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Abstract: Our theory of determining a tensor by single-time flow energy is similar to those developed by
Sharafutdinov. Section 1 refines the theory of potential curves determined by a flow and a Riemannian
metric. Section 2 defines the boundary energy of a potential curve and proves that the problem of
determining a metric from a single-time flow boundary energy cannot have a unique solution. Section 3

linearizes the above-mentioned problem and defines the notion of single-ray transform.
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1 Potential curves

Let (M,g) be a compact Riemannian mani-
fold with the boundary M and of dimension n.
We consider x = (z°) local coordinates on the
manifold (M, g), (Gjke) and (G%,) its Christof-
fel symbols of the first and of tile second type,
respectively.

Let ¢:[0,1] — M, ¢t) = =z, () =
(x1(t),...,2"(t)) be a C®-curve. We want to ap-

proximate the velocit

a C°°-distinguished vector field X of components
X*(z), in the sense of least squares. For that we

da? ‘
build the flow d"; (t) = Xi(z(t)), T,n, 2(0) = p,

x(1) = g, where p and ¢ are two points from the
boundary M of the manifold M, and the least
squares Lagrangian (flow energy density),

S0 (D)~ Xi(a(1))]

[ () — X7 (x(1)],

L(t, (1), &(t)) =

i dx
where &' (t) = o (t).
The geometric dynamics (ODEs or PDEs) is
a Lagrangian dynamics (ODEs or PDEs) deter-
mined by a least squares Lagrangian attached to
a (single-time or multi-time) flow and a pair of
Riemannian metrics, one in the source space and

other in the target space.
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Let us look for the Euler-Lagrange prolonga-
tion of the flow obtained as Euler-Lagrange ODEs
produced by L. The extremals of L are called po-
tential curves. These curves are geodesics [4].

Theorem 1.1 The extremals of L are de-
scribed by the ODEs:

£m'i = g% gr; (Ve X*) X7 4 F;:L“j, i=1,n
.T(O) =D x(l) =4q,
where:
) i ko
%m—m +G ik i=T1n,
= VXZ - gwgijng, ,) = 1,7’L; (1)
QX!
VX' = a7 -+ G XF, i j=Tn (2

Proof. We compute
oL 1 9g; g 8glj i 1 0g;;
i X7+ J
ozF ~ 2 axkx T okt 2 Ok

;0X7 oX'
gz] Ok +gz]8 ka;

oL i i
W = gikT' — gixX";
d (0L 0gik e 0Gik i w0
tQﬁ) pot T gl = i X
0OX* N ({9Xz
B N TR
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We take into account formula (1) and

995 -
33;11 = Gﬁlg@ + Gﬁ]gﬁla (ZWE k= 1,77,.

If we replace these relations in Euler-Lagrange
equations,

oL a oy _
oxk  dt \ozk) 7

o i i iyl
i~y = 9ij (Vi X") X7 + g1;(V X7)

k=1,n,

we find

—gijiikaj, k= 1,n.

Transvecting by ¢** and using formula (2), we
obtain
o’

== 9%9;(ViXOX) + Flad, i=Tnm

Definition 1.1 The map ¢ € C*°([0,1], M),
o(t) = x, which verifies the ODEs from the pre-
vious theorem s called potential curve associated
to the d-vector field X.

Definition 1.2 The Riemannian metric g s
called simple if there is a unique potential curve
z:[0,1] — M, z(0) = p, z(1) = ¢, p,q € OM.

2 Determining a metric by
boundary flow energy

Starting from the boundary flow energy, we
study the recovering of a tensor from the centered
moments which determine the metric g.

Let g be a simple metric and z: [0, 1] — M the
corresponding potential curve, z(0) = p, z(1) = ¢,
p,q € OM.

Definition 2.1 Let p and q be two points on
the boundary OM of the manifold M. The function
Eq:OM x OM — R, (p,q) — E4(p,q),

1

Ey(p.q) = 2/0 gig (€ () [ (8) — X*(x())][# (¢)

— X (z(t))] dt

1s called the boundary energy of the flow along the
potential curve x:[0,1] — M,z(0) = p, z(1) = ¢,
p,q € OM.
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Open problem 1. Given an energy F, is
there a metric g that realizes this energy? How
can these metrics be found?

Let us show that the existence problem of the
metrics with the property that F:90M xdM —R
represents the boundary energy cannot have a
unique solution.

Let ¢o: M — M be a diffeomorphism with the
property ¢|y,; = id. This diffeomorphism trans-
forms the simple metric ¢° into a simple metric
g' = v*¢°, because we have

9" (@)(&,m) = ¢°((de0)&, (d©)N) o)

where dyp: T M — T,,;)M is the differential of
®.
It can be noticed that

0

X = .
oxt

where X¥ represents the distinguished vector field
X with respect to 2’ = ¢(x).

The metrics ¢° and g' give different families of
potential curves with the same boundary energy
E.

Open problem 2. The problem of recover-
ing a metric by boundary energy can be changed
in the following way. Let ¢ and ¢' be simple
metrics on M. Does the equality Fo = Egi im-
pliy the existence of a diffeomorphism ¢: M — M,

@loy = id and gt = ©*¢0?

3 Linearization of the problem
of finding a metric from the
boundary energy

Let us linearize the open problem 1. Let
(97) be a family of simple metrics which depends
smoothly on parameter 7 € (—¢,¢), € > 0. Let
p and g be two points of the border dM of the
manifold M and a = E(p,q), where E:0M X
OM — R is the given boundary energy. Consider
x7:]0,a] — M the potential curve corresponding
to the pair (p,q), 2’ = (z™), 27 (t) = 2%(t, 1),
i =1,n. We denote g = (g7;).

The energy of deformation x” is

By = [ @ O 7) - X'(alt,).7)

(&7 (t,7) — X7 (x(t,7), 7)) dt.
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Differentiating with respect to 7 we obtain

seEe )= [ {?;‘Tj(xf(t))[cbi(t, ™) - X' (6),7)]

/(,7) = X7 (0,7) + 98 &7 (0)| 38" ) (0,7

—a ()X (27 (1), 7) + %Xi(mf ), 7)

oz*

X7 (a7 (t),7) W(t,r) + gi; (% (t)){

(t )i’ (t T)

ax’

o #(tm) %

S DX @ (0),7) —

(=" (), 7)

) G " i T
Oxk (m (t)vT)W(th)'i_X (l’ (t)vT)

—&'(t, )

)¢

aX] T T
2 )7) 5 (@

or

(=" (1),7

(t),7)

k a T . .
% T)} } a- [ %% (a(t,7)) {ﬂ(t, )i (t,7)

22 (t, ) X7 (27 (t), 7+ X' (27 (t), 7) X7 (27 (1), T)] dt

+ [ G e o) 5 ane e
()X (0,) + X6 (0,0X 6 (0.7

—gi(x" ()" (t,7) = X' (27 (1), 7)]

X’ oz*
(0.0}

@ (.G ) = [ g ) ¢.7)

(t.7)dt + / " g @ () (8, 7)

). ¢l

. e a
—X"(z"(t),7)] W(xT(t)’ 7-)} 88—T(t7 T) dt—i—/O gif(z" (1))

X’ (
or

[&"(t, 7) — X" (a7 (t),7)] x" (t),7)dt. (3)

Integrating by parts, then considering 7 = 0
and using the fact that
oz’

a7 |,

a

=0,

the third integral from relation (3) becomes

I /ad
3= — _
0 dt 7=0

— [y

98 (2 0) [ (1, 0)-
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T ()8 (17X o (1), 7) 2

(t,0) dt
-

(t,0)[7 (¢,0) — X9 (2°

(1,0)
.00 | o
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(t,0) dt.
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Relation (3) becomes, at 7 = 0:

~(p;q) /fw

(t),
+/0 {‘Ziz( (t))B:ﬁi(t,O)ij(t,O)

—i'(t,0)X7 (z°(t),0) + %Xi (2°(t),0)X7 (t,2°(t), 0)}

)[# (¢, 0)2” (t, 0)

=

—22"(t,0) X7 (z°(t),0) + X" (z° (), 0) X7 (z°(¢), 0)] dt

X7

X @), 05,

*(8)[E"(8,0) —

~¥i(x 0.0

%(t,@) dt + { - Oa giig (@) (£, 0)[3° (¢, 0)

=X 0,00 a8y a0 [#(6,0)~ 5 (0.0

o 2

a;«f(t,m] 2 1,0) dt} -/ " g0 () (2,0)

aXx7

=X (2(t), 0)] 75— (=" (), 0) t, (4)
10 -
where f;; = 39 Tzogij.

Making the sum of the second and third inte-
grals of (4), we obtain

0 9

22985 (10 (1)) (1,017 (1, 0) +

I+ I3 =— Dz

[—2& (£,0) X7 (2°(£),0) + X" (2°(), 0) X (2°(t

208 a0 [#6.0) 2

0

X7 (2°(1), 0)] n 2%955 (2°(8))#" (¢, 0) X7 (z°

(t),0)

)¢l
ozt

20ty (O P (10~ e 1. 0(0.0)| 5 0

:%/Oa { *Zggk(mo(t))ij(mO(t),0)¢i(t70)¢j(t70)

2" (t,0) X7 (°

°(t))

°(), 0)][-

0)] —2g3(x

HGi j (2°(8),

(1), 0)X7 (t,2° (1),

0)+Glj,i(w (t),0)

+XZ (wO

oxX?

O (1),0)~ X (2 (1),0) X7 (o (1),0)

05y

+2[Gkg7j (l‘

°(1), 0)]&" (¢, 0) X7 («”

¢ (
ot
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260} 20— [ o oic o

" (t,0)37 (t,0) — 295, (x°(t))2" (t,0) Vi X (2" (t),0)
+295,(2°(t)) {Gig(wo(t), 0)X*(2°(t),0)X7 (2°(t), 0)

0.0 60,0 + 200l (0)

G(a”(1), 0)* X7 (2 (1), 0) + 290 (+° (1))
J =k
%(zo(t), 0)#" (¢, 0)} %—T(t, 0) dt

- /Oa { — (2’ ()@ (,0) — gp (2°(2))

&' (1, 0) Vi X (2" (1), 0) + ggi (2° (1)) G, (" (1), 0)

(5,07 (20, 0) + o, (2°(0) o (2°(0), 0)

i (t, o)}aaij(t, 0) dt = /O [f g0;(=°())

(Ve X" (2°(1),0)X7 (2°(¢), 0) — gii (2" () F} (2°(¢), 0)
ij(t, 0) — g?q (:Jc0 (t))j:i(t, O)VkX"(xO(t), 0)
+95, () Vi X (2°(t),0) X7 (2°(t),0)

()G 1), 006 (1,0)

j " “ 0 /0
X 0.0] 0 d = [ - a0
F{ (0,003 (1,0) — g8, (s (1) (1,0)

(ViX7) (2" (1), 0) + gar (2" (1) G, (2" (1), 0)i" (¢, 0)

X7 0(0),0) + %, (2 () 2 (2°(),0)

oz*

i (t, 0)] 5 (t,0)dt = /Oadtj(t,o){ — gri(2°(2))
(V53X (2°(8),0) — g5 (2° (1)) 92 (z° (1))

(VX (2°(2),0))] = g5q (2" (£) (Ve X ) (2° (1), 0)
+ggk (2 (£)) G (« (1), 0) X (2 (1), 0)

14 k
+ola”(0) G (00,0 } 5 (10)

- / "#(t,0) [ (1)) (V5 X (1), 0)

+92; (2 (£) (Ve X ) (2" (1), 0) — gy (2 (¢))
(Vi X) (2°(t), 0)+ g% (2 (1) GL (2 (£) X (2 (£), 0)

90,4 0 al'k _
o (@ (t),O)] S (1,0 dt = 0.

+gie(2° (1))
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We have obtained that

9
or

Ey (pr )= / " (1) (1, 0)— X (2°(1), 0)

[ (¢,0) (=X («"(1), 0)] dt — /a g (2 (£))[&' (¢, 0)

0

X (0, 015 (1), 0)
19
where fij(mo(t)) =35 gij-
7=0

X
Considering that %(mo(t), 0) =0, and us-
T

ing the functional
Iy(z") = /Oa Fii (@ ()[E'(¢,0) — X' (2°(t),0)]

[&7 (t,0) — X7 (2°(t),0)]dt

the previous relation becomes

9 0
5| Erea=5G) 6
where z¥ is the potential curve corresponding to

the points p, ¢ from the border OM of the mani-
fold M.

The function Iy is called the single-ray trans-
form of the tensor field (fij).

The existence of solutions of the open problem
1 for the family (¢7) implies the existence of a one
parameter group of diffeomorphisms 7 (z) such
that ¢” = (¢7)*¢". Explicitly

ax/k 81,/@
T 0 T
95 = (ggeow )76321' 37 (6)

where ¢7(x) = (p' (2, 7),..., 0" (2, 7)), 2’ =7 (x).

Theorem 3.1 Let v’“(az):2 (™) (z,7),
or 7=0
k=1n, v, = g%vj and v;; be the covariant
derivative of (v;). Then the following relation
holds

1 .
fij = 5(% +vj4), 4, =1,n. (7)

Proof. Differentiating the relation (6) with
respect to 7 and then considering 7 = 0, we find

0

af, =2 . 09, . 0x'% o't
Yo7

U ggm ozt OxI

7=0
0 (0 Ox't

o ¥ (¥ 'k
ke G (87 ‘T_Ox ) Oxd
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+¢° dz'™ 9 (2 :1:’5) [7] C. Udrigte and M. Postolache: Atlas of Magnetic
M ori oxi \ T —0 Geometric Dynamics, Geometry Balkan Press,
a 3 o 2001.
ke, m
= o ’ff 5k5z+ Ikt 5 ity kgtsfa ; [8] H. Urakawa: Calculus of Variations and Har-
monic Maps, Shokabo Publishing Co. Ltd.,
agU it g Jq o vl +g? an‘_ Tokyo, 1990.
 Oxt ox? 1O
On the other hand,
o' v, 9
Vig + Ui = 55 — G + 54 = Gtom = ™
o™ 9g) o™
0 jm 0
+gzma j + 8 i m+g7m axz

Ox? Ooxi Ozt

0 0 0
_96RQ(agjq 99iq agij) 0 s

0g? ov? vt
_ i 4 0
= Gt V" Bag T g

and relation (7) is proved m

Therefore, the following generalization of the
open problem 1 appears. To what extent do the
integrals

Iy(x) = /0 " F ) () — X))
(69 () — X9 (a(t))]t

determine the tensor (f;;)?

References:

[1] M. Neagu: Riemann-Lagrange Geometry on 1-Jet
Spaces, Matrix Rom, Bucharest, 2005.

[2] A. Sharafutdinov: Integral Geometry of Tensor
Fields, VSPBV Utrecht, 1994.

[3] C. Udrigte: Convex Functions and Optimization
Methods on Riemannian Manifolds, Kluwer Aca-
demic Publishers, 1994.

[4] C. Udriste, M. Ferrara and D. Opris: Economic
Geometry Dynamics, Geometry Balkan Press,
2004.

[5] C. Udrigte, Ariana Pitea and J. Mihaild: Deter-
mination of Metrics by Boundary Energy, Balkan
J. Geom. Appl., vol. 11, no. 1 (2006), pp. 131-143.

[6] C. Udriste, Ariana Pitea and J. Mihaila: Kinetic
PDFEs System on the First Order Jet Bundle,
Proc. 4-th Int. Coll. Math. Engng & Num. Phys.

ISSN: 1109-2769 Issue 1, Volume 7, January 2008
44



