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Abstract: Our theory of determining a tensor by single-time flow energy is similar to those developed by
Sharafutdinov. Section 1 refines the theory of potential curves determined by a flow and a Riemannian
metric. Section 2 defines the boundary energy of a potential curve and proves that the problem of
determining a metric from a single-time flow boundary energy cannot have a unique solution. Section 3
linearizes the above-mentioned problem and defines the notion of single-ray transform.
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1 Potential curves

Let (M, g) be a compact Riemannian mani-
fold with the boundary ∂M and of dimension n.
We consider x = (xi) local coordinates on the
manifold (M, g), (Gjk,`) and (Gi

jk) its Christof-
fel symbols of the first and of the second type,
respectively.

Let ϕ: [0, 1] → M , ϕ(t) = x, x(t) =
(x1(t), . . . , xn(t)) be a C∞-curve. We want to ap-

proximate the velocity
dx

dt
of components

dxi

dt
by

a C∞-distinguished vector field X of components
Xi(x), in the sense of least squares. For that we

build the flow
dxi

dt
(t) = Xi(x(t)), 1, n, x(0) = p,

x(1) = q, where p and q are two points from the
boundary ∂M of the manifold M , and the least
squares Lagrangian (flow energy density),

L(t, x(t), ẋ(t)) =
1
2
gij(x(t))[ẋi(t)−Xi(x(t))]

[ẋj(t)−Xj(x(t)],

where ẋi(t) =
dxi

dt
(t).

The geometric dynamics (ODEs or PDEs) is
a Lagrangian dynamics (ODEs or PDEs) deter-
mined by a least squares Lagrangian attached to
a (single-time or multi-time) flow and a pair of
Riemannian metrics, one in the source space and
other in the target space.

Let us look for the Euler-Lagrange prolonga-
tion of the flow obtained as Euler-Lagrange ODEs
produced by L. The extremals of L are called po-
tential curves. These curves are geodesics [4].

Theorem 1.1 The extremals of L are de-
scribed by the ODEs:

δ

dt
ẋi = gi`gkj(∇`X

k)Xj + F i
j ẋ

j , i = 1, n

x(0) = p, x(1) = q,

where:
δ

dt
ẋi = ẍi + Gi

jk ẋj ẋk, i = 1, n,

F i
j = ∇jX

i − gi`gkj∇`X
k, i, j = 1, n; (1)

∇jX
i =

∂X i

∂xj
+ Gi

jkX
k, i, j = 1, n. (2)

Proof. We compute
∂L

∂xk
=

1
2

∂gij

∂xk
ẋi ẋj − ∂gij

∂xk
ẋiXj +

1
2

∂gij

∂xk
XiXj

−gij ẋ
j ∂X i

∂xk
+ gij

∂Xi

∂xk
Xj ;

∂L

∂ẋk
= gikẋ

i − gikX
i;

d

dt

(
∂L

∂ẋk

)
=

∂gik

∂x`
ẋ`ẋi + gikẍ

i − ∂gik

∂x`
ẋiX`

−gik

(
∂X i

∂t
+

∂X i

∂x`
ẋ`

)
.
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We take into account formula (1) and

∂gij

∂xk
= G`

kig`j + G`
kjg`i, i, j, k = 1, n.

If we replace these relations in Euler-Lagrange
equations,

∂L

∂xk
− d

dt

(
∂L

∂ẋk

)
= 0, k = 1, n,

we find

gkj
δẋj

dt
= gij(∇kX

i)Xj + gkj(∇`X
j)ẋ`

−gij ẋ
i∇kX

j , k = 1, n.

Transvecting by g`k and using formula (2), we
obtain

δẋi

dt
= gikg`j(∇kX

`)Xj + F i
j ẋ

j , i = 1, n

Definition 1.1 The map ϕ ∈ C∞([0, 1],M),
ϕ(t) = x, which verifies the ODEs from the pre-
vious theorem is called potential curve associated
to the d-vector field X.

Definition 1.2 The Riemannian metric g is
called simple if there is a unique potential curve
x: [0, 1] → M , x(0) = p, x(1) = q, p, q ∈ ∂M .

2 Determining a metric by
boundary flow energy

Starting from the boundary flow energy, we
study the recovering of a tensor from the centered
moments which determine the metric g.

Let g be a simple metric and x: [0, 1] → M the
corresponding potential curve, x(0) = p, x(1) = q,
p, q ∈ ∂M .

Definition 2.1 Let p and q be two points on
the boundary ∂M of the manifold M .The function
Eg: ∂M × ∂M → R, (p, q) 7→ Eg(p, q),

Eg(p, q) =
1
2

∫ 1

0
gij(x(t))[ẋi(t)−Xi(x(t))][ẋj(t)

−Xj(x(t))] dt

is called the boundary energy of the flow along the
potential curve x: [0, 1] → M ,x(0) = p, x(1) = q,
p, q ∈ ∂M .

Open problem 1. Given an energy E, is
there a metric g that realizes this energy? How
can these metrics be found?

Let us show that the existence problem of the
metrics with the property that E: ∂M×∂M→R
represents the boundary energy cannot have a
unique solution.

Let ϕ:M → M be a diffeomorphism with the
property ϕ|∂M = id. This diffeomorphism trans-
forms the simple metric g0 into a simple metric
g1 = ϕ∗g0, because we have

g1(x)(ξ, η) = g0((dxϕ)ξ, (dxϕ)η)ϕ(x),

where dxϕ:TxM → Tϕ(x)M is the differential of
ϕ.

It can be noticed that

X ′i =
∂x′

i

∂xi
Xi,

where Xi′ represents the distinguished vector field
X with respect to x′ = ϕ(x).

The metrics g0 and g1 give different families of
potential curves with the same boundary energy
E.

Open problem 2. The problem of recover-
ing a metric by boundary energy can be changed
in the following way. Let g0 and g1 be simple
metrics on M . Does the equality Eg0 = Eg1 im-
pliy the existence of a diffeomorphism ϕ:M → M ,
ϕ|∂M = id and g1 = ϕ∗g0?

3 Linearization of the problem
of finding a metric from the
boundary energy

Let us linearize the open problem 1. Let
(gτ ) be a family of simple metrics which depends
smoothly on parameter τ ∈ (−ε, ε), ε > 0. Let
p and q be two points of the border ∂M of the
manifold M and a = E(p, q), where E: ∂M ×
∂M → R is the given boundary energy. Consider
xτ : [0, a] → M the potential curve corresponding
to the pair (p, q), x′ = (xτ,i), xτ,i(t) = xi(t, τ),
i = 1, n. We denote gτ = (gτ

ij).
The energy of deformation xτ is

Egτ (p, q) =
1
2

∫ a

0
gτ
ij(x

τ (t))[ẋi(t, τ)−Xi(x(t, τ), τ)]

[ẋj(t, τ)−Xj(x(t, τ), τ)] dt.
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Differentiating with respect to τ we obtain

∂

∂τ
Egτ (p, q)=

∫ a

0

{
∂gτ

ij

∂τ
(xτ (t))[ẋi(t, τ)−Xi(xτ (t), τ)]

[ẋj(t, τ)−Xj(xτ (t), τ) +
∂gτ

ij

∂xk
(xτ (t))

[
1

2
ẋi(t, τ)ẋj(t, τ)]

−ẋi(t, τ)Xj(xτ (t), τ) +
1

2
Xi(xτ (t), τ)

Xj(xτ (t), τ)

]
∂xk

∂τ
(t, τ) + gτ

ij(x
τ (t))

[
∂ẋi

∂τ
(t, τ)ẋj(t, τ)

−∂ẋi

∂τ
(t, τ)Xj(xτ (t), τ)− ẋi(t, τ)

∂Xj

∂τ
(xτ (t), τ)

−ẋi(t, τ)
∂Xj

∂xk
(xτ (t), τ)

∂xk

∂τ
(t, τ) + Xi(xτ (t), τ)

∂Xj

∂τ
(xτ (t), τ) + Xi(xτ (t), τ)

∂Xj

∂xk
(xτ (t), τ)

∂xk

∂τ
(t, τ)

]}
dt =

∫ a

0

∂gτ
ij

∂τ
(x(t, τ))

[
ẋi(t, τ)ẋj(t, τ))

−2ẋi(t, τ)Xj(xτ (t), τ + Xi(xτ (t), τ)Xj(xτ (t), τ)

]
dt

+

∫ a

0

{
∂gτ

ij

∂xk
(xτ (t))

[
1

2
ẋi(t, τ)ẋj(t, τ)

−ẋi(t, τ)Xj(xτ (t), τ) +
1

2
Xi(xτ (t), τ)Xj(xτ (t), τ)

]
−gτ

ij(x
τ (t))[ẋi(t, τ)−Xi(xτ (t), τ)]

∂Xj

∂xk
(xτ (t), τ)

}
∂xk

∂τ
(t, τ) dt +

∫ a

0

gτ
ij(x

τ (t))[ẋj(t, τ)

−Xj(xτ (t), τ)]
∂ẋi

∂τ
(t, τ) dt−

∫ a

0

gτ
ij(x

τ (t))[ẋi(t, τ)

−Xi(xτ (t), τ)]
∂Xj

∂xk
(xτ (t), τ)

}
∂xk

∂τ
(t, τ) dt+

∫ a

0

gτ
ij(x

τ (t))

[ẋi(t, τ)−Xi(xτ (t), τ)]
∂Xj

∂τ
(xτ (t), τ) dt. (3)

Integrating by parts, then considering τ = 0
and using the fact that

∂xi

∂τ

∣∣∣∣a
0

= 0,

the third integral from relation (3) becomes

I3 =−
∫ a

0

d

dt

∣∣∣∣
τ=0

gτ
ij(x

τ (t))[ẋj(t, τ)−Xj(xτ (t),τ)]
∂xi

∂τ
(t, 0) dt

=−
∫ a

0

{
∂g0

ij

∂x`
(x0(t))ẋ`(t, 0)[ẋj(t,0)−Xj(x0(t), 0)]

+g0
ij(x

0(t))
[
ẍj(t, 0)−∂Xj

∂x`
(x0(t), 0)

]
ẋ`(t,0)

}
∂xi

∂τ
(t,0) dt.

Relation (3) becomes, at τ = 0:

∂

∂τ

∣∣∣∣∣
τ=0

Egτ (p, q) =

∫ a

0

fij(x
0(t))[ẋi(t, 0)xj(t, 0)

−2ẋi(t, 0)Xj(x0(t), 0) + Xi(x0(t), 0)Xj(x0(t), 0)] dt

+

∫ a

0

{
∂g0

ij

∂xk
(x0(t))

[
1

2
ẋi(t, 0)ẋj(t, 0)

−ẋi(t, 0)Xj(x0(t), 0) +
1

2
Xi(x0(t), 0)Xj(t, x0(t), 0)

]

−g0
ij(x

0(t))[ẋi(t, 0)−Xi(x0(t), 0)]
∂Xj

∂xk
(x0(t), 0)

}
∂xk

∂τ
(t, 0) dt +

{
−

∫ a

0

∂g0
ij

∂x`
(x0(t))ẋ`(t, 0)[ẋj(t, 0)

−Xj(x0(t), 0)]+g0
ij(x

0(t))

[
ẍj(t, 0)− ∂Xj

∂x`
(x0(t), 0)

ẋ`(t, 0)

]
∂xi

∂τ
(t, 0) dt

}
−

∫ a

0

g0
ij(x

0(t))[ẋi(t, 0)

−Xi(x0(t), 0)]
∂Xj

∂τ
(x0(t), 0) dt, (4)

where fij =
1
2

∂

∂τ

∣∣∣∣
τ=0

gτ
ij .

Making the sum of the second and third inte-
grals of (4), we obtain

I2 + I3 = −2
∂g0

kj

∂xi
(x0(t))ẋi(t, 0)ẋj(t, 0) +

∂g0
ij

∂xk
(t, 0)

[−2ẋi(t, 0)Xj(x0(t), 0) + Xi(x0(t), 0)Xj(x0(t), 0)]

−2g0
ij(x

0(t))

[
ẋi(t, 0)

∂Xj

∂xk
(x0(t), 0)− ∂Xi

∂xk
(x0(t), 0)

Xj(x0(t), 0)

]
+ 2

∂g0
kj

∂x`
(x0(t))ẋ`(t, 0)Xj(x0(t), 0)

−2g0
kj(x

0(t))

[
ẍj(t, 0)− ∂Xj

∂x`
(x0(t), 0)ẋ`(t, 0)

]}
∂xk

∂τ
(t, 0)dt

=
1

2

∫ a

0

{
−2g0

`k(x0(t))G`
ij(x

0(t), 0)ẋi(t, 0)ẋj(t, 0)

+[Gki,j(x
0(t), 0)+Gkj,i(x

0(t), 0)][−2ẋi(t, 0)Xj(x0(t), 0)

+Xi(x0(t), 0)Xj(t, x0(t), 0)]−2g0
ij(x

0(t))[
ẋi(t, 0)

∂Xj

∂xk
(x0(t), 0)− ∂Xi

∂xk
(x0(t), 0)Xj(x0(t), 0)

]
+2[Gk`,j(x

0(t), 0) + G`j,k(x0(t), 0)]ẋ`(t, 0)Xj(x0(t), 0)

−2g0
kj(x

0(t))

[
ẍj(t, 0)− ∂Xj

∂t
(x0(t), 0)− ∂Xj

∂x`
(x0(t), 0)
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ẋ`(t, 0)

]}
∂xk

∂τ
(t, 0)dt=

1

2

∫ a

0

{
−2g0

`k(x0(t))G`
ij(x

0(t), 0)

ẋi(t, 0)ẋj(t, 0)− 2g0
iq(x

0(t))ẋi(t, 0)∇kXq(x0(t), 0)

+2g0
jq(x

0(t))

[
Gq

k`(x
0(t), 0)X`(x0(t), 0)Xj(x0(t), 0)

+
∂Xq

∂xk
(x0(t), 0)Xj(x0(t), 0)

]
+ 2g0

qk(x0(t))

Gq
j`(x

0(t), 0)ẋ`Xj(x0(t), 0) + 2g0
kj(x

0(t))

∂Xj

∂x`
(x0(t), 0)ẋ`(t, 0)

}
∂xk

∂τ
(t, 0) dt

=

∫ a

0

{
− g0

jk(x0(t))[ẍj(t, 0)− g0
iq(x

0(t))

ẋi(t, 0)∇kXq(x0(t), 0) + g0
qk(x0(t))Gq

j`(x
0(t), 0)

ẋ`(t, 0)Xj(x0(t), 0) + g0
kj(x

0(t))
∂Xj

∂x`
(x0(t), 0)

ẋ`(t, 0)

}
∂xk

∂τ
(t, 0) dt =

∫ a

0

[
− g0

`j(x
0(t))

(∇kX`(x0(t), 0)Xj(x0(t), 0)−g0
ki(x

0(t))F i
j (x0(t), 0)

ẋj(t, 0)− g0
iq(x

0(t))ẋi(t, 0)∇kXq(x0(t), 0)

+g0
jq(t)∇kXq(x0(t), 0)Xj(x0(t), 0)

+g0
qk(x0(t))Gq

j`(x
0(t), 0)ẋ`(t, 0)

Xj(x0(t), 0)

]
∂xk

∂τ
(t, 0) dt =

∫ a

0

[
− g0

ki(x
0(t))

F i
j (x0(t), 0)ẋj(t, 0)− g0

iq(x
0(t))ẋi(t, 0)

(∇kXq)(x0(t), 0) + g0
qk(x0(t))Gq

j`(x
0(t), 0)ẋ`(t, 0)

Xj(x0(t), 0) + g0
kj(x

0(t))
∂Xj

∂x`
(x0(t), 0)

ẋ`(t, 0)

]
∂xk

∂τ
(t, 0) dt =

∫ a

0

ẋj(t, 0)

{
− g0

ki(x
0(t))

[(∇jX
i)(x0(t), 0)− giq

0 (x0(t))g0
`j(x

0(t))

(∇qX
`(x0(t), 0))]− g0

jq(x
0(t))(∇kXq)(x0(t), 0)

+g0
qk(x0(t))Gq

`j(x
0(t), 0)X`(x0(t), 0)

+g0
k`(x

0(t))
∂X`

∂xj
(x0(t), 0)

}
∂xk

∂τ
(t, 0) dt

=

∫ a

0

ẋj(t, 0)

[
− g0

ki(x
0(t))(∇jX

i)(x0(t), 0)

+g0
`j(x

0(t))(∇kX`)(x0(t), 0)− g0
jq(x

0(t))

(∇kXq)(x0(t), 0)+g0
qk(x0(t))Gq

`j(x
0(t))X`(x0(t), 0)

+g0
k`(x

0(t))
∂X`

∂xj
(x0(t), 0)

]
∂xk

∂τ
(t, 0) dt = 0.

We have obtained that

∂

∂τ

∣∣∣∣∣
τ=0

Egτ (p, q)=

∫ a

0

fij(x
0(t))[ẋi(t, 0)−Xi(x0(t), 0)]

[ẋj(t, 0)(−Xj(x0(t), 0)] dt−
∫ a

0

g0
ij(x

0(t))[ẋi(t, 0)

−Xi(x0(t), 0)]
∂Xj

∂τ
(x0(t), 0) dt,

where fij(x0(t)) =
1
2

∂

∂τ

∣∣∣∣
τ=0

gτ
ij .

Considering that
∂Xj

∂τ
(x0(t), 0) = 0, and us-

ing the functional

If (x0) =

∫ a

0

fij(x
0(t))[ẋi(t, 0)−Xi(x0(t), 0)]

[ẋj(t, 0)−Xj(x0(t), 0)]dt

the previous relation becomes

∂

∂τ

∣∣∣∣
τ=0

Egτ (p, q) = If (x0), (5)

where x0 is the potential curve corresponding to
the points p, q from the border ∂M of the mani-
fold M .

The function If is called the single-ray trans-
form of the tensor field (fij).

The existence of solutions of the open problem
1 for the family (gτ ) implies the existence of a one
parameter group of diffeomorphisms ϕτ (x) such
that gτ = (ϕτ )∗g0. Explicitly

gτ
ij = (g0

k` ◦ ϕτ )
∂x′k

∂xi

∂x′`

∂xj
, (6)

where ϕτ (x)=(ϕ1(x, τ), . . . , ϕn(x, τ)), x′=ϕτ (x).

Theorem 3.1 Let vk(x)=
∂

∂τ

∣∣∣∣
τ=0

(x′k)(x, τ),

k = 1, n, vi = g0
ijv

j and vi;j be the covariant
derivative of (vi). Then the following relation
holds

fij =
1
2
(vi;j + vj;i), i, j = 1, n. (7)

Proof. Differentiating the relation (6) with
respect to τ and then considering τ = 0, we find

2fij =
∂

∂τ

∣∣∣∣
τ=0

gτ
ij =

∂g0
k`

∂xm
vm ∂x′k

∂xi

∂x′`

∂xj

+g0
k`

∂

∂xi

( ∂

∂τ

∣∣∣∣
τ=0

x′k
)∂x′`

∂xj
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+g0
k`

∂x′k

∂xi

∂

∂xj

( ∂

∂τ

∣∣∣∣
τ=0

x′`
)

=
∂g0

k`

∂xm
vmδk

i δ`
j + g0

k`

∂vk

∂xi
δ`
j + g0

k`δ
k
i

∂v`

∂xj

=
∂g0

ij

∂xq
vq + g0

jq

∂vq

∂xi
+ g0

iq

∂vq

∂xj
.

On the other hand,

vi;j + vj;i =
∂vi

∂xj
−Gm

ij vm +
∂vj

∂xi
−Gm

jivm =
∂g0

im

∂xj
vm

+g0
im

∂vm

∂xj
+

∂g0
jm

∂xi
vm + g0

jm

∂vm

∂xi

−gmq
0

(∂g0
jq

∂xi
+

∂g0
iq

∂xj
−

∂g0
ij

∂xq

)
g0

msv
s

=
∂g0

ij

∂xq
vq + g0

jq

∂vq

∂xi
+ g0

iq

∂vq

∂xj
,

and relation (7) is proved
Therefore, the following generalization of the

open problem 1 appears. To what extent do the
integrals

If (x) =
∫ a

0
fij(x(t))[ẋi(t)−Xi(x(t))]

[ẋj(t)−Xj(x(t))]dt

determine the tensor (fij)?
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