{j}(t)-X^{j}(x(t))\right] d t
\end{aligned}
$$

determine the tensor $\left(f_{i j}\right)$?

References:

[1] M. Neagu: Riemann-Lagrange Geometry on 1-Jet Spaces, Matrix Rom, Bucharest, 2005.
[2] A. Sharafutdinov: Integral Geometry of Tensor Fields, VSPBV Utrecht, 1994.
[3] C. Udrişte: Convex Functions and Optimization Methods on Riemannian Manifolds, Kluwer Academic Publishers, 1994.
[4] C. Udrişte, M. Ferrara and D. Opriş: Economic Geometry Dynamics, Geometry Balkan Press, 2004.
[5] C. Udrişte, Ariana Pitea and J. Mihăilă: Determination of Metrics by Boundary Energy, Balkan J. Geom. Appl., vol. 11, no. 1 (2006), pp. 131-143.
[6] C. Udrişte, Ariana Pitea and J. Mihăilă: Kinetic PDEs System on the First Order Jet Bundle, Proc. 4 -th Int. Coll. Math. Engng \& Num. Phys.
[7] C. Udrişte and M. Postolache: Atlas of Magnetic Geometric Dynamics, Geometry Balkan Press, 2001.
[8] H. Urakawa: Calculus of Variations and Harmonic Maps, Shokabo Publishing Co. Ltd., Tokyo, 1990.

