Nonclassical Electromagnetic Dynamics

CONSTANTIN UDRISTE
University Politehnica of Bucharest
Department of Mathematics
Splaiul Independentei 313
060042 Bucharest ROMANIA
udriste@mathem.pub.ro

DOREL ZUGRAVESCU
Institute of Geodynamics
Dr. Gerota 19-21
020032 Bucharest ROMANIA
dorezugr@geodin.ro

FLORIN MUNTEANU
Institute of Geodynamics
Dr. Gerota 19-21
020032 Bucharest ROMANIA
florin@ geodin.ro

Abstract

Our paper is concerned with effects of special forces on the motion of particles. $\S 1(\$ 2)$ studies the singletime geometric dynamics induced by electromagnetic vector fields (1-forms) and by the Euclidean structure of the space. $\S 3$ defines the second-order forms or vectors. $\S 4$ ($\S 5$) describes a nonclassical electric (magnetic) dynamics produced by an "electric (magnetic) second-order Lagrangian", via the extremals of the energy functional. $\S 6$ generalize this dynamics for a general second-order Lagrangian, having in mind possible applications for dynamical systems coming from Biomathematics, Economical Mathematics, Industrial Mathematics, etc.

Key-Words: geometric dynamics, second-order vectors, second-order Lagrangian, nonclassical dynamics.

1 Single-time geometric dynamics induced by electromagnetic vector fields

Let U be a domain of linear homogeneous isotropic media in the Riemannian manifold ($M=R^{3}, \delta_{i j}$). Maxwell's equations (coupled PDEs of first order)

$$
\operatorname{div} D=\rho, \operatorname{rot} H=J+\partial_{t} D, \partial_{t}=\text { time }
$$

derivative operator

$$
\operatorname{div} B=0, \operatorname{rot} E=-\partial_{t} B
$$

with the constitutive equations

$$
B=\mu H, \quad D=\varepsilon E,
$$

on $R \times U$, reflect the relations between the electromagnetic fields:

E	$[V / m]$	electric field strength H
$A / m]$	magnetic field strength	
J	$\left[A / m^{2}\right]$	electric current density
ε	$[A s / V m]$	permitivity
μ	$[V s / A m]$	permeability
B	$[T]=\left[V s / m^{2}\right]$	magnetic induction (magnetic flux density)
D	$\left[C / m^{2}\right]=\left[A s / m^{2}\right]$	electric displacement (electric flux density)

Since div $B=0$, the vector field B is source free, hence may be expressed as rot of some vector potential A, i.e., $B=\operatorname{rot} A$. Then the electric field strength is $E=-\operatorname{grad} V-\partial_{t} A$.

It is well-known that the motion of a charged particle in the electromagnetic fields is described by the ODE system (Lorentz World-Force Law)

$$
\begin{aligned}
& m \frac{d^{2} x}{d t^{2}}=e\left(E+\frac{d x}{d t} \times B\right), \\
& x=\left(x^{1}, x^{2}, x^{3}\right) \in U \subset R^{3},
\end{aligned}
$$

where m is the mass, and e is the charge of the particle. Of course, these are Euler-Lagrange equations produced by the Lorentz Lagrangian

$$
L_{1}=\frac{1}{2} m \delta_{i j} \frac{d x^{i}}{d t} \frac{d x^{j}}{d t}+e \delta_{i j} \frac{d x^{i}}{d t} A^{j}-e V .
$$

The associated Lorentz Hamiltonian is

$$
H_{1}=\frac{m}{2} \delta_{i j} \frac{d x^{i}}{d t} \frac{d x^{j}}{d t}+e V .
$$

A similar mechanical motion was discovered by Popescu [7], accepting the existence of a gravitovortex field represented by the force $G+\frac{d x}{d t} \times \Omega$, where G is the gravitational field and Ω is a vortex determining the gyroscopic part of the force. The papers [5], [8], [9], [12], [14], [15] confirm the point of view of Popescu via geometric dynamics.

1.1 Single-time geometric dynamics produced by vector potential A

To conserve the traditional formulas, we shall refer to field lines of the vector potential " $-A$ " using dimensional homogeneous relations. These curves are
solutions of the ODE system

$$
m \frac{d x}{d t}=-e A
$$

This ODE system and the Euclidean metric produce the least squares Lagrangian

$$
\begin{gathered}
L_{2}=\frac{1}{2} \delta_{i j}\left(m \frac{d x^{i}}{d t}+e A^{i}\right)\left(m \frac{d x^{j}}{d t}+e A^{j}\right) \\
=\frac{1}{2}\left\|m \frac{d x}{d t}+e A\right\|^{2}
\end{gathered}
$$

The Euler-Lagrange equations associated to L_{2} are
$m \frac{d^{2} x^{i}}{d t^{2}}=e\left(\frac{\partial A^{j}}{\partial x^{i}}-\frac{\partial A^{i}}{\partial x^{j}}\right) \frac{d x^{j}}{d t}+\frac{e^{2}}{m} \frac{\partial f_{A}}{\partial x^{i}}-e \partial_{t} A$,
where

$$
f_{A}=\frac{1}{2} \delta_{i j} A^{i} A^{j}
$$

is the energy density produced by A. Equivalently, it appears a single-time geometric dynamics
$m \frac{d^{2} x}{d t^{2}}=e \frac{d x}{d t} \times B+\frac{e^{2}}{m} \nabla f_{A}-e \partial_{t} A, \quad B=\operatorname{rot} A$, a motion in a gyroscopic force [12], [14], [15] or a B-vortex dynamics. The associated Hamiltonian is

$$
\begin{gathered}
H_{2}=\frac{1}{2} \delta_{i j}\left(m \frac{d x^{i}}{d t}-e A^{i}\right)\left(m \frac{d x^{j}}{d t}+e A^{j}\right) \\
=\frac{m^{2}}{2} \delta_{i j} \frac{d x^{i}}{d t} \frac{d x^{j}}{d t}-e^{2} f_{A}
\end{gathered}
$$

Remark. Generally, the single-time geometric dynamics produced by the vector potential " $-A$ " is different from the classical Lorentz World-Force Law because

$$
L_{2}-m L_{1}=\frac{1}{2} e^{2} \delta_{i j} A^{i} A^{j}+m e V
$$

and the force $\frac{e}{m} \nabla f_{A}-\partial_{t} A$ is not the electric field $E=-\nabla V-\partial_{t} A$. In other words the Lagrangians L_{1} and L_{2} are not in the same equivalence class of Lagrangians.

1.2 Single-time geometric dynamics produced by magnetic induction B

Since we want to analyze the geometric dynamics using units of measure, the magnetic flow must be described by

$$
m \frac{d x}{d t}=\lambda B
$$

where the unit measure for the constant λ is $\left[\mathrm{kgm}^{3} / V \mathrm{~s}^{2}\right]$.

The associated least squares Lagrangian is

$$
\begin{gathered}
L_{3}=\frac{1}{2} \delta_{i j}\left(m \frac{d x^{i}}{d t}-\lambda B^{i}\right)\left(m \frac{d x^{j}}{d t}-\lambda B^{j}\right) \\
=\frac{1}{2}\left\|m \frac{d x}{d t}-\lambda B\right\|^{2}
\end{gathered}
$$

This gives the Euler-Lagrange equations (single-time magnetic geometric dynamics)

$$
m \frac{d^{2} x}{d t^{2}}=\lambda \frac{d x}{d t} \times \operatorname{rot} B+\frac{\lambda^{2}}{m} \nabla f_{B}+\lambda \partial_{t} B
$$

where

$$
f_{B}=\frac{1}{2} \delta_{i j} B^{i} B^{j}=\frac{1}{2}\|B\|^{2}
$$

is the magnetic energy density. This is in fact a dynamics under a gyroscopic force or in J-vortex.

The associated Hamiltonian is

$$
\begin{gathered}
H_{3}=\frac{1}{2} \delta_{i j}\left(m \frac{d x^{i}}{d t}-\lambda B^{i}\right)\left(m \frac{d x^{j}}{d t}+\lambda B^{j}\right) \\
=\frac{m^{2}}{2} \delta_{i j} \frac{d x^{i}}{d t} \frac{d x^{j}}{d t}-\lambda^{2} f_{B}
\end{gathered}
$$

1.3 Single-time geometric dynamics produced by electric field E

The electric flow is described by

$$
m \frac{d x}{d t}=\lambda E
$$

where the unit measure of the constant λ is $\left[\mathrm{kgm}^{2} / V s\right]$. It appears the least squares Lagrangian

$$
\begin{gathered}
L_{4}=\frac{1}{2} \delta_{i j}\left(m \frac{d x^{i}}{d t}-\lambda E^{i}\right)\left(m \frac{d x^{j}}{d t}-\lambda E^{j}\right) \\
=\frac{1}{2}\left\|m \frac{d x}{d t}-\lambda E\right\|^{2}
\end{gathered}
$$

with Euler-Lagrange equations (single-time electric geometric dynamics)

$$
m \frac{d^{2} x}{d t^{2}}=\lambda \frac{d x}{d t} \times \operatorname{rot} E+\frac{\lambda^{2}}{m} \nabla f_{E}+\lambda \partial_{t} E
$$

where

$$
f_{E}=\frac{1}{2} \delta_{i j} E^{i} E^{j}=\frac{1}{2}\|E\|^{2}
$$

is the electric energy density; here we have in fact a dynamics in $\partial_{t} B$-vortex. The associated Hamiltonian is

$$
\begin{gathered}
H_{4}=\frac{1}{2} \delta_{i j}\left(m \frac{d x^{i}}{d t}-\lambda E^{i}\right)\left(m \frac{d x^{j}}{d t}+\lambda E^{j}\right) \\
=\frac{m^{2}}{2} \delta_{i j} \frac{d x^{i}}{d t} \frac{d x^{j}}{d t}-\lambda^{2} f_{E}
\end{gathered}
$$

Open problem. As is well-known, charged particles in the magnetic field of the earth spiral from pole to pole. Similar motions are also observed in laboratory plasmas and inferred for electrons in metal subjected to an external magnetic field. Till now, these motions where justified by the classical Lorentz World-Force Law. Can we justify such motions using the geometric dynamics produced by suitable vector fields in the sense of present paper and the papers [5], [7]-[12], [14], [15]?

2 Potentials associated to electromagnetic forms

Let $U \subset R^{3}=M$ be a domain of linear homogeneous isotropic media. Which mathematical object shall we select to model the electromagnetic fields; vector fields or forms? It was shown [1] that, the magnetic induction B, the electric displacement D, and the electric current density J are all 2-forms; the magnetic field H, and the electric field E are 1-forms; the electric charge density ρ is a 3-form. The operator d is the exterior derivatives and the operator ∂_{t} is the time derivative.

In terms of differential forms, the Maxwell equations on $U \times R$ can be expressed as

$$
\begin{array}{ll}
d D=\rho, & \\
d H=J+\partial_{t} D \\
d B=0, & \\
d E=-\partial_{t} B .
\end{array}
$$

The constitutive relations are

$$
D=\varepsilon * E, B=\mu * H
$$

where the star operator $*$ is the Hodge operator, ε is the permitivity, and μ is the scalar permeability.

The local components $E_{i}, i=1,2,3$, of the 1form E are called electric potentials, and the local components $H_{i}, i=1,2,3$, of the 1 -form H are called magnetic potentials. Since the electric field E, and the magnetic field H are 1-forms [1], in the Sections 4-5 we combine our ideas [8]-[16] with the ideas of Emery [3] and Foster [4], creating a nonclassical electric or magnetic dynamics. Finally, we generalize the results to nonclassical dynamics induced by a second-order Lagrangian (Section 6).

2.1 Potential associated to electric 1-form \mathbf{E}

Let us consider the function $V: R \times U \rightarrow R$, $(t, x) \rightarrow V(t, x)$ and the Pfaff equation $d V=-E$ or the equivalent PDE system $\frac{\partial V}{\partial x^{i}}=-E_{i}, i=1,2,3$. Of course, the complete integrability conditions require $d E=0$ (electrostatic field), which is not always satisfied. In any situation we can introduce the least squares Lagrangian

$$
\begin{gathered}
L_{9}=\frac{1}{2} \delta_{i j}\left(\frac{\partial V}{\partial x^{i}}+E_{i}\right)\left(\frac{\partial V}{\partial x^{j}}+E_{j}\right) \\
=\frac{1}{2}\|d V+E\|^{2}
\end{gathered}
$$

These produce the Euler-Lagrange equation (Poisson equation)

$$
\Delta V=-\operatorname{div} E
$$

and consequently V must be the electric potential. For a linear isotropic material, we have $D=\varepsilon E$, with $\rho=\operatorname{div} D=\varepsilon \operatorname{div} E$. We get the potential equation for a homogeneous material ($\varepsilon=$ constant)

$$
\Delta V=-\frac{\rho}{\varepsilon}
$$

For the charge free space, we have $\rho=0$, and then the potential V satisfies the Laplace equation

$$
\Delta V=0
$$

(harmonic function). The Lagrangian L_{9} produces the Hamiltonian

$$
H_{9}=\frac{1}{2}(d V-E, d V+E)
$$

and the momentum-energy tensor field

$$
\begin{aligned}
& T_{j}^{i}=\frac{\partial V}{\partial x^{j}} \frac{\partial L}{\partial\left(\frac{\partial V}{\partial x^{i}}\right)}-L_{9} \delta_{j}^{i} \\
& =\frac{\partial V}{\partial x^{j}}\left(\frac{\partial V}{\partial x^{i}}+E_{i}\right)-L_{9} \delta_{j}^{i} .
\end{aligned}
$$

2.2 Potential associated to magnetic 1-form H

Now, we consider the Pfaff equation $d \varphi=H$ or the PDE system $\frac{\partial \varphi}{\partial x^{i}}=H_{i}, i=1,2,3, \varphi: R \times U \rightarrow R$, $(t, x) \rightarrow \varphi(t, x)$. The complete integrability conditions $d H=0$ are satisfied only for particular cases. If we build the least squares Lagrangian

$$
L_{10}=\frac{1}{2} \delta^{i j}\left(\frac{\partial \varphi}{\partial x^{i}}-H_{i}\right)\left(\frac{\partial \varphi}{\partial x^{j}}-H_{j}\right)
$$

$$
=\frac{1}{2}\|d \varphi-H\|^{2},
$$

then we obtain the Euler-Lagrange equation (Laplace equation) and consequently φ must be the magnetic potential. The Lagrangian L_{10} produces the Hamiltonian $H_{10}=\frac{1}{2}(d \varphi-H, d \varphi+H)$.

2.3 Potential associated to 1 -form potential A

Since $d B=0$, there exists an 1-form potential A satisfying $B=d A$. Now let us consider the Pfaff equation $d \psi=A$ or the equivalent PDEs system $\frac{\partial \psi}{\partial x^{i}}=$ $A_{i}, i=1,2,3, \psi: R \times U \rightarrow R,(t, x) \rightarrow \psi(t, x)$. The complete integrability conditions $d A=0$ are satisfied only for $B=0$. If we build the least squares Lagrangian

$$
\begin{gathered}
L_{11}=\frac{1}{2} \delta^{i j}\left(\frac{\partial \psi}{\partial x^{i}}-A_{i}\right)\left(\frac{\partial \psi}{\partial x^{j}}-A_{j}\right) \\
=\frac{1}{2}\|d \psi-A\|^{2}
\end{gathered}
$$

then we obtain the Euler-Lagrange equation (Laplace equation) $\Delta \psi=0$. The Lagrangian L_{11} gives the Hamiltonian $H_{11}=\frac{1}{2}(d \psi-A, d \psi+A)$ and the momentum-energy tensor field

$$
T_{j}^{i}=\frac{\partial \psi}{\partial x^{j}}\left(\frac{\partial \psi}{\partial x^{i}}-A_{i}\right)-L_{11} \delta_{j}^{i} .
$$

Open problem. Find interpretations for the extremals of least squares Lagrangians

$$
\begin{gathered}
L_{12}=\frac{1}{2}\|d A-B\|^{2} \\
=\frac{1}{2} \delta^{i k} \delta^{j l}\left(\frac{\partial A_{i}}{\partial x^{j}}-\frac{\partial A_{j}}{\partial x^{i}}-B_{i j}\right)\left(\frac{\partial A_{k}}{\partial x^{l}}-\frac{\partial A_{l}}{\partial x^{l}}-B_{k l}\right) \\
L_{13}=\frac{1}{2}\left\|d E+\partial_{t} B\right\|^{2}+\frac{1}{2}\left\|d H-J-\partial_{t} D\right\|^{2} \\
+\frac{1}{2}\|d D-\rho\|^{2}+\frac{1}{2}\|d B\|^{2}
\end{gathered}
$$

which are not solutions of Maxwell equations.
Remarks. 1) There are a lot of applications of previous type in applied sciences. One of the most important is in the material strength. In problems associated with the torsion of a cylinder or prism, one has to investigate the functional
$J(z(\cdot))=\int_{D}\left(\left(\frac{\partial z}{\partial x}-y\right)^{2}+\left(\frac{\partial z}{\partial y}+x\right)^{2}\right) d x d y$
for an extremum. The Euler-Lagrange equation, $\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}=0$, shows that the extremals are harmonic functions. Of course, J has no global "minimum point" since the PDE system $\frac{\partial z}{\partial x}=y, \frac{\partial z}{\partial y}=-x$ is not completely integrable.
2) All previous examples in this section are single-component potentials. Similarly we can introduce the multi-component potentials.

3 Second-Order Forms and Vectors

Now we will concentrate on certain geometric ideas that are very important in the physical and stochastic applications. To avoid too much repetition, M will denote a differentiable manifold of dimension n, and all the functions are of class C^{∞}.

Let $x^{i}=x^{i}\left(x^{i^{\prime}}\right), i, i^{\prime}=1, \ldots, n$ be a changing of coordinates on M. Then we introduce the symbols

$$
D_{i^{\prime}}^{i}=\frac{\partial x^{i}}{\partial x^{i^{\prime}}}, \quad D_{i^{\prime} j^{\prime}}^{i}=\frac{\partial^{2} x^{i}}{\partial x^{i^{\prime}} x^{j^{\prime}}}
$$

For a differentiable function $f: M \rightarrow R$ we use the simplified coordinate expression $f\left(x^{i^{\prime}}\right)=f\left(x^{i}\left(x^{i^{\prime}}\right)\right)$, the first order derivatives $f_{, i^{\prime}}, f_{, i}$ and the second order derivatives $f_{, i^{\prime} j^{\prime}}, f_{, i j}$. These are connected by the rule

$$
\left(f_{, i^{\prime}}, f_{, i^{\prime} j^{\prime}}\right)=\left(f_{, i}, f_{, i j}\right)\left(\begin{array}{cc}
D_{i^{\prime}}^{i} & D_{i^{\prime} j^{\prime}}^{i} \tag{1}\\
0 & D_{i^{\prime}}^{i} D_{j^{\prime}}^{j}
\end{array}\right)
$$

The pair (first-order partial derivatives, secondorder partial derivatives) possesses a "tensorial" change law that the second derivative, by itself, lacks. This pair was used in the classical works like "contact element" or like "jet".

If a curve is given by the parametric equations $x^{i}=x^{i}(t), t \in I$, then the preceding diffeomorphism modifies the pair $(\ddot{x}, \dot{x} \otimes \dot{x})^{T}$ as follows

$$
\begin{gathered}
\dot{x}^{i^{\prime}}=\dot{x}^{i} D_{i}^{i^{\prime}}, \ddot{x}^{i^{\prime}}=\ddot{x}^{i} D_{i}^{i^{\prime}}+\dot{x}^{i} \dot{x}^{j} D_{i j}^{i^{\prime}}, \\
\binom{\ddot{x}^{i^{\prime}}}{\dot{x}^{i^{\prime}} \dot{x}^{j^{\prime}}}=\left(\begin{array}{cc}
D_{i}^{i^{\prime}} & D_{i j}^{i^{\prime}} \\
0 & D_{i}^{i^{\prime}} D_{j}^{j^{\prime}}
\end{array}\right)\binom{\ddot{x}^{i}}{\dot{x}^{i} \dot{x}^{j}} .
\end{gathered}
$$

The pair (acceleration, "square of velocity") is suggested by the equations of geodesics

$$
\ddot{x}^{k}(t)+\Gamma_{i j}^{k}(x(t)) \dot{x}^{i}(t) \dot{x}^{j}(t)=0 .
$$

Consequently, when first and second derivatives come into play together, then matrices of blocks such
as
$K=\left(\begin{array}{cc}D_{i^{\prime}}^{i} & D_{i^{\prime} j^{\prime}}^{i} \\ 0 & D_{i^{\prime}}^{i} D_{j^{\prime}}^{j}\end{array}\right), K^{-1}=\left(\begin{array}{cc}D_{i}^{i^{\prime}} & D_{i j}^{i^{\prime}} \\ 0 & D_{i}^{i^{\prime}} D_{j}^{j^{\prime}}\end{array}\right)$
are useful for changing the components of pairs of objects.

Definition. Any pair $\left(\omega_{i}, \omega_{i j}\right)$ admitting the changing law (1), where $\left(\omega_{i}\right)$ is an 1-form and $\left(\omega_{i j}\right)$ is symmetric, will be called a second-order form on M. A second-order vector field on M is a second-order differential operator, with no constant term.

A second-order form can be written as $\theta=$ $\theta_{i} d^{2} x^{i}+\theta_{i j} d x^{i} \otimes d x^{j}$, where the components θ_{i} and $\theta_{i j}=\theta_{j i}$ are smooth functions. A second-order vector field writes $X f=\ell^{i j} D_{i j} f+\ell^{i} D_{i} f$, where the components $\ell^{i j}=\ell^{j i}$ and ℓ^{i} are smooth functions. The theory of second-order vectors or forms appears in Emery [3], with applications in stochastic problems, and in Foster [4], suggesting new point of view about the fields theory. We use these ideas to define meaningful second-order Lagrangians (kinetic potentials) and to study their extremals.

4 Dynamics induced by secondorder electric form

Let E_{i} be the electric potentials. The usual derivative $E_{i, j}$ may be decomposed into skew-symmetric and symmetric parts,

$$
E_{i, j}=\frac{1}{2}\left(E_{i, j}-E_{j, i}\right)+\frac{1}{2}\left(E_{i, j}+E_{j, i}\right)
$$

The skew-symmetric part (vortex)

$$
m_{i j}=\frac{1}{2}\left(E_{i, j}-E_{j, i}\right)
$$

is called Maxwell tensor field giving the opposite of the time derivative of magnetic induction. The symmetric part

$$
\frac{1}{2}\left(E_{i, j}+E_{j, i}\right)
$$

is not an ordinary tensor, but the pair

$$
\left(E_{i}, \frac{1}{2}\left(E_{i, j}+E_{j, i}\right)\right)
$$

is a second-order object [3]-[4].
Let $\omega_{i j}$ be a general object such that $\left(E_{i}, \omega_{i j}\right)$ is a second-order object. The difference

$$
\left(0, \omega_{i j}-\frac{1}{2}\left(E_{i, j}+E_{j, i}\right)\right)
$$

is a second-order object determined by $g_{i j}=\omega_{i j}-$ $\frac{1}{2}\left(E_{i, j}+E_{j, i}\right)$. If $\omega_{i j}$ is symmetric, then $g_{i j}$ is a symmetric tensor field; if we add $\operatorname{det}\left(g_{i j}\right) \neq 0$, then $g_{i j}$ can be used as a semi-Riemann metric. In this context the equality

$$
\left(E_{i}, \omega_{i j}\right)=\left(E_{i}, \frac{1}{2}\left(E_{i, j}+E_{j, i}\right)\right)+\left(0, g_{i j}\right)
$$

shows that the valuable objects

$$
\frac{1}{2}\left(E_{i, j}+E_{j, i}\right)
$$

come from electricity and mate with gravitational potentials $g_{i j}$. Consequently they have to be electrogravitational potentials.

The preceding potentials determine an electric energy second-order Lagrangian,

$$
\begin{gathered}
L_{e l}=E_{i}(x(t), t) \frac{d^{2} x^{i}}{d t^{2}}(t) \\
+\frac{1}{2}\left(E_{i, j}+E_{j, i}\right)(x(t), t) \frac{d x^{i}}{d t}(t) \frac{d x^{j}}{d t}(t) .
\end{gathered}
$$

If the most general energy second-order Lagrangian is given by

$$
L_{g e}=E_{i}(x(t), t) \frac{d^{2} x^{i}}{d t^{2}}(t)+\omega_{i j}(x(t), t) \frac{d x^{i}}{d t}(t) \frac{d x^{j}}{d t}(t),
$$

and the gravitational energy first-order Lagrangian is

$$
L_{g}=g_{i j}(x(t), t) \frac{d x^{i}}{d t}(t) \frac{d x^{j}}{d t}(t)
$$

then $L_{g e}=L_{e l}+L_{g}$.
To simplify, let us take $E=E(x)$. Since the distribution generated by the electric 1 -form E is given by the Pfaff equation $E_{i}(x) d x^{i}=0$, the electric energy Lagrangian is zero along integral curves of this distribution. Also the general energy second-order Lagrangian for $E=E(x), \omega_{i j}=\omega_{i j}(x)$ determines the energy functional

$$
\begin{equation*}
\int_{a}^{b}\left(E_{i}(x(t)) \frac{d^{2} x^{i}}{d t^{2}}+\omega_{i j}(x(t)) \frac{d x^{i}}{d t}(t) \frac{d x^{j}}{d t}(t)\right) d t \tag{2}
\end{equation*}
$$

We denote

$$
\omega_{i j k}=\frac{1}{2}\left(\omega_{k j, i}+\omega_{k i, j}-\omega_{i j, k}\right)
$$

(the Christoffel symbols of $\omega_{i j}$),

$$
E_{i j k}=\frac{1}{2}\left(E_{k, i j}+E_{j, i k}-E_{i, j k}\right)
$$

Theorem. The extremals of the energy functional (2) are described by the Euler-Lagrange ODEs

$$
\begin{gathered}
g_{k i} \frac{d^{2} x^{i}}{d t^{2}}+\left(\omega_{i j k}-E_{i j k}\right) \frac{d x^{i}}{d t} \frac{d x^{j}}{d t}=0 \\
x(a)=x_{a}, x(b)=x_{b}
\end{gathered}
$$

(geodesics with respect to an Otsuki connection [6]).
Proof. Using the second-order Lagrangian

$$
L=E_{i} \frac{d^{2} x^{i}}{d t^{2}}+\omega_{i j} \frac{d x^{i}}{d t} \frac{d x^{j}}{d t}
$$

the Euler-Lagrange equations

$$
L_{x^{k}}-\frac{d}{d t} L_{\frac{d x^{k}}{d t}}+\frac{d^{2}}{d t^{2}} L_{\frac{d^{2} x^{k}}{d t^{2}}}=0
$$

transcribe like the equations in the theorem.
To a Lagrangian there may corresponds a field theory. Consequently we obtain a field theory having as basis the general electrogravitational potentials. The pure gravitational potentials are given by

$$
g_{i j}=\omega_{i j}-\frac{1}{2}\left(E_{i, j}+E_{j, i}\right)
$$

We define $\Gamma_{i j k}=\omega_{i j k}-E_{i j k}$. It is verified that $\Gamma_{i j k}=$ $g_{i j k}+m_{i j k}$, where $g_{i j k}$ are the Christoffel symbols of $g_{i j}$, and $m_{i j k}=m_{i j, k}+m_{i k, j}$ is the symmetrized derivative of the Maxwell tensor

$$
m_{i j}=\frac{1}{2}\left(E_{i, j}-E_{j, i}\right)
$$

Corollary. The extremals of the energy functional (1) are described by the Euler-Lagrange ODEs

$$
\begin{gathered}
g_{k i} \frac{d^{2} x^{i}}{d t^{2}}+\left(g_{k j i}+m_{k j i}\right) \frac{d x^{i}}{d t} \frac{d x^{j}}{d t}=0 \\
x(a)=x_{a}, x(b)=x_{b}
\end{gathered}
$$

(geodesics with respect to an Otsuki connection [6]).

5 Dynamics induced by secondorder magnetic form

Let H_{i} be the magnetic potentials. The usual derivative $H_{i, j}$ may be decomposed into skew-symmetric and symmetric parts,

$$
H_{i, j}=\frac{1}{2}\left(H_{i, j}-H_{j, i}\right)+\frac{1}{2}\left(H_{i, j}+H_{j, i}\right)
$$

where

$$
M_{i j}=\frac{1}{2}\left(H_{i, j}-H_{j, i}\right)
$$

is the Maxwell tensor field (vortex) giving the sum between the electric current density and the time derivative of the electric displacement. The pair

$$
\left(H_{i}, \frac{1}{2}\left(H_{i, j}+H_{j, i}\right)\right)
$$

is a second-order object. If $\left(H_{i}, \omega_{i j}\right)$ is a general second-order object, then the difference

$$
g_{i j}=\omega_{i j}-\frac{1}{2}\left(H_{i, j}+H_{j, i}\right)
$$

represents the gravitational potentials (a metric) provided that $\omega_{i j}$ is symmetric, $g_{i j}$ is a $(0,2)$ tensor field and $\operatorname{det}\left(g_{i j}\right) \neq 0$. Consequently the valuable objects $\frac{1}{2}\left(H_{i, j}+H_{j, i}\right)$, which come from magnetism and mate, have to be magnetogravitational potentials.

The preceding potentials produce the following energy Lagrangians:

1) magnetic energy second-order Lagrangian,

$$
\begin{gathered}
L_{m a}=H_{i}(x(t), t) \frac{d^{2} x^{i}}{d t^{2}}(t) \\
+\frac{1}{2}\left(H_{i, j}+H_{j, i}\right)(x(t), t) \frac{d x^{i}}{d t}(t) \frac{d x^{j}}{d t}(t) ;
\end{gathered}
$$

2) gravitational energy first-order Lagrangian,

$$
L_{g}=g_{i j}(x(t), t) \frac{d x^{i}}{d t}(t) \frac{d x^{j}}{d t}(t)
$$

3) general energy second-order Lagrangian,
$L_{g e}=H_{i}(x(t), t) \frac{d^{2} x^{i}}{d t^{2}}+\omega_{i j}(x(t), t) \frac{d x^{i}}{d t}(t) \frac{d x^{j}}{d t}(t)$.
These satisfy the relation $L_{g e}=L_{m a}+L_{g}$.
To simplify, let us take $H=H(x)$. Since the distribution generated by the magnetic 1-form H is given by the Pfaff equation $H_{i}(x) d x^{i}=0$, the magnetic energy Lagrangian is zero along integral curves of this distribution. Also the general energy second-order Lagrangian for $H=H(x), \omega_{i j}=\omega_{i j}(x)$ determines the energy functional
$\int_{a}^{b}\left(H_{i}(x(t)) \frac{d^{2} x^{i}}{d t^{2}}(t)+\omega_{i j}(x(t)) \frac{d x^{i}}{d t}(t) \frac{d x^{j}}{d t}(t)\right) d t$
determined by a second-order Lagrangian which is linear in acceleration.

We denote

$$
\omega_{i j k}=\frac{1}{2}\left(\omega_{k j, i}+\omega_{k i, j}-\omega_{i j, k}\right)
$$

(the Christoffel symbols of $\omega_{i j}$),

$$
H_{i j k}=\frac{1}{2}\left(H_{k, i j}+H_{j, i k}-H_{i, j k}\right)
$$

Theorem. The extremals of the energy functional (3) are solutions of the Euler-Lagrange ODEs

$$
\begin{gathered}
g_{k i} \frac{d^{2} x^{i}}{d t^{2}}+\left(\omega_{i j k}-H_{i j k}\right) \frac{d x^{i}}{d t} \frac{d x^{j}}{d t}=0 \\
x(a)=x_{a}, x(b)=x_{b}
\end{gathered}
$$

(geodesics with respect to an Otsuki connection [6]).
To an energy Lagrangian there may corresponds a field theory. Consequently we obtain a field theory having as basis the general magnetogravitational potentials. The pure gravitational potentials are (components of a Riemann or semi-Riemann metric)

$$
g_{i j}=\omega_{i j}-\frac{1}{2}\left(H_{i, j}+H_{j, i}\right)
$$

We introduce $\Gamma_{i j k}=\omega_{i j k}-H_{i j k}$. It is verified the relation $\Gamma_{i j k}=g_{i j k}+M_{i j k}$, where $g_{i j k}$ are the Christoffel symbols of $g_{i j}$, and $M_{i j k}=M_{i j, k}+M_{i k, j}$ is the symmetrized derivative of the Maxwell tensor

$$
M_{i j}=\frac{1}{2}\left(H_{i, j}-H_{j, i}\right)
$$

Corollary. The extremals of the energy functional (3) are solutions of the Euler-Lagrange ODEs

$$
\begin{gathered}
g_{k i} \frac{d^{2} x^{i}}{d t^{2}}+\left(g_{k j i}+M_{k j i}\right) \frac{d x^{i}}{d t} \frac{d x^{j}}{d t}=0, \\
x(a)=x_{a}, x(b)=x_{b}
\end{gathered}
$$

(geodesics with respect to an Otsuki connection [6]).

6 Dynamics induced by secondorder general form

Now we want to extend the preceding explanations since they can be applied to dynamical systems coming from Biomathematics, Economical Mathematics, Industrial Mathematics etc.

Let ω_{i} be given potentials (given form). The usual partial derivative $\omega_{i, j}$ may be decomposed as

$$
\omega_{i, j}=\frac{1}{2}\left(\omega_{i, j}-\omega_{j, i}\right)+\frac{1}{2}\left(\omega_{i, j}+\omega_{j, i}\right)
$$

where

$$
\mathcal{M}_{i j}=\frac{1}{2}\left(\omega_{i, j}-\omega_{j, i}\right)
$$

is a Maxwell tensor field (vortex). The pair

$$
\left(\omega_{i}, \frac{1}{2}\left(\omega_{i, j}+\omega_{j, i}\right)\right)
$$

is a second-order form. If $\left(\omega_{i}, \omega_{i j}\right)$ is a general second-order form, then we suppose that the difference

$$
g_{i j}=\omega_{i j}-\frac{1}{2}\left(\omega_{i, j}+\omega_{j, i}\right)
$$

represents the components of a metric, i.e., $\omega_{i j}$ is symmetric, $g_{i j}$ is a $(0,2)$ tensor field and $\operatorname{det}\left(g_{i j}\right) \neq 0$.

The preceding potentials produce the following energy Lagrangians:

1) potential-produced energy Lagrangian,

$$
\begin{gathered}
L_{p p}=\omega_{i}(x(t), t) \frac{d^{2} x^{i}}{d t^{2}}(t) \\
+\frac{1}{2}\left(\omega_{i, j}+\omega_{j, i}\right)(x(t), t) \frac{d x^{i}}{d t}(t) \frac{d x^{j}}{d t}(t) ;
\end{gathered}
$$

2) gravitational energy Lagrangian,

$$
L_{g}=g_{i j}(x(t), t) \frac{d x^{i}}{d t}(t) \frac{d x^{j}}{d t}(t)
$$

3) general energy Lagrangian,

$$
L_{g e}=\omega_{i}(x(t), t) \frac{d^{2} x^{i}}{d t^{2}}+\omega_{i, j}(x(t), t) \frac{d x^{i}}{d t} \frac{d x^{j}}{d t}
$$

which verify

$$
L_{g e}=L_{p p}+L_{g}
$$

The Pfaff equation $\omega_{i}(x) d x^{i}=0, i=1, \ldots, n$ defines a distribution on M. The valuable objects

$$
\frac{1}{2}\left(\omega_{i, j}+\omega_{j, i}\right)
$$

are the components of the second fundamental form of that distribution [6]. The potential-produced energy Lagrangian is zero along integral curves of the distribution generated by the given 1-form $\omega=\left(\omega_{i}(x)\right)$.

In the autonomous case, the general energy Lagrangian produces the energy functional
$\int_{a}^{b}\left(\omega_{i}(x(t)) \frac{d^{2} x^{i}}{d t^{2}}(t)+\omega_{i j}(x(t)) \frac{d x^{i}}{d t}(t) \frac{d x^{j}}{d t}(t)\right) d t$.
This energy functional is associated to a particular Lagrangian L of order two.

We denote

$$
\omega_{i j k}=\frac{1}{2}\left(\omega_{k j, i}+\omega_{k i, j}-\omega_{i j, k}\right)
$$

(the Christoffel symbols of $\omega_{i j}$),

$$
\Omega_{i j k}=\frac{1}{2}\left(\omega_{k, i j}+\omega_{j, i k}-\omega_{i, j k}\right)
$$

Theorem. The extremals of the energy functional (4) are solutions of the Euler-Lagrange ODEs

$$
\begin{gathered}
g_{k i} \frac{d^{2} x^{i}}{d t^{2}}+\left(\omega_{i j k}-\Omega_{i j k}\right) \frac{d x^{i}}{d t} \frac{d x^{j}}{d t}=0, \\
x(a)=x_{a}, x(b)=x_{b}
\end{gathered}
$$

(geodesics with respect to an Otsuki connection [6]).
To an energy Lagrangian there may correspond a field theory. We introduce $\Gamma_{i j k}=\omega_{i j k}-\Omega_{i j k}$. After some computations we find $\Gamma_{i j k}=g_{i j k}+\mathrm{m}_{i j k}$, where $g_{i j k}$ are the Christoffel symbols of $g_{i j}$, and

$$
\mathrm{m}_{i j k}=\mathcal{M}_{i j, k}+\mathcal{M}_{i k, j}
$$

is the symmetrized derivative of the Maxwell tensor field \mathcal{M}.

Corollary. The extremals of the energy functional (4) are solutions of the Euler-Lagrange ODEs

$$
\begin{gathered}
g_{k i} \frac{d^{2} x^{i}}{d t^{2}}+\left(g_{k j i}+m_{k j i}\right) \frac{d x^{i}}{d t} \frac{d x^{j}}{d t}=0 \\
x(a)=x_{a}, x(b)=x_{b}
\end{gathered}
$$

(geodesics with respect to an Otsuki connection [6]).
Open problems: (1) Find the linear connections in the sense of Crampin [2] associated to the preceding second-order ODEs. (2) Analyze the second variations of the preceding energy functionals. (2) Analyze the symmetries of the preceding second order differential systems (see also [16]). (3) Find practical interpretations for motions known as geometric dynamics, gravitovortex motion and second-order force motion (see also [5]).

Acknowledgements: Partially supported by Grant CNCSIS 86/ 2007 and by 15-th ItalianRomanian Executive Programme of S\&T Cooperation for 2006-2008, University Politehnica of Bucharest.

References:

[1] A. Bossavit, Differential forms and the computation of fields and forces in electromagnetism, Eur. J. Mech., B, Fluids, 10, no 5(1991), 474488.
[2] C. Crampin, A linear connection associated with any second order differential equation field, L.Tamassy and J.Szenthe (eds), New Developments in Differential Geometry, 77-85, Kluwer Academic Publishers, 1996.
[3] M. Emery, Stochastic Calculus in Manifolds, Springer-Verlag, 1989.
[4] B. L. Foster, Higher derivatives in geometry and physics, Proc. R. Soc. Lond. A423 (1989), 443455.
[5] D. Isvoranu, C. Udriste, Fluid flow versus Geometric Dynamics, 5-th Conference on Differential Geometry, August 28-September 2, 2005, Mangalia, Romania; BSG Proceedings 13, pp. 70-82, Geometry Balkan Press, 2006.
[6] T. Otsuki, General connections, Math. J. Okayama University 32 (1990), 227-242.
[7] I. N. Popescu, Gravitation, Editrice Nagard, Roma, Italy, 1988.
[8] C. Udrişte, Geometric dynamics, Southeast Asian Bulletin of Mathematics, Springer-Verlag, 24, 1 (2000), 313-322.
[9] C. Udrişte, Geometric Dynamics, Mathematics and Its Applications, 513, Kluwer Academic Publishers, Dordrecht, Boston, London, 2000.
[10] C. Udrişte, Dynamics induced by second-order objects, Global Analysis, Differential Geometry and Lie Algebras, BSG Proceedings 4, Ed. Grigorios Tsagas, Geometry Balkan Press (2000), 161-168.
[11] C. Udrişte, Multi-time dynamics induced by 1forms and metrics, Global Analysis, Differential Geometry and Lie Algebras, BSG Proceedings 5, Ed. Grigorios Tsagas, Geometry Balkan Press (2001), 169-178.
[12] C. Udrişte, Geodesic motion in a gyroscopic field of forces, Tensor, N. S., 66, 3 (2005), 215228.
[13] C. Udrişte, O. Dogaru, Convex nonholonomic hypersurfaces, The Mathematical Heritage of C.F. Gauss, 769-784, Editor G. M. Rassias, World Scientific Publ. Co. Singapore, 1991.
[14] C. Udrişte, M. Ferrara, D. Opriş, Economic Geometric Dynamics, Monographs and Textbooks 6, Geometry Balkan Press, Bucharest, 2004.
[15] C. Udrişte, Tools of geometric dynamics, Buletinul Institutului de Geodinamică, Academia Română, 14, 4 (2003), 1-26; Proceedings of the XVIII Workshop on Hadronic Mechanics, honoring the 70-th birthday of Prof. R. M. Santilli, the originator of hadronic mechanics, University of Karlstad, Sweden, June 20-22, 2005; Eds.

Valer Dvoeglazov, Tepper L. Gill, Peter Rowland, Erick Trell, Horst E. Wilhelm, Hadronic Press, International Academic Publishers, December 2006, ISBN 1-57485-059-28, pp 10011041.
[16] C. Wafo Soh, C. Udrişte, Symmetries of second order potential differential systems, Balkan Journal of Geometry and Its Applications, Vol. 10, No. 2 (2005), 129-141.

