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Abstract: Our paper is concerned with effects of special forces on the motion of paif¢). studies the single-
time geometric dynamics induced by electromagnetic vector fields (1-forms) and by the Euclidean structure of
space §3 defines the second-order forms or vectgds(55) describes a nonclassical electric (magnetic) dynamics
produced by an "electric (magnetic) second-order Lagrangian”, via the extremals of the energy furiigeal
eralize this dynamics for a general second-order Lagrangian, having in mind possible applications for dynam
systems coming from Biomathematics, Economical Mathematics, Industrial Mathematics, etc.

Key—Words,geometric dynamics, second-order vectors, second-order Lagrangian, nonclassical dynamics.

1 Single-time geometric dynamics
induced by electromagnetic vector
fields

Let U be a domain of linear homogeneous isotropic
media in the Riemannian manifold/ = R3,4;;).
Maxwell’s equations (coupled PDEs of first order)
divD = p,rotH = J 4 0;D, 0; = time
derivative operator
divB=0,rotE = -0;B
with the constitutive equations

B=uH, D=¢F,

on R x U, reflect the relations between the electro-
magnetic fields:

E [V/m] electric field strength

H [A/m] magnetic field strength

J [A/m? electric current density

e [As/Vm] permitivity

po [Vs/Am] permeability

B [T =[Vs/m?] magnetic induction
(magnetic flux density)

D [O/m?) = [As/m?] electric displacement

(electric flux density)

Since divB = 0, the vector fieldB is source
free, hence may be expressedras of some vector
potential 4, i.e., B = rot A. Then the electric field
strength istl = —gradV — 0, A.
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It is well-known that the motion of a charged par-
ticle in the electromagnetic fields is described by the
ODE systeml(orentz World-Force Layv

A’z dx
— = EF+—xB
T T ( T > ’
r= (2,2 2%) e U C R,
wherem is themass ande is thechargeof the par-
ticle. Of course, these are Euler-Lagrange equations
produced by the Lorentz Lagrangian
1 dx’ da? tes dat
O Wil TS Pl
2 dt dt Yt
The associated Lorentz Hamiltonian is
m, d'de!
2 7 dt dt
A similar mechanical motion was discovered by
Popescu [7], accepting the existence afravitovor-

L1 Aj —eV.

H, = + eV.

tex fieldrepresented by the forc@ + Z—f x ), where

G is the gravitational field ang is a vortex determin-
ing the gyroscopic part of the force. The papers [5],
[8], [9], [12], [14], [15] confirm the point of view of
Popescu via geometric dynamics.

1.1 Single-time geometric dynamics pro-
duced by vector potential A

To conserve the traditional formulas, we shall refer
to field lines of the vector potentia-'A” using di-
mensional homogeneous relations. These curves are
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solutions of the ODE system

dx
— = —¢cA.
mdt e

This ODE system and the Euclidean metric produce

the least squares Lagrangian

dzt : dxd .
A’ Al
+e ) <m gt +e >

1
2&j<maﬁ

1

Ly =

dzx 2

= — — A
5 mdt+€

The Euler-Lagrange equations associatefi4@re

Pal (0N DA d  @Of
m a2 € ort  Ox7 ) dt m Ozt €0t
where

1 o

is the energydensityproduced byA. Equivalently, it
appears aingle-time geometric dynamics

Az dzx
=e— X

"z T %t

a motion in a gyroscopic force [12], [14], [15] or a
B-vortex dynamics. The associated Hamiltonian is

2
B+ SV y—edA, B=rotA,
m

1 dzxt : dxd .
Hy = —6;; — —eA’ — Al
2 263<mdt e)(mdt—i—e )
m? _ dztdad
= 5 T g2,
5 % gy ar ¢4

Remark. Generally, the single-time geometric
dynamics produced by the vector potentialA” is
different from the classical Lorentz World-Force Law
because

1 o
Lo —mlq = 56252‘]‘AZAJ + meV

and the forceEVfA — 9, A is not the electric field

m
E = —-VV — 0,A. In other words the Lagrangians
L, and L, are not in the same equivalence class of
Lagrangians.

1.2 Single-time geometric dynamics pro-
duced by magnetic induction B

Since we want to analyze the geometric dynamics us-

ing units of measure, the magnetic flow must be de-

scribed by
dx

m— =
dt
ISSN: 1109-2769
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where the unit measure for the constait is
[kgm?/V s%].
The associated least squares Lagrangian is

1 dx? . dxd .
L3 = =0;; — —\B — —\BY
3 25] <m o A ) <m 7 A >
1 dx 2

This gives the Euler-Lagrange equatiossfle-time
magnetic geometric dynamjcs

d*x dx 22

where
1 o 1 9
fB= 551'3'313] = §||B||

is themagnetic energy densityThis is in fact a dy-
namics under a gyroscopic force or.Javortex.
The associated Hamiltonian is

1 dx? ) dxd .
Ha= Z25:: > B sl J
3 25” (m o /\B> (m 7 + A\B )
m?  dx® da? 9
=i g N e

1.3 Single-time geometric dynamics pro-
duced by electric field E

The electric flow is described by

dzx
— = )\F
" ’

where the unit measure of the constant is
[kgm?/V s]. It appears the least squares Lagrangian

1 dx’ - dax? -
= —0;; _— ¢ _— J
Ly 25” <m p” )\E> (m g \E )
1 dx 2
= —|{lm— — \E
2 Hmdt AB|

with Euler-Lagrange equationsifigle-time electric
geometric dynamigs

d?x dx 2
— = )\A— XTrotE + — AOLE
T " o VI T ARE,
where
fg = 16~E¢Ej — EHEH?
B 9% )
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is theelectric energy densifyhere we have in fact a
dynamics ind; B-vortex. The associated Hamiltonian

IS
1 dzt ; da?
Hy 25,] <m o )\E> (m 7 + \E )
m? _ dz' dx 2
RGeS

Open problem. As is well-known, charged par-
ticles in the magnetic field of the earth spiral from
pole to pole. Similar motions are also observed in
laboratory plasmas and inferred for electrons in metal
subjected to an external magnetic field. Till now,
these motions where justified by the classical Lorentz
World-Force Law. Can we justify such motions using
the geometric dynamics produced by suitable vector

fields in the sense of present paper and the papers [5],

[7]-112], [14], [15]?

2 Potentials associated to electro-
magnetic forms

Let U ¢ R3> = M be a domain of linear homoge-
neous isotropic media. Which mathematical object
shall we select to model the electromagnetic fields;
vector fields or forms? It was shown [1] that, the
magnetic inductionB, the electric displacemend,
and the electric current densifyare all 2-forms; the
magnetic fieldH, and the electric field& are 1-forms;
the electric charge densipyis a 3-form. The operator
d is the exterior derivatives and the operafipiis the
time derivative.

In terms of differential forms, thlaxwell equa-
tionsonU x R can be expressed as

dD = p,
dB =0,

dH = J+ 0:D

dE = —0;B.

The constitutive relations are
D=exFE, B=puxH,

where the star operateris the Hodge operatog, is
the permitivity, andu is the scalar permeability.

The local component&;, ¢ = 1,2, 3, of the 1-
form E are calledelectric potentials and the local
componentdd;, i = 1, 2, 3, of the 1-formH are called
magnetic potentialsSince the electric field, and the
magnetic fieldd are 1-forms [1], in the Sections 4-5
we combine our ideas [8]-[16] with the ideas of Emery
[3] and Foster [4], creating a nonclassical electric or
magnetic dynamics. Finally, we generalize the results
to nonclassical dynamics induced by a second-order
Lagrangian (Section 6).
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2.1 Potential associated to electric 1-form E

Let us consider the functiof¥ : R x U — R,
(t,z) — V(t,z) and the Pfaff equatiodV = —FE or
the equivalent PDE syste 8‘/; —F;,i=1,2,3.

X
Of course, the complete integrability conditions re-
quiredE = 0 (electrostatic fielfi which is not always
satisfied. In any situation we can introduce the least

squares Lagrangian
oV

1, (o
277\ gt
1 2
= §||dV + E||°.
These produce the Euler-Lagrange equation (Poisson
equation)

Lo =

AV = —divE,

and consequently must be thelectric potential For

a linear isotropic material, we hav® = <FE, with

p = div D = ediv E. We get the potential equation
for a homogeneous material € constant)

AV =L

3

For the charge free space, we have 0, and then the
potentiall” satisfies the Laplace equation

AV =0

(harmonic functioh The Lagrangiarig produces the
Hamiltonian

1
Hy = 3(dV — B,dV + E),

and the momentum-energy tensor field

i oV 0L i

= oui OV Lod;
(57)

oV [V .

= <axi +Ei> ~ ol

2.2 Potential associated to magnetic 1-form

H
Now, we consider the Pfaff equatiely = H or the
PDEsystem{% =H;,i=1,2,3,p: RxU — R,

X
(t,z) — @(t,z). The complete integrability condi-
tionsdH = 0 are satisfied only for particular cases. If
we build the least squares Lagrangian
Hj)

1 [ O0p Oy
Lig==0"-—"%5—-H; )| == —
10 2(S <8x’ ) <8a:ﬂ
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1
= —||dp — H||?
5llde — HII%,

then we obtain the Euler-Lagrange equation (Laplace
eqguation) and consequently must be themagnetic
potential The Lagrangiarl,o produces the Hamilto-

nianHyy = —(dyp — H,dp + H).

5

2.3 Potential associated to 1-form potential
A

SincedB = 0, there exists an 1-form potentidl sat-
isfying B = dA. Now let us consider the Pfaff equa-

tion diyp = A or the equivalent PDEs syste(%}i =

Aiyi=1,2,3,¢ : RxU — R, (t,x) — ¢¥(t,x).

The complete integrability conditionsA = 0 are sat-

isfied only for B = 0. If we build the least squares
o

Lagrangian
1. oY
= — ) — y —_ y
L 2(S (&ri AZ) <8£Uj A]>

1
== — Al?
Sl — AP,
then we obtain the Euler-Lagrange equation (Laplace
equation)Ay = 0. The Lagrangian.,; gives the

. . 1
Hamiltonian Hy; = §(d¢ — A,dy + A) and the
momentum-energy tensor field

T 9 \ Ot

— Ai> — L116%.

Open problem. Find interpretations for the ex-
tremals of least squares Lagrangians

1
L1z = 5[ldA - BJ[?

0A;
-55) (G = 5~ )

1 1
Lis = 5 |ldE + 0,B|[* + S||dH — J - 9,D||”

0A;

dal

_ Lsingin (04 045
_255 <89:j ozt

1 1
—|ldD — p||? + =||dB|?
+2|| oll +2|| 1%,

which are not solutions of Maxwell equations.

Remarks. 1) There are a lot of applications of
previous type in applied sciences. One of the most
important is in thematerial strength In problems as-
sociated with the torsion of a cylinder or prism, one
has to investigate the functional

/| ((g_ )2+ (gy+>> dody
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for an extremum.
0%z 0%z
Ox* — Oy> .
monic functions. Of course/ has no global "mini-
0z

@——w

The Euler-Lagrange equation,

= 0, shows that the extremals are har-

o 0
mum point” since the PDE systeng =y,

is not completely integrable.

2) All previous examples in this section are
single-component potentialSimilarly we can intro-
duce themulti-component potentials

3 Second-Order Forms and Vectors

Now we will concentrate on certain geometric ideas
that are very important in the physical and stochastic
applications. To avoid too much repetitiofh] will
denote a differentiable manifold of dimensienand
all the functions are of clags®°.

Letz' = z'(z"), 4,9 = 1,...,n be a changing
of coordinates ord/. Then we introduce the symbols

9%t

. ot
D i ﬁ .
ox¥ 19

= { =
o= 8$i,, Dz’]’

For a differentiable functiorf : M — R we use the
simplified coordinate expressidifz’ ) = f(z'(z")),
the first order derivativeg ;/, f; and the second order

derivativesf ;/;/, f,;;. These are connected by the rule

)- (1)

The pair (first-order partial derivatives, second-
order partial derivatives) possesses a "tensorial’
change law that the second derivative, by itself, lacks.
This pair was used in the classical works like "contact
element” or like "jet”.

If a curve is given by the parametric equations
x' = 2%(t), t € I, then the preceding diffeomorphism
modifies the paif#, i @ #)T as follows

D Di,

(f,i/af,i’j/) = (f,l?f,l]) ( 0 D:/D-g/

! -7 i ! .y i’ 7 e i’
&t =2'D;, &' =i'Dj + 3'i’) D

YRl
Ll
X
TN =
Tt al

D! D p
0 DiD/ <M])

The pair (acceleration, "square of velocity”) is sug-
gested by the equations of geodesics

B (t) + T ((8)d (427 (t) = 0.

Consequently, when first and second derivatives
come into play together, then matrices of blocks such
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as

K_< )K_

are useful for changing the components of pairs of ob-
jects.

Definition.  Any pair (w;,w;;) admitting the
changing law(1), where(w;) is an 1-form andw;;) is
symmetric, will be called aecond-order fornon M.

A second-order vector fieldn M is a second-order
differential operator, with no constant term.

A second-order form can be written # =
0;d*z" + 0,;dz’ ® dz’, where the components and
t;; = 0;; are smooth functions. A second-order vector
field writes X f = £V Dy; f + £'D; f, where the com-
ponentsf” = ¢7* and/¢* are smooth functions. The
theory of second-order vectors or forms appears in
Emery [3], with applications in stochastic problems,
and in Foster [4], suggesting new point of view about
the fields theory. We use these ideas to define mean-
ingful second-order Lagrangians (kinetic potentials)
and to study their extremals.

A 7 14 14
Di’ Di’j/ D’L D,L]

0 DjDl 0 DjDj

4 Dynamics induced by second-
order electric form

Let E; be the electric potentials. The usual deriva-
tive E; ; may be decomposed into skew-symmetric
and symmetric parts,

1

2

1

Ei,j = 5

(Eij — Eji) + 5 (Eij + Ejq).

The skew-symmetric part (vortex)

1

mij = 5 (Eij — Bji)

is calledMaxwell tensor fieldyiving the opposite of
the time derivative of magnetic induction. The sym-
metric part

1
5 (Eij + Ej)
is not an ordinary tensor, but the pair

1
(B, 5(Eij + Eja))
is a second-order object [3]-[4].
Letw;; be a general object such thd;, w;;) is a

second-order object. The difference

1
(0, wij — §(Ez‘,j + Eji))

ISSN: 1109-2769
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is a second-order object determined @y = w;; —
%(Ei,j + Ej,i)- If Wi is Symmetric, the@i]’ is a sym-
metric tensor field; if we addet(g;;) # 0, theng;;

can be used as a semi-Riemann metric. In this context
the equality

1
=(Eij + Ej;)) + (0, i)

(Bi,wij) = (E; 5

shows that the valuable objects
1
5 (Eij + Ej)

come from electricity and mate with gravitational po-
tentialsg;;. Consequently they have to bectrograv-
itational potentials

The preceding potentials determine alectric
energy second-order Lagrangian

R

Lo = Ei(x(t),t) —5 (1)

dt?
1 dzt dx?
. EZ j Ez ) .
+o (i + Eja) (2(t), 1)~ (8) - (¢)

If the most general energy second-order Lagrangian
is given by

dxt dx?

2zt
i (2 (), t)ﬁ(t)ﬁ(t),

Lge = Ei(x(t),t) oz (t)+w
and thegravitational energy first-order Lagrangias

dxd

L0,

dt

Ly = gij (z(t),1)

thenLgye = L + L.

To simplify, let us takell = E(x). Since the dis-
tribution generated by the electric 1-forfis given
by the Pfaff equation;(x)dz* = 0, the electric en-
ergy Lagrangian is zero along integral curves of this
distribution. Also the general energy second-order La-
grangian forE = E(z),w;; = w;;(z) determines the
energy functional

) i,

/ b (Bt
@)

We denote

RN dzt dx?
gz Twii(E) () ()

1
wijk = §(Wk:j,i + Wi j — Wijik)
(the Christoffel symbols ab;;),

1
Eijr = 5 (Bij + Ejax — Eigr) -
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Theorem. The extremals of the energy functional
(2) are described by the Euler-Lagrange ODEs
A’z dx’ dad

ki~ gy + Wijk = Eije) -~ =0,

z(a) = xq,2(b) = x.

(geodesics with respect to an Otsuki connection.[6])
Proof. Using the second-order Lagrangian

d’a’ | da’da!
a2 Y A

the Euler-Lagrange equations

L=EFE +

d d?
Lk L% +ﬁ

T —% Ld2zk:O

dt2

dt

transcribe like the equations in the theorem.

To a Lagrangian there may corresponds a field
theory. Consequently we obtain a field theory hav-
ing as basis the general electrogravitational potentials.
The pure gravitational potentials are given by

1

5 (Ez‘,j + F ,z)

9ij = Wij —
We definel“ijk = Wijk_Ez’jk- Itis verified thatfijk =
gijk +mijL, Wwhereg, ;. are the Christoffel symbols of
gij» andmgj, = my; i + may; iS the symmetrized
derivative of the Maxwell tensor

1
mij = 5 (Bij — Bj)-
Corollary . The extremals of the energy functional
(1) are described by the Euler-Lagrange ODEs
d?at dxt da?

ki gy T (gwji + mkji)ﬂ% =0,

z(a) = zq,x(b) = xp.

(geodesics with respect to an Otsuki connection.[6])

5 Dynamics induced by second-
order magnetic form

Let H; be the magnetic potentials. The usual deriva-
tive H; ; may be decomposed into skew-symmetric
and symmetric parts,

1
S(Hij —

1
5 H;;)+ =

H; ;= 2(

H;j+ Hj;),
where

1
Mij = 5(Hij — Hy;)
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is theMaxwell tensor fieldvortex) giving the sum be-
tween the electric current density and the time deriva-
tive of the electric displacement. The pair

1
(Hz §(Hz',j + Hj,z‘)>

is a second-order object. [fH;,w;;) is a general
second-order object, then the difference

1
9ij = wij — 5 (Hij + Hji)

represents the gravitational potentials (a metric) pro-
vided thatw;; is symmetric,g;; is a (0,2) tensor field
and det(g;j) # 0. Consequently the valuable ob-

jeCtSi(Hi’j +Hj ;), which come from magnetism and

mate, have to bemagnetogravitational potentials

The preceding potentials produce the following
energy Lagrangians:

1) magnetic energy second-order Lagrangian

d%x’
Lma = Hi(x(t)at) W(t)
b (Heg o+ Hy ) (a0, (1) 52 1)

2) gravitational energy first-order Lagrangian

dxt dx?

Ly = gij(a(t), 8)—- () —-(1);

3) general energy second-order Lagrangjan

dxt da?
t)—(t).
dt()dt()

These satisfy the relatioby. = L, + Ly.

To simplify, let us takel = H (z). Since the dis-
tribution generated by the magnetic 1-fofinis given
by the Pfaff equatio;(x)dz’ = 0, the magnetic en-
ergy Lagrangian is zero along integral curves of this
distribution. Also the general energy second-order La-
grangian for = H(x),w;; = w;j(z) determines the

energy functional
—(t)——(t) | dt
(050 d

/ b (#tia(0)
3)

determined by a second-order Lagrangian which is
linear in acceleration.
We denote

d2 gt

L Hi(l'(t),t) W —l—wij(x(t),t)

ge —

d?zt dzt dzd

W(t) + wij(x(t))

5 (Wi + Wi — wijik)

Wijk = 5

Issue 1, Volume 7, January 2008



WSEAS TRANSACTIONS on MATHEMATICS Constantin Udriste, Dorel Zugravescu, Florin Munteanu

(the Christoffel symbols ab;;), is aMaxwell tensor fieldvortex). The pair
1 1
Hijk = 5 (Hyyij + Hijir — Hijr) - wis 5 (Wi + wji)
Theorem. The extremals of the energy functional s g second-order form. Ifw;,w;;) is a general
(3) are solutions of the Euler-Lagrange ODEs second-order form, then we suppose that the differ-
2 4t dad ence
x T ax
gkiW + (wijk — Hijk)%ﬂ =0, 9ij = Wij — 5( i+ Wwji)
represents the components of a metric, i.g;.js sym-
(a) = zq, 2(b) = . metric, g;; is a (0,2) tensor field andet(g;;) # 0.
(geodesics with respect to an Otsuki connection.[6]) The preceding potentials produce the following
To an energy Lagrangian there may corresponds €nergy Lagrangians: _
a field theory. Consequently we obtain a field theory 1) potential-produced energy Lagrangian
having as basis the general magnetogravitational po- 9
tentials. The pure gravitational potentials are (compo- Lpp = wi(z(t), 1) d’z (t)
. L . PP ( ) di2
nents of a Riemann or semi-Riemann metric) t
1 I N dzt da? ‘
gij = Wij — §(Hm‘ + Hj,i). +§(w27] + wjﬂ)(m(t)ut) dt (ﬂ%(t)a

2) gravitational energy Lagrangian
We introducel’; ;. = wijx — Hijr.. Itis verified the re- )9 gy Lagrangia

lationT';;, = gij+ M;ji, Whereg; ;;, are the Christof- et did
fel symbols ofg;;, and M;j, = M;j; + M is the Ly = gij(a(t), t)—- () — - (1);
symmetrized derivative of the Maxwell tensor

) 3) general energy Lagrangian
Mij = 5(Hij — Hyy).

d2 i d i d J
Lye = wila(t). 1) — +wiy(2(t), )= —
Corollary . The extremals of the energy functional (3)
are solutions of the Euler-Lagrange ODEs which verify
Azt dx* da? Ly =L,,+ L,.
Ihi -+ (hji + Miji) - — =0, I e
The Pfaff equationv;(z)dz* = 0,7 = 1,...,n
z(a) = 24, 2(b) = 3. defines a distribution on/. The valuable objects
(geodesics with respect to an Otsuki connection.[6]) 1
5 Wiy +wii)

6 Dynamics induced by second- are the components of the second fundamental form
of that distribution [6]. The potential-produced energy
order general form Lagrangian is zero along integral curves of the distri-
Now we want to extend the preceding explanations bution generated by the given 1-fotm= (w;(x)).
since they can be applied to dynamical systems com- In the autonomous case, the general energy La-
ing from Biomathematics, Economical Mathematics, 9rangian produces trenergy functional
Industrial Mathematics etc.

b i i j
Letw; be given potentials (given form). The usual / <wi(af(t)) d?z (1) + wiA(;U(t))dx(t)dﬂ(tO dt.
partial derivativew; ; may be decomposed as a dt? J dt dt

(4)
1 1 This energy functional is associated to a particular La-
Wij = §(wz,j - W],z) + 5(‘*)1,] + Wj,z)v grangianL of order two.
We denote
where
Mij = 5 (wiy — wji) Wi = 5 (Whji + Wrij — Wigk)
ISSN: 1109-2769 Issue 1, Volume 7, January 2008
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(the Christoffel symbols ab;;),

1
Qijr, = By (Whij + Wjik — Wijk) -

Theorem. The extremals of the energy functional
(4) are solutions of the Euler-Lagrange ODEs

R

dt?

da' df
dt dt

z(a) = xq,2(b) = xp

ki + (wijk — Qiji)

(geodesics with respect to an Otsuki connection.[6])
To an energy Lagrangian there may correspond a

field theory. We introduc’; ;. = wijr — Q. After

some computations we fidd;;, = g;;x +mM;;,, Where

gi;i. are the Christoffel symbols af;;, and

My = Mk + Mk

is the symmetrized derivative of the Maxwell tensor
field M.

Corollary . The extremals of the energy functional
(4) are solutions of the Euler-Lagrange ODEs

A2z dxt da?

ki~ T (grji + Meji) =

dt dt
x(a) = xq,2(b) = xp
(geodesics with respect to an Otsuki connection.[6])

Open problems (1) Find the linear connections
in the sense of Crampin [2] associated to the preced-
ing second-order ODESs. (2) Analyze the second varia-
tions of the preceding energy functionals. (2) Analyze
the symmetries of the preceding second order differ-
ential systems (see also [16]). (3) Find practical inter-
pretations for motions known as geometric dynamics,
gravitovortex motion and second-order force motion
(see also [9]).
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