Euler-Lagrange-Hamilton Dynamics with Fractional Action

CONSTANTIN UDRISTE
University Politehnica of Bucharest
Department of Mathematics
Splaiul Indpendentei 313
060042, Bucharest
ROMANIA
udriste@mathem.pub.ro

DUMITRU OPRIS
West University of Timisoara
Department of Applied Mathematics
B-dul Vasile Parvan 4
1900 Timisoara
ROMANIA
opris@math.uvt.ro

Abstract

Our aim is three-fold: to point out that the fractional integral actions are coming from Stieltjes actions, to find the roots and the geometry of some Euler-Lagrange or Hamilton ODEs or PDEs, to evidentiate some ideas that include the fractal theory of solids. Section 1 discusses the Euler-Lagrange ODEs associated to single-time Stieltjes actions. Teir dual Hamilton ODEs are analized in Section 2. Section 3 studies the geometry associated to singletime Euler-Lagrange or Hamilton operators. Section 4 analyzes the Euler-Lagrange PDEs associated to multitime Stieltjes actions (multiple or curvilinear integrals). Section 5 formulates the multitime perimetric problem of nonrenewable resources. Section 6 studies the Hamilton PDEs associated to multitime Stieltjes actions. Section 7 describes the geometry associated to multitime Euler-Lagrange or Hamilton operators (dynamical connection and semi-spray, Poincaré-Cartan form, Hamilton-Poisson systems on jet bundle). Section 8 formulates a multitime Hamilton-Poisson systems theory on jet bundle.

Key-Words: fractional Stieltjes action, Euler-Lagrange or Hamilton equations, dynamic connection, symplectic manifold.

1 Euler-Lagrange ODEs associated to single-time Stieltjes actions

Two functions $f: R \rightarrow R$ and $g: R \times R_{+} \rightarrow$ $R, g(t, \tau)=g_{\tau}(t), \tau>0$ with suitable properties determine the simple Stieljes integral (generalized convolution) of $f(t)$ with respect to $g_{\tau}(t)$, on the interval $[0, \tau]$, denoted by $I_{\tau} f=\int_{0}^{\tau} f(t) d g_{\tau}(t)$. The best simple existence theorem states that if f is continuous and g is of bounded variation on $[0, \tau]$, then the integral exists. Note that g is of bounded variation if and only if it is the difference between two monotone functions. If the convolution is not desirable, the interval of integration can be taken independent of τ.

If the function $g_{\tau}(t)$ should happen to be everywhere differentiable, then the previous Stieltjes integral is reduced to a special Riemann integral, $I_{\tau} f=$ $\int_{0}^{\tau} f(t) g_{\tau}^{\prime}(t) d t$. The well-known situations appearing in applications are:
$g: R \times R_{+} \rightarrow R, g_{\tau}(t)=\frac{\tau^{r}-(\tau-t)^{r}}{\Gamma(1+r)}, r \in(0,1]$,
where Γ is the Euler function; then

$$
I_{\tau} f=\frac{1}{\Gamma(r)} \int_{0}^{\tau} f(t)(\tau-t)^{r-1} d t
$$

which is known as the fractional Riemann-Liouville integral of order r;

$$
\begin{equation*}
g: R \times R_{+} \rightarrow R, g_{\tau}(t)=-\frac{e^{-\tau t}}{\tau} \tag{2}
\end{equation*}
$$

then $I_{\tau} f=\int_{0}^{\tau} f(t) e^{-\tau t} d t$, an integral used in economics when we speak about discounted $f(t)$ at rate $\tau ;$

$$
\begin{equation*}
g: R \times R_{+} \rightarrow R, g_{\tau}(t)=\frac{t^{\tau}}{\tau} \tag{3}
\end{equation*}
$$

then τ can be taken as a fractal dimension and $I_{\tau} f=$ $\int_{0}^{\tau} f(t) t^{\tau-1} d t$ is a fractional integral used as a fractal action.

Now, let (t, x, \dot{x}) be a local system of coordinates on $J^{1}(R, M)$, where $x=\left(x^{i}\right), \dot{x}=\left(\dot{x}^{i}\right), i=1, \ldots, n$. Any C^{∞} real function $L=L(t, x(t), \dot{x}(t))$ defined on $J^{1}(R, M)$ is called Lagrangian density of energy.

The single-time Stieltjes action is defined via the Stieljes integral of L with respect to $g_{\tau}(t)$ in the sense of functional

$$
\mathcal{I}_{\tau}(x(\cdot))=\int_{0}^{\tau} L(t, x(t), \dot{x}(t)) d g_{\tau}(t)
$$

Particularly, we define the single-time action of $L\left(t, x(t), x_{\alpha}(t)\right)$ with respect to the weight $g_{\tau}^{\prime}(t)$ by the Riemann integral

$$
\begin{equation*}
\mathcal{I}_{\tau}(x(\cdot))=\int_{0}^{\tau} L(t, x(t), \dot{x}(t)) g_{\tau}^{\prime}(t) d t \tag{4}
\end{equation*}
$$

where τ is fixed. The function $\mathcal{L}(t, x(t), \dot{x}(t))=$ $L(t, x(t), \dot{x}(t)) g_{\tau}^{\prime}(t)$ is called Lagrangian.

Examples. 1) The fractional action from physics

$$
\mathcal{I}_{\tau}(x(\cdot))=\frac{1}{\Gamma(r)} \int_{0}^{\tau} L(t, x(t), \dot{x}(t))(\tau-t)^{r-1} d t
$$

obtained for the function $g_{\tau}(t)$ in (1). Particularly, for $r=1$ we obtain the classical action.
2) The discounted action at rate τ from economics

$$
\mathcal{I}_{\tau}(x(\cdot))=\int_{0}^{\tau} L(t, x(t), \dot{x}(t)) e^{-\tau t} d t
$$

obtained for $g_{\tau}(t)$ in (2).
3) The fractal action from physics [11]

$$
\mathcal{I}_{\tau}(x(\cdot))=\int_{0}^{\tau} L(t, x(t), \dot{x}(t)) t^{\tau-1} d t
$$

obtained for $g_{\tau}(t)$ in (3).
1.1. Proposition. The single-time EulerLagrange ODEs associated to the action (4) are

$$
\begin{equation*}
\frac{\partial L}{\partial x^{i}}-\frac{d}{d t} \frac{\partial L}{\partial \dot{x}^{i}}=\frac{g_{\tau}^{\prime \prime}(t)}{g_{\tau}^{\prime}(t)} \frac{\partial L}{\partial \dot{x}^{i}}, i=1, \ldots, n \tag{5}
\end{equation*}
$$

where the symbol $\frac{d}{d t}=\frac{\partial}{\partial t}+\dot{x}^{i} \frac{\partial}{\partial x^{i}}+\ddot{x}^{i} \frac{\partial}{\partial \dot{x}^{i}}$ stands for the total derivative.

Examples. 1) Let $g=\left(g_{i j}\right)$ be a metric on the manifold M and $\Gamma_{j k}^{i}$ the associated Christofell symbols. The Euler-Lagrange ODEs associated to the Lagrangian $\mathcal{L}=\frac{1}{2} g_{i j}(x(t)) \dot{x}^{i}(t) \dot{x}^{j}(t) g_{\tau}^{\prime}(t)$ are

$$
\frac{d^{2} x^{i}}{d t^{2}}+\Gamma_{j k}^{i} \frac{d x^{j}}{d t} \frac{d x^{k}}{d t}=\frac{g_{\tau}^{\prime \prime}(t)}{g_{\tau}^{\prime}(t)} \frac{d x^{i}}{d t}, i=1, \ldots, n
$$

For $g_{\tau}(t)$ in (1), this is just the fractional Newton second law from Physics.
2) Now, for $a \in(-1,1)$, we use the Lagrangian density

$$
L: R \times R \rightarrow R, L(x, \dot{x})=-\frac{1}{2} \dot{x}^{2}-a x \dot{x}-\frac{1}{2} x^{2}
$$

and a differentiable function $g_{\tau}: R \rightarrow R$. Then the Euler-Lagrange ODE associated to the Lagrangian $\mathcal{L}=L(x, \dot{x}) g_{\tau}^{\prime}(t)$ is

$$
\ddot{x}-x-\frac{g_{\tau}^{\prime \prime}(t)}{g_{\tau}^{\prime}(t)}(\dot{x}-a x)=0
$$

If the function g_{τ} is given by (1), then

$$
\ddot{x}-\left(\frac{r-1}{\tau-t} a+1\right) x-\frac{r-1}{\tau-t} \dot{x}=0
$$

if g_{τ} is given by (2), then $\ddot{x}-\tau \dot{x}+(1+a \tau) x=0$.
Remarks. 1) A particular weight $g_{\tau}^{\prime}(t)$ can be obtained taking the Riemannian manifold $\left(R, h_{\tau}(t)>\right.$ $0)$ instead the Euclidean manifold $(R, 1)$. In this case the Lagrangian is $\mathcal{L}=L(t, x(t), \dot{x}(t)) \sqrt{h_{\tau}(t)}$ and $g_{\tau}^{\prime}(t)=\sqrt{h_{\tau}(t)}$.
2) If we have in mind only the Lagrangian density L, then the term $F_{i}=\frac{g_{\tau}^{\prime \prime}(t)}{g_{\tau}^{\prime}(t)} \frac{\partial L}{\partial \dot{x}^{i}}$ in Euler-Lagrange ODEs (4) stands for an external force.
3) If the function $g_{\tau}(t)$ is given by (1), then the ODEs (4) reduce to

$$
\frac{\partial L}{\partial x^{i}}-\frac{d}{d t} \frac{\partial L}{\partial \dot{x}^{i}}=\frac{1-r}{\tau-t} \frac{\partial L}{\partial \dot{x}^{i}}, i=1, \ldots, n
$$

In particular, for $r=1$ we obtain the classical EulerLagrange ODEs.
4) If the function $g_{\tau}(t)$ is given by (2), then the ODEs (4) reduce to

$$
\frac{\partial L}{\partial x^{i}}-\frac{d}{d t} \frac{\partial L}{\partial \dot{x}^{i}}=-\tau \frac{\partial L}{\partial \dot{x}^{i}}, i=1, \ldots, n
$$

2 Hamilton ODEs associated to single-time Stieltjes actions

To pass from Euler-Lagrange ODEs of second order to Hamilton ODEs of first order, suppose that the moment system $p_{i}=\frac{\partial L}{\partial \dot{x}^{i}}(t, x, \dot{x}), i=1, \ldots, n$, define a bijection $\dot{x} \leftrightarrow p$. A sufficient condition is that the Lagrangian density of energy L to be regular, i.e., $\operatorname{det}\left(\frac{\partial^{2} L}{\partial \dot{x}^{i} \partial \dot{x}^{j}}\right) \neq 0$. Then we introduce the Hamiltonian function

$$
H: J^{1}(R, M)^{*} \rightarrow R, H=p_{i} \dot{x}^{i}-L(t, x, \dot{x})
$$

Remark. In the geometrical theories [1]-[4], [13]-[20], the d-tensor field

$$
g_{i j}(t, x, \dot{x})=\frac{\partial^{2} L}{\partial \dot{x}^{i} \partial \dot{x}^{j}}(t, x, \dot{x})
$$

is used like a vertical metric. A very important case for geometry and field theory is that of Kronecker decomposability $g_{i j}(t, x, \dot{x})=g_{i j}(t, x, \dot{x}) h(t)$.
2.1. Proposition. The Euler-Lagrange ODEs (5) are equivalent to the Hamilton ODEs

$$
\begin{gather*}
\dot{x}^{i}(t)=\frac{\partial H}{\partial p_{i}}(t, x(t), p(t)) \\
\dot{p}_{i}(t)=-\frac{\partial H}{\partial x^{i}}(t, x(t), p(t))+F_{i}(t, p(t)) \tag{6}\\
F_{i}(t, p(t))=\frac{g_{\tau}^{\prime \prime}(t)}{g_{\tau}^{\prime}(t)} p_{i}(t) .
\end{gather*}
$$

Single-time Hamilton-Poisson systems on dual jet bundle. Let $f, h: J^{1}(R, M)^{*} \rightarrow R$ be differentiable functions. The Poisson bracket is defined by

$$
\begin{equation*}
\{f, h\}=\frac{\partial f}{\partial p_{i}} \frac{\partial h}{\partial x^{i}}-\frac{\partial f}{\partial x^{i}} \frac{\partial h}{\partial p_{i}} . \tag{7}
\end{equation*}
$$

From (6) and (7), it follows

$$
\left\{H, p_{i}\right\}=\dot{p}_{i}-F_{i},\left\{H, x^{i}\right\}=\dot{x}^{i} .
$$

Also, for any differentiable function

$$
\ell: J^{1}(R, M)^{*} \rightarrow R
$$

we have

$$
\frac{d \ell}{d t}=\frac{\partial \ell}{\partial t}+\{H, \ell\}-\frac{g_{\tau}^{\prime \prime}(t)}{g_{\tau}^{\prime}(t)} p_{i} \frac{\partial \ell}{\partial p_{i}}
$$

3 Geometry associated to single-time Euler-Lagrange derivative

We consider the jet bundle $J^{1}(R, M)$ and the local chart (t, x, \dot{x}). A natural local basis for the 1 -forms on $J^{1}(R, M)$ is given by the 1 -forms $\theta^{i}=d x^{i}-\dot{x}^{i} d t$. These 1-forms and the vertical vector fields $\frac{\partial}{\partial \dot{x}^{i}}$ defines the endomorphism $S=\theta^{i} \otimes \frac{\partial}{\partial \dot{x}^{i}}$, with the properties $S\left(\frac{\partial}{\partial t}\right)=-\dot{x}^{i} \frac{\partial}{\partial \dot{x}^{i}}, S\left(\frac{\partial}{\partial x^{i}}\right)=\frac{\partial}{\partial \dot{x}^{i}}$. The vector valued 1-form S is used in the classical HamiltonCartan formalism for problems in the calculus of variations.

A C^{∞} vector field Γ on $J^{1}(R, M)$ is called semispray (time-dependent second order vector field or field of second order ODEs), if it satisfies the conditions

$$
d t(\Gamma)=1, \theta^{i}(\Gamma)=0, i=1, \ldots, n
$$

Locally,

$$
\Gamma=\frac{\partial}{\partial t}+\dot{x}^{i} \frac{\partial}{\partial x^{i}}+f^{i} \frac{\partial}{\partial \dot{x}^{i}}, f^{i} \in C^{\infty}\left(J^{1}(R, M)\right)
$$

The semi-spray is used in the study of time-dependent mechanics on $R \times T M$.

Any Lagrangian density of energy $L: J^{1}(R, M) \rightarrow R$ generates a Poincarè-Cartan 1-form
$\theta_{L}=L d t+S(L), \theta_{L}=\left(L-\dot{x}^{i} \frac{\partial L}{\partial \dot{x}^{i}}\right) d t+\frac{\partial L}{\partial \dot{x}^{i}} d x^{i}$.
Let $\omega_{L}=-d \theta_{L}$. If the Lagrangian density of energy L is nondegenerate, i.e., $\operatorname{det}\left(\frac{\partial^{2} L}{\partial \dot{x}^{i} \partial \dot{x}^{j}}\right) \neq 0$, then there exists a semi-spray Γ as solution of the equation $i_{\Gamma} \omega_{L}=0$, called Lagrangian spray. Locally,

$$
\begin{gathered}
\Gamma=\frac{\partial}{\partial t}+\dot{x}^{i} \frac{\partial}{\partial x^{i}}+g^{i j}\left(-\frac{\partial L}{\partial x^{j}}+\frac{d}{d t} \frac{\partial L}{\partial \dot{x}^{j}}\right) \frac{\partial}{\partial \dot{x}^{i}} \\
\left(g^{i j}\right)=\left(\frac{\partial^{2} L}{\partial \dot{x}^{i} \partial \dot{x}^{j}}\right)^{-1} .
\end{gathered}
$$

Commentary. 1) The single-time Stieltjes actions of type (3) are studied in the papers [11].
2) Similar techniques can be applied to the Lie algebroids [5].

4 Euler-Lagrange PDEs associated to multitime Stieltjes actions

The functions $f: R^{m} \rightarrow R$ and $g_{\alpha}: R \times R_{+} \rightarrow$ $R, g_{\alpha}\left(t^{\alpha}, \tau^{\alpha}\right)=g_{\tau^{\alpha}}\left(t^{\alpha}\right), \tau^{\alpha}>0, \alpha=1, \ldots, m$, with suitable properties, determine the multiple Stieljes integral (generalized convolution) of $f(t)$ with respect to the functions $g_{\tau^{\alpha}}\left(t^{\alpha}\right)$, on the hyperparallelipiped $\Omega_{0 \tau}$ in R_{+}^{m} (fixed by the diagonal opposite points $0=(0, \ldots, 0)$ and $\tau=\left(\tau^{1}, \ldots, \tau^{m}\right)$), denoted by

$$
I_{\tau} f=\int_{\Omega_{0 \tau}} f(t) d g_{\tau^{1}}\left(t^{1}\right) \ldots d g_{\tau^{m}}\left(t^{m}\right)
$$

If the convolution is not desirable, the hyperparallelipiped of integration can be taken independent of τ.

If all the functions $g_{\tau^{\alpha}}\left(t^{\alpha}\right)$ should happen to be everywhere differentiable, then the Stieltjes integral is reduced to a special Riemann integral,

$$
I_{\tau} f=\int_{\Omega_{0 \tau}} f(t) g_{\tau^{1}}^{\prime}\left(t^{1}\right) \ldots g_{\tau^{m}}^{\prime}\left(t^{m}\right) d t^{1} \ldots d t^{m}
$$

Let us extend the fractional action theory from single-time case to the multitime case. For that we
introduce the jet bundle of order one $J^{1}(T, M)$ and a local chart $\left(t, x, x_{\alpha}\right)$ on it defined by a local chart $t=\left(t^{\alpha}\right), \alpha=1, \ldots, m$, ("multitime") on the manifold T, a local chart $x=\left(x^{i}\right), i=1, \ldots, n$, on the manifold M and a local chart $x_{\alpha}^{i}=\frac{\partial x^{i}}{\partial t^{\alpha}}, i=$ $1, \ldots, n ;, \alpha=1, \ldots, m$, on the vertical fibre.

Any C^{∞} real function $L=L\left(t, x(t), x_{\alpha}(t)\right)$ defined on $J^{1}(R, M)$ is called Lagrangian density of energy. The multi-time Stieltjes action is defined via a multiple Stieljes integral of L with respect to the functions $g_{\tau^{\alpha}}\left(t^{\alpha}\right), \alpha=1, \ldots, m$ in the sense of functional
$\mathcal{I}_{\tau}(x(\cdot))=\int_{\Omega_{0 \tau}} L\left(t, x(t), x_{\alpha}(t)\right) d g_{\tau^{1}}\left(t^{1}\right) \ldots d g_{\tau^{m}}\left(t^{m}\right)$
or, particularly, as multitime Riemann action

$$
\mathcal{I}_{\tau}(x(\cdot))=\int_{\Omega_{0 \tau}} L\left(t, x(t), x_{\alpha}(t)\right) G_{\tau}(t) d t^{1} \ldots d t^{m}
$$

where $G_{\tau}(t)=\prod_{\alpha=1}^{m} g_{\tau^{\alpha}}^{\prime}\left(t^{\alpha}\right)$. We define the multitime action of the Lagrangian density $L\left(t, x(t), x_{\alpha}(t)\right)$ with respect to the weight $G_{\tau}(t)$ by

$$
\begin{equation*}
\mathcal{I}_{\tau}(x(\cdot))=\int_{\Omega_{0 \tau}} L\left(t, x(t), x_{\alpha}(t)\right) G_{\tau}(t) d t^{1} \ldots d t^{m} \tag{8}
\end{equation*}
$$

The function

$$
\mathcal{L}\left(t, x(t), x_{\gamma}(t)\right)=L\left(t, x(t), x_{\gamma}(t)\right) G_{\tau}(t)
$$

is called Lagrangian.
4.1. Proposition. The multitime Euler-Lagrange PDEs associated to the action (8) are

$$
\begin{align*}
\frac{\partial L}{\partial x^{i}}-\frac{d}{d t^{\alpha}} \frac{\partial L}{\partial x_{\alpha}^{i}}=\frac{g_{\tau^{\alpha}}^{\prime \prime}\left(t^{\alpha}\right)}{g_{\tau^{\alpha}}^{\prime}\left(t^{\alpha}\right)} \frac{\partial L}{\partial x_{\alpha}^{i}} \tag{9}\\
\quad i=1, \ldots, n ; \quad \alpha=1, \ldots, m,
\end{align*}
$$

where the symbol $\frac{d}{d t^{\alpha}}=\frac{\partial}{\partial t^{\alpha}}+x_{\alpha}^{i} \frac{\partial}{\partial x^{i}}+x_{\alpha \beta}^{i} \frac{\partial}{\partial x_{\beta}^{i}}$ stands for the total derivative.

Proof. Since

$$
\mathcal{L}\left(t, x(t), x_{\alpha}(t)\right)=L\left(t, x(t), x_{\alpha}(t)\right) G_{\tau}(t)
$$

and

$$
\frac{\partial G_{\tau}}{\partial t^{\alpha}}(t)=\frac{g_{\tau^{\alpha}}^{\prime \prime}(t)}{g_{\tau^{\alpha}}^{\prime}(t)} G_{\tau}(t)
$$

the classical Euler-Lagrange PDEs

$$
\frac{\partial \mathcal{L}}{\partial x^{i}}-\frac{d}{d t^{\alpha}} \frac{\partial \mathcal{L}}{\partial x_{\alpha}^{i}}=0
$$

can be written as in Proposition.

Remarks. 1) A particular weight $G_{\tau}(t)$ can be obtained taking a Riemannian diagonal manifold ($T, h_{\tau^{\alpha}}\left(t^{\alpha}\right)$) instead the Euclidean manifold $\left(T, \delta_{\alpha \beta}\right)$. In this case the Lagrangian is $\mathcal{L}=$ $L\left(t, x(t), x_{\gamma}(t)\right) \sqrt{\operatorname{det}\left(h_{\tau^{\alpha}}\left(t^{\alpha}\right)\right)}$ and the weight is $G_{\tau}(t)=\sqrt{\operatorname{det}\left(h_{\tau^{\alpha}}\left(t^{\alpha}\right)\right)}$.
2) If we have in mind only the Lagrangian density L, then the term $F_{i}=\frac{g_{\tau^{\alpha}}^{\prime \prime}\left(t^{\alpha}\right)}{g_{\tau^{\alpha}}^{\prime}\left(t^{\alpha}\right)} \frac{\partial L}{\partial x_{\alpha}^{i}}$ in Euler-Lagrange PDEs (9) stands for the external forces.

Examples. 1) If

$$
g_{\tau^{\alpha}}\left(t^{\alpha}\right)=\frac{\left(\tau^{\alpha}\right)^{r_{\alpha}}-\left(\tau^{\alpha}-t^{\alpha}\right)^{r_{\alpha}}}{\Gamma\left(1+r_{\alpha}\right)}, 0<r_{\alpha} \leq 1,
$$

then $\frac{g_{\tau^{\alpha}}^{\prime \prime}\left(t^{\alpha}\right)}{g_{\tau^{\alpha}}^{\prime}\left(t^{\alpha}\right)}=\frac{1-r_{\alpha}}{\tau^{\alpha}-t^{\alpha}}$ and the PDEs (9) are written as multitime Euler-Lagrange PDEs with fractional forces

$$
\frac{\partial L}{\partial x^{i}}-\frac{d}{d t^{\alpha}} \frac{\partial L}{\partial x_{\alpha}^{i}}=\frac{1-r_{\alpha}}{\tau^{\alpha}-t^{\alpha}} \frac{\partial L}{\partial x_{\alpha}^{i}} .
$$

2) If $g_{\tau^{\alpha}}\left(t^{\alpha}\right)=t^{\alpha}$, the PDEs (9) are written as the classical multitime Euler-Lagrange PDEs.
3) If $g_{\tau^{\alpha}}\left(t^{\alpha}\right)=-\frac{e^{-\tau^{\alpha} t^{\alpha}}}{\tau^{\alpha}}$, the PDEs (9) are written as Euler-Lagrange PDEs from economics

$$
\frac{\partial L}{\partial x^{i}}-\frac{d}{d t^{\alpha}} \frac{\partial L}{\partial x_{\alpha}^{i}}=-\tau^{\alpha} \frac{\partial L}{\partial x_{\alpha}^{i}} ;
$$

4) If $g_{\tau^{\alpha}}\left(t^{\alpha}\right)=\frac{t^{\tau^{\alpha}}}{\tau^{\alpha}}$, the PDEs (9) are written as Euler-Lagrange PDEs from fractal theory of solids

$$
\frac{\partial L}{\partial x^{i}}-\frac{d}{d t^{\alpha}} \frac{\partial L}{\partial x_{\alpha}^{i}}=t^{\tau^{\alpha}-1} \frac{\partial L}{\partial x_{\alpha}^{i}} .
$$

In order to introduce the multitime fractional functional like a path independent curvilinear integral, we start with a generic Lagrangian density of energy L and we build the total derivative

$$
\begin{gathered}
L_{\beta}\left(t, x(t), x_{\alpha}(t)\right)=\frac{\partial L}{\partial t^{\beta}}\left(t, x(t), x_{\alpha}(t)\right)+ \\
\frac{\partial L}{\partial x^{i}}\left(t, x(t), x_{\alpha}(t)\right) \frac{\partial x^{i}}{\partial t^{\beta}}(t)+\frac{\partial L}{\partial x_{\lambda}^{i}}\left(t, x(t), x_{\alpha}(t)\right) \frac{\partial x_{\lambda}^{i}}{\partial t^{\beta}}(t) .
\end{gathered}
$$

For such type of functions we define the curvilinear Stieltjes functional

$$
\begin{equation*}
\mathcal{J}_{\tau}(x(\cdot))=\int_{\Gamma_{0 \tau}} L_{\beta}\left(t, x(t), x_{\alpha}(t)\right) d g_{\tau \beta}\left(t^{\beta}\right), \tag{10}
\end{equation*}
$$

where $\Gamma_{0, \tau}$ is an arbitrary piecewise C^{1} curve joining the points 0 and τ in $\Omega_{0 \tau} \subset R_{+}^{m}$.
4.2 Proposition [20], [22]. 1) If $x^{*}(\cdot)$ is an extremal of the Lagrangian density of energy L, then $x^{*}(\cdot)$ is an extremal of $d L$.
2) If $x^{*}(\cdot)$ is an optimum point of the functional $\mathcal{J}_{\tau}(x(\cdot))$, then $x^{*}(\cdot)$ is the solution of the multitime Euler-Lagrange PDEs

$$
\begin{gather*}
\frac{\partial L_{\beta}}{\partial x^{i}}-\frac{d}{d t^{\alpha}} \frac{\partial L_{\beta}}{\partial x_{\alpha}^{i}}=a_{\beta i}+\frac{g_{\tau_{\alpha}^{\alpha}}^{\prime \prime}\left(t^{\alpha}\right)}{g_{\tau^{\alpha}}^{\prime}\left(t^{\alpha}\right)} \frac{\partial L_{\beta}}{\partial x_{\alpha}^{i}}, \tag{11}\\
a_{\beta i}=\text { const }, i=1, . ., n ; \quad \alpha=1, \ldots, m .
\end{gather*}
$$

Commentary. 1) The fractional multitime action can be represented as multiple integral or as curvilinear integral. For this purpose it is enough to replace the volume element $d t^{1} \ldots d t^{m}$ by $d g_{\tau^{1}}\left(t^{1}\right) \ldots d g_{\tau^{m}}\left(t^{m}\right)$ or the linear element $\left(d t^{\beta}\right)$ by $\left(d g_{\tau^{\beta}}\left(t^{\beta}\right)\right)$.
2) The multitime dynamics with fractional action is suitable for the differential geometry of problems in Continuous Mechanics including fractal theory. Particularly, it describes qualitative properties of m-flows and their associated geometric dynamics [13]-[23].
3) A fractional multi-time action lead to the EulerLagrange PDEs with external forces which are proper for the system.
4) Let us point out some criteria to select the functions $g_{\tau^{\beta}}\left(t^{\beta}\right)$. For example, if t^{1} represents the time, then it is suitable to take $g_{\tau^{1}}\left(t^{1}\right)=$ $\frac{\left(\tau^{1}\right)^{r_{1}}-\left(\tau^{1}-t^{1}\right)^{r_{1}}}{\Gamma\left(1+r_{1}\right)}$; if t^{2} represents the dilatation, then $g_{\tau^{2}}\left(t^{2}\right)=t^{2}$; if t^{3} represents the discounting, then $g_{\tau^{3}}\left(t^{3}\right)=-\frac{e^{-\tau^{3} t^{3}}}{\tau^{3}}$; if t^{4} represents the fractalization, then $g_{\tau^{4}}\left(t^{4}\right)=\frac{\left(t^{4}\right)^{\tau^{4}}}{\tau^{4}}$.
5) The results from [13]-[24] can be reformulated for the fractional multi-time actions.

Applications and Examples. We start from examples in continuous mechanics [9], modified in the previous sense.

1) (Modified sine-Gordon PDE). The two-time Lagrangian

$$
\mathcal{L}: J^{1}\left(R^{2}, R\right) \rightarrow R
$$

$$
\mathcal{L}\left(t^{1}, t^{2}, x\right)=\left(\frac{1}{2} x_{1} x_{2}-\cos x\right) g_{\tau^{1}}^{\prime}\left(t^{1}\right) g_{\tau^{2}}^{\prime}\left(t^{2}\right)
$$

determines the modified sine-Gordon PDE

$$
\sin x-x_{12}=\frac{1}{2} \frac{g_{\tau^{1}}^{\prime \prime}\left(t^{1}\right)}{g_{\tau^{1}}^{\prime}\left(t^{1}\right)} x_{1}+\frac{1}{2} \frac{g_{\tau^{2}}^{\prime \prime}\left(t^{2}\right)}{g_{\tau^{2}}^{\prime}\left(t^{2}\right)} x_{2}
$$

Taking

$$
g_{\tau^{1}}\left(t^{1}\right)=\frac{\left(\tau^{1}\right)^{r_{1}}-\left(\tau^{1}-t^{1}\right)^{r_{1}}}{\Gamma\left(1+r_{1}\right)}
$$

and $g_{\tau^{2}}\left(t^{2}\right)=-\frac{e^{-\tau^{2} t^{2}}}{\tau^{2}}$, we find

$$
\sin x-x_{12}=-\frac{r_{1}-1}{\tau^{1}-t^{1}} x_{1}-\tau^{2} x_{2}
$$

2) (Degenerate Lagrangian). The degenerate two-time Lagrangian

$$
\begin{gathered}
\mathcal{L}: J^{1}\left(R^{2}, R^{3}\right) \rightarrow R \\
\mathcal{L}\left(t^{1}, t^{2}, x\right)=\frac{1}{2}\left(-\left(x^{2}\right)^{2}-\left(x^{3}\right)^{2}+x^{2} x_{1}^{1}+x^{3} x_{2}^{1}\right. \\
\left.-x^{1} x_{1}^{2}-x^{1} x_{2}^{3}\right) g_{\tau^{1}}^{\prime}\left(t^{1}\right) g_{\tau^{2}}^{\prime}\left(t^{2}\right)
\end{gathered}
$$

produces an Euler-Lagrange system of order one

$$
\begin{gathered}
-x_{1}^{2}-x_{2}^{3}=\frac{1}{2} \frac{g_{\tau^{1}}^{\prime \prime}\left(t^{1}\right)}{g_{\tau^{1}}^{\prime}\left(t^{1}\right)} x^{2}+\frac{1}{2} \frac{g_{\tau^{2}}^{\prime \prime}\left(t^{2}\right)}{g_{\tau^{2}}^{\prime}\left(t^{2}\right)} x^{3} \\
-x^{2}+x_{1}^{1}=-\frac{1}{2} \frac{g_{\tau^{1}}^{\prime \prime}\left(t^{1}\right)}{g_{\tau^{1}}^{\prime}\left(t^{1}\right)} x^{1} \\
-x^{3}+x_{2}^{1}=-\frac{1}{2} \frac{g_{\tau^{1}}^{\prime \prime}\left(t^{1}\right)}{g_{\tau^{1}}^{\prime}\left(t^{1}\right)} x^{1}
\end{gathered}
$$

3) (Modified hyperbolic PDE). The two-time Lagrangian

$$
\begin{gathered}
\mathcal{L}: J^{1}\left(R^{2}, R\right) \rightarrow R \\
\mathcal{L}\left(t^{1}, t^{2}, x\right)= \\
\frac{1}{2} e^{k t^{2}}\left(\left(x_{1}\right)^{2} \omega^{2}-\left(x_{2}\right)^{2}-2 k x x_{2}\right. \\
\left.-k^{2} x^{2}\right) g_{\tau^{1}}^{\prime}\left(t^{1}\right) g_{\tau^{2}}^{\prime}\left(t^{2}\right)
\end{gathered}
$$

defines the hyperbolic Euler-Lagrange PDE

$$
\begin{gathered}
-x_{11} \omega^{2}+x_{22}+k x_{2}=\frac{g_{\tau^{1}}^{\prime \prime}\left(t^{1}\right)}{g_{\tau^{1}}^{\prime}\left(t^{1}\right)} \omega^{2} x^{1} \\
-\frac{1}{2} \frac{g_{\tau^{2}}^{\prime \prime}\left(t^{2}\right)}{g_{\tau^{2}}^{\prime}\left(t^{2}\right)}\left(x_{2}+k x\right)
\end{gathered}
$$

Taking successively

$$
\begin{aligned}
g_{\tau^{\alpha}}\left(t^{\alpha}\right)=t^{\alpha}, g_{\tau^{\alpha}}\left(t^{\alpha}\right) & =\frac{\left(\tau^{\alpha}\right)^{r_{\alpha}}-\left(\tau^{\alpha}-t^{\alpha}\right)^{r_{\alpha}}}{\Gamma\left(1+r_{\alpha}\right)} \\
g_{\tau^{\alpha}}\left(t^{\alpha}\right) & =-\frac{e^{-\tau^{\alpha} t^{2}}}{\tau^{\alpha}}
\end{aligned}
$$

we find

$$
\begin{gathered}
-x_{11} \omega^{2}+x_{22}+k x_{2}=0 \\
-x_{11} \omega^{2}+x_{22}+k x_{2}=\frac{1-r_{1}}{\tau^{1}-t^{1}} \omega^{2} x^{1}-\frac{1-r_{2}}{\tau^{2}-t^{2}}\left(x_{2}+k x\right) \\
-x_{11} \omega^{2}+x_{22}+k x_{2}=-\tau^{1} \omega^{2} x^{1}+\tau^{2}\left(x_{2}+k x\right)
\end{gathered}
$$

respectively.

5 The multitime perimetric problem of non-renewable resources

Consider a society endowed with a known finite stock S of some non-renewable resources which are essential to the economy, i.e.,

$$
\int_{\Gamma_{0 \tau}} q_{\alpha}(t) d t^{\alpha}=S
$$

where $q(t)=\left(q_{1}(t), \ldots, q_{m}(t)\right)$ is the vector of quantities of the resources extracted for consumption at multitime t. The objective is to maximize the utility of consumption $u_{\alpha}\left(q_{\alpha}\right)$, with $u_{\alpha}^{\prime \prime}\left(q_{\alpha}\right)<0<u_{\alpha}^{\prime}\left(q_{\alpha}\right)$, discounted at rate $r=\left(r_{\alpha}\right)$, i.e.,

$$
\max \int_{\Gamma_{0 \tau}} u_{\alpha}\left(q_{\alpha}(t)\right) e^{-r_{\beta} t^{\beta}} d t^{\alpha} .
$$

Define the remaining stock at multitime $t \in \Omega_{0 \tau}$ as

$$
x(t)=S-\int_{\Gamma_{0 t}} q_{\alpha}(s) d s^{\alpha},
$$

i.e.,

$$
\frac{\partial x}{\partial t^{\gamma}}(t)=-q_{\gamma}(t), x(0)=S, x(\tau)=0
$$

The objective functional

$$
\int_{\Gamma_{0 \tau}} L_{\alpha}\left(t, q(t), x_{\gamma}(t), p(t)\right) d t^{\alpha},
$$

is based on the Lagrangian covector

$$
\begin{gathered}
L_{\alpha}\left(t, q(t), x_{\gamma}(t), p(t)\right)=u_{\alpha}\left(q_{\alpha}(t)\right) e^{-r_{\beta} t^{\beta}} \\
-p(t)\left(q_{\alpha}(t)+\frac{\partial x}{\partial t^{\alpha}}(t)\right) .
\end{gathered}
$$

Here we use the multitime Euler-Lagrange PDEs associated to path independent curvilinear integral [20],

$$
\begin{gathered}
\frac{\partial L_{\alpha}}{\partial q_{\beta}}-\frac{d}{d t^{\gamma} \gamma} \frac{\partial L_{\alpha}}{\partial\left(\frac{\partial q_{\beta}}{\partial t^{\gamma}}\right)}=\left(u_{\alpha}^{\prime}\left(q_{\alpha}\right) e^{-r_{\beta} t^{\beta}}-p\right) \delta_{\alpha \beta}=a_{\alpha \beta} \\
\frac{\partial L_{\alpha}}{\partial x}-\frac{d}{d t^{\gamma}} \frac{\partial L_{\alpha}}{\partial\left(\frac{\partial x}{\partial t^{\gamma}}\right)}=\frac{\partial p}{\partial t^{\alpha}}=b_{\alpha} .
\end{gathered}
$$

It follows $p(t)=b_{\alpha} t^{\alpha}+c, u_{\alpha}^{\prime}\left(q_{\alpha}(t)\right)=(p(t)+$ $\left.a_{\alpha \alpha}\right) e^{r_{\beta} t^{\beta}}$. Consequently, the optimal extraction rate $q^{*}(t)$ should be such that

$$
u_{\alpha}^{\prime}\left(q_{\alpha}^{*}(t)\right)=\left(p(t)+a_{\alpha \alpha}\right) e^{r_{\beta} t^{\beta}},
$$

i.e., the marginal utility of consuming non-renewable resource $u_{\alpha}^{\prime}\left(q_{\alpha}^{*}\right)$ should increase exponentially at rate r_{α} which, in view of the concavity of each $u_{\alpha}\left(q_{\alpha}\right)$, implies that later generations should consume less than earlier generations.

6 Hamilton PDEs associated to multitime Stieltjes actions

To convert the multitime Euler-Lagrange PDEs of second order to multitime Hamilton PDEs of first order, we accept that the multi-momentum system $p_{i}^{\alpha}=$ $\frac{\partial L}{\partial x_{\alpha}^{i}}\left(t, x, x_{\gamma}\right)$ determine a bijection $x_{\alpha} \leftrightarrow p^{\alpha}$. A sufficient condition is that the Lagrangian density of energy L to be regular, i.e.,

$$
\operatorname{det}\left(\frac{\partial^{2} L}{\partial x_{\alpha}^{i} \partial x_{\beta}^{j}}\right) \neq 0 .
$$

In the geometrical theories [1], [3], [4], [13]-[23], the d-tensor field

$$
g_{i j}^{\alpha \beta}\left(t, x(t), x_{\gamma}(t)\right)=\frac{\partial^{2} L}{\partial x_{\alpha}^{i} \partial x_{\beta}^{j}}\left(t, x(t), x_{\gamma}(t)\right)
$$

is used like a vertical metric. A very important case for geometry and field theory is that of Kronecker decomposability

$$
g_{i j}^{\alpha \beta}\left(t, x(t), x_{\gamma}(t)\right)=g_{i j}\left(t, x(t), x_{\gamma}(t)\right) h^{\alpha \beta}(t) .
$$

The Lagrangian function L determines the Hamiltonian function

$$
H(t, x, p)=p_{i}^{\alpha} x_{\alpha}^{i}(t, x, p)-L(t, x, p) .
$$

If $x(\cdot)$ is a solution of the multitime Euler-Lagrange PDEs

$$
\frac{\partial L}{\partial x^{i}}-\frac{d}{d t^{\alpha}} \frac{\partial L}{\partial x_{\alpha}^{i}}=0
$$

and define $p(\cdot)=\left(p_{i}^{\alpha}(\cdot)\right)$ as above, then the pair $(x(\cdot), p(\cdot))$ is a solution of the multitime Hamilton PDEs

$$
\begin{aligned}
\frac{\partial x^{i}}{\partial t^{\beta}}(t) & =\frac{\partial H}{\partial p_{i}^{\beta}}(t, x(t), p(t)) \\
\frac{\partial p_{i}^{\alpha}}{\partial t^{\alpha}}(t) & =-\frac{\partial H}{\partial x^{i}}(t, x(t), p(t)) .
\end{aligned}
$$

We remark that the classical multitime EulerLagrange or Hamilton PDEs are of divergence-type PDEs. We can generalize the Hamilton PDEs introducing two tensor fields:

- the Hamiltonian tensor field

$$
\begin{gathered}
H_{\beta}^{\alpha}(t, x, p)=p_{i}^{\alpha} x_{\beta}^{i}(t, x, p)-\frac{1}{m} L(t, x, p) \delta_{\beta}^{\alpha}, \\
H(t, x, p)=H_{\alpha}^{\alpha}(t, x, p) ;
\end{gathered}
$$

- the moment-energy tensor field from physics

$$
T_{\beta}^{\alpha}(t, x, p)=p_{i}^{\alpha} x_{\beta}^{i}(t, x, p)-L(t, x, p) \delta_{\beta}^{\alpha} .
$$

The classical Hamilton PDEs can be extended to PDEs that contains the Jacobian matrix of the Legendre transformation.
6.1. Proposition. Let $x(\cdot)$ be a solution of the multitime Euler-Lagrange PDEs and define $p(\cdot)=$ $\left(p_{i}^{\alpha}(\cdot)\right)$ as above. Then the pair $(x(\cdot), p(\cdot))$ is a solution respectively for the generalized multitime Hamilton PDEs

$$
\begin{align*}
& \delta_{\gamma}^{\alpha} \frac{\partial x^{i}}{\partial t^{\beta}}(t)=\frac{\partial H_{\beta}^{\alpha}}{\partial p_{i}^{\gamma}}(t, x(t), p(t)) \tag{12}\\
&+\left(\frac{1}{m} \delta_{\beta}^{\alpha} p_{j}^{\lambda}(t)-\delta_{\beta}^{\lambda} p_{j}^{\alpha}(t)\right) \frac{\partial x_{\lambda}^{j}}{\partial p_{i}^{\gamma}}(t, x(t), p(t)) \\
& \frac{1}{m} \delta_{\beta}^{\alpha} \frac{\partial p_{i}^{\gamma}}{\partial t^{\gamma}}(t)=-\frac{\partial H_{\beta}^{\alpha}}{\partial x^{i}}(t, x(t), p(t)) \\
& \delta_{\gamma}^{\alpha} \frac{\partial x^{i}}{\partial t^{\beta}}(t)=\frac{\partial T_{\beta}^{\alpha}}{\partial p_{i}^{\gamma}}(t, x(t), p(t)) \tag{13}\\
&+\left(\delta_{\beta}^{\alpha} p_{j}^{\lambda}(t)-\delta_{\beta}^{\lambda} p_{j}^{\alpha}(t)\right) \frac{\partial x_{\lambda}^{j}}{\partial p_{i}^{\gamma}}(t, x(t), p(t)) \\
& \delta_{\beta}^{\alpha} \frac{\partial p_{i}^{\gamma}}{\partial t^{\gamma}}(t)=-\frac{\partial T_{\beta}^{\alpha}}{\partial x^{i}}(t, x(t), p(t))
\end{align*}
$$

Proof: Let us justify the PDEs (12). We find

$$
\frac{\partial}{\partial x^{i}} H_{\beta}^{\alpha}(t, x, p)=-\frac{1}{m} \delta_{\beta}^{\alpha} \frac{\partial}{\partial x^{i}} L\left(t, x, x_{\gamma}(t, x, p)\right)
$$

Now $p_{i}^{\alpha}(t)=\frac{\partial L}{\partial x_{\alpha}^{i}}\left(t, x(t), x_{\gamma}(t)\right)$ if and only if $\frac{\partial x^{i}}{\partial t^{\alpha}}(t)=x_{\alpha}(t, x(t), p(t))$. Therefore the EulerLagrange PDEs imply the multitime Hamilton PDEs in the second place.

Now we compute the partial derivatives

$$
\frac{\partial H_{\beta}^{\alpha}}{\partial p_{i}^{\gamma}}=\delta_{\gamma}^{\alpha} x_{\beta}^{i}+p_{j}^{\alpha} \frac{\partial x_{\beta}^{j}}{\partial p_{i}^{\gamma}}-\frac{1}{m} \delta_{\beta}^{\alpha} \frac{\partial L}{\partial x_{\lambda}^{j}} \frac{\partial x_{\lambda}^{j}}{\partial p_{i}^{\gamma}}
$$

which contains the Jacobian matrix $\left(\frac{\partial x_{\lambda}^{j}}{\partial p_{i}^{\gamma}}\right)$ of the Legendre transformation. On the other hand, $p_{i}^{\alpha}(t)=$ $\frac{\partial L}{\partial x_{\alpha}^{i}}\left(x(t), x_{\gamma}(t)\right)$, implies $x_{\alpha}(t)=x_{\alpha}(x(t), p(t))$. That is why, we get the multitime Hamilton PDEs in the first place.

Remark. After our knowledge, here is the first time when the Jacobian matrix of the Legendre transformation is involved in the Hamilton PDEs.
6.2. Proposition. The multitime Euler-Lagrange PDEs (9) are equivalent to the multitime Hamilton PDEs

$$
\begin{gather*}
\frac{\partial x^{i}}{\partial t^{\beta}}(t)=\frac{\partial H}{\partial p_{i}^{\beta}}(t, x(t), p(t)) \\
\frac{\partial p_{i}^{\alpha}}{\partial t^{\alpha}}(t)=-\frac{\partial H}{\partial x^{i}}(t, x(t), p(t))+F_{i}(t, p(t)) \tag{14}\\
F_{i}=\frac{g_{\tau^{\alpha}}^{\prime \prime}(t)}{g_{\tau^{\alpha}}^{\prime}(t)} p_{i}^{\alpha}
\end{gather*}
$$

7 Geometry associated to multitime Euler-Lagrange derivative

Dynamical connection and semi-spray. We use the jet bundle of order one $J^{1}(T, M)$ and a local chart $\left(t, x, x_{\alpha}\right)$ defined by a local chart $t=\left(t^{\alpha}\right), \alpha=$ $1, \ldots, m$, on the manifold T, a local chart $x=$ $\left(x^{i}\right), i=1, \ldots, n$, on the manifold M and a local chart for partial velocities $x_{\alpha}=\left(x_{\alpha}^{i}\right)=\left(\frac{\partial x^{i}}{\partial t^{\alpha}}\right)$. Explicitly, the system of local coordinates is $\left(t^{\alpha}, x^{i}, x_{\alpha}^{i}\right)$. The manifold $J^{1}(T, M)$ is endowed with the following natural structures:

1) the total derivative operator

$$
d_{\alpha}=\frac{\partial}{\partial t^{\alpha}}+x_{\alpha}^{i} \frac{\partial}{\partial x^{i}}
$$

2) the contact 1-forms $\theta^{i}=d x^{i}-x_{\alpha}^{i} d t^{\alpha}$;
3) the total derivative 1 -form operator

$$
\theta_{1}=d_{\alpha} \otimes d t^{\alpha}
$$

4) the vector-valued contact form $\theta_{2}=\frac{\partial}{\partial x^{i}} \otimes \theta^{i}$;
5) the vertical endomorphism field

$$
J=J^{\alpha} \otimes d_{\alpha}, J^{\alpha}=\frac{\partial}{\partial x_{\alpha}^{i}} \otimes \theta^{i}
$$

where $\left\{\frac{\partial}{\partial x_{\alpha}^{i}}\right\}$ is a basis of vertical distribution V (vertical vector fields).

A C^{∞} vector-valued 1-form H on $J^{1}(T, M)$ is called dynamical connection on $J^{1}(T, M)$ if it satisfies the conditions

$$
\theta_{1} \circ H=0, \theta_{2} \circ H=\theta_{2}, H_{\mid V}=-i d_{\mid V}
$$

7.1. Proposition. The local expression of the dynamical connection H with respect to the chart $\left(t^{\alpha}, x^{i}, x_{\alpha}^{i}\right)$ is

$$
H=\left(-x_{\alpha}^{i} \frac{\partial}{\partial x^{i}}+H_{\alpha \beta}^{i} \frac{\partial}{\partial x_{\beta}^{i}}\right) \otimes d t^{\alpha}
$$

$$
+\left(\frac{\partial}{\partial x^{i}}+H_{i \alpha}^{j} \frac{\partial}{\partial x_{\alpha}^{j}}\right) \otimes d x^{i}-\frac{\partial}{\partial x_{\beta}^{i}} \otimes d x_{\beta}^{i} .
$$

7.2. Proposition. 1) The rank of the matrix associated to the dynamical connection is $(m+1) n$.
2) The dynamical connection defines an $f(3,-1)$-structure.

As any $f(3,-1)$-structure, the dynamical connection determines the projectors

$$
\ell=H \circ H=H^{2}, m=-H^{2}+I
$$

having the following properties:

$$
\begin{gathered}
\ell^{2}=\ell, m^{2}=m, \ell \circ m=m \circ \ell=0, \ell+m=I \\
\ell\left(\frac{\partial}{\partial t^{\alpha}}\right)=-x_{\alpha}^{i} \frac{\partial}{\partial x^{i}}-\left(x_{\alpha}^{i} H_{i \beta}^{j}+H_{\alpha \beta}^{j}\right) \frac{\partial}{\partial x_{\beta}^{j}} \\
\ell\left(\frac{\partial}{\partial x^{i}}\right)=\frac{\partial}{\partial x^{i}}, \ell\left(\frac{\partial}{\partial x_{\alpha}^{i}}\right)=\frac{\partial}{\partial x_{\alpha}^{i}} \\
m\left(\frac{\partial}{\partial t^{\alpha}}\right)=\frac{\partial}{\partial t^{\alpha}}+x_{\alpha}^{i} \frac{\partial}{\partial x^{i}}+\left(x_{\alpha}^{i} H_{i \beta}^{j}+H_{\alpha \beta}^{j}\right) \frac{\partial}{\partial x_{\beta}^{j}} \\
m\left(\frac{\partial}{\partial x^{i}}\right)=0, m\left(\frac{\partial}{\partial x_{\alpha}^{i}}\right)=0 .
\end{gathered}
$$

A set of C^{∞} vector fields $\Gamma_{\alpha}, \alpha=1, \ldots, m$, on $J^{1}(T, M)$ is called semi-spray (multitime-dependent second order vector field or field of second order $P D E s)$ if it satisfies the conditions

$$
d t^{\alpha}\left(\Gamma_{\beta}\right)=\delta_{\beta}^{\alpha}, \theta^{i}\left(\Gamma_{\beta}\right)=0, i=1, \ldots, n
$$

Locally,

$$
\begin{gathered}
\Gamma_{\alpha}=\frac{\partial}{\partial t^{\alpha}}+x_{\alpha}^{i} \frac{\partial}{\partial x^{i}}+F_{\alpha \beta}^{i} \frac{\partial}{\partial x_{\beta}^{i}} \\
\Lambda_{\alpha \beta}^{i} \in C^{\infty}\left(J^{1}(T, M)\right)
\end{gathered}
$$

This semi-spray can be used to study "multitimedependent mechanics" on $J^{1}(T, M)$.
7.3. Proposition. The vector-valued 1 -form $H=$ $(m-1) \theta_{2}-\mathcal{L}_{\Gamma_{\alpha}} J^{\alpha}$ is a dynamical connection on $J^{1}(T, M)$, where $\mathcal{L}_{\Gamma_{\alpha}}$ is the Lie derivative with respect to the vector field Γ_{α}.
7.4. Proposition. A quasilinear second order PDEs system of the type

$$
A_{i j}^{\alpha \beta}\left(t, x(t), x_{\gamma}(t)\right) x_{\alpha \beta}^{j}(t)+B_{i}\left(t, x(t), x_{\gamma}(t)\right)=0
$$

where

$$
\begin{aligned}
A_{i j}^{\alpha \beta}= & A_{j i}^{\beta \alpha}=A_{j i}^{\alpha \beta}, \operatorname{det}\left(A_{i j}^{\alpha \beta}\right) \neq 0 \\
& { }_{i}^{\alpha}-\text { rows },{ }_{j}^{\beta}-\text { columns }
\end{aligned}
$$

$$
\begin{equation*}
\Gamma_{\alpha}=\frac{\partial}{\partial t^{\alpha}}+x_{\alpha}^{i} \frac{\partial}{\partial x^{i}}+F_{\alpha \beta}^{i} \frac{\partial}{\partial x_{\beta}^{i}} \tag{15}
\end{equation*}
$$

where

$$
F_{\alpha \beta}^{i}=A_{\alpha \gamma}^{i j}\left(\phi_{j \beta}^{\gamma}-\frac{1}{m} \delta_{\beta}^{\gamma} B_{j}\right)
$$

and

$$
\phi_{j \beta}^{\beta}=0, A_{\alpha \gamma}^{i j} \phi_{j \beta}^{\gamma}=A_{\beta \gamma}^{i j} \phi_{j \alpha}^{\gamma} .
$$

Proof. To prove this statement we use two ingredients: (1) an anti-trace PDEs system

$$
\begin{gathered}
A_{i j}^{\gamma \alpha}\left(t, x(t), x_{\sigma}(t)\right) x_{\alpha \beta}^{j}(t)+\frac{1}{m} \delta_{\beta}^{\gamma} B_{i}\left(t, x(t), x_{\sigma}(t)\right) \\
=\phi_{i \beta}^{\gamma}\left(t, x(t), x_{\sigma}(t)\right)
\end{gathered}
$$

where $\phi_{i \beta}^{\gamma}$ are arbitrary C^{∞} functions satisfying $\phi_{i \beta}^{\beta}=0$, (2) the inverse $\left(A_{\alpha \beta}^{i j}\right)$ of the matrix $\left(A_{i j}^{\alpha \beta}\right)$, i.e., $A_{i j}^{\alpha \beta} A_{\alpha \gamma}^{i k}=\delta_{\gamma}^{\beta} \delta_{j}^{k}$. In fact, the anti-trace PDE system is equivalent to the semi-spray

$$
x_{\alpha \beta}^{i}=A_{\alpha \gamma}^{i j}\left(\phi_{j \beta}^{\gamma}-\frac{1}{m} \delta_{\beta}^{\gamma} B_{j}\right)
$$

if $A_{\alpha \gamma}^{i j} \phi_{j \beta}^{\gamma}=A_{\beta \gamma}^{i j} \phi_{j \alpha}^{\gamma}$.
To simplify, we accept $\phi_{j \beta}^{\gamma}=0$. Then the components of the dynamical connection determined by the previous PDE system are

$$
\begin{align*}
H_{i \alpha}^{j} & =\frac{1}{m} A_{\beta \alpha}^{j k}\left(\frac{\partial A_{k h}^{\delta \epsilon}}{\partial x_{\beta}^{i}} A_{\delta \epsilon}^{h l} B_{l}-\frac{\partial B_{k}}{\partial x_{\beta}^{i}}\right) \\
H_{\gamma \beta}^{j} & =\frac{1}{m} A_{\delta \beta}^{j k}\left(\frac{\partial A_{k h}^{\delta \epsilon}}{\partial x_{\gamma}^{i}} A_{\delta \epsilon}^{h l} B_{l}-\frac{\partial B_{k}}{\partial x_{\gamma}^{i}}\right) x_{\gamma}^{i} . \tag{16}
\end{align*}
$$

Particularly, let us consider a PDE of the form

$$
A^{\alpha \beta}\left(t, x(t), x_{\gamma}(t)\right) x_{\alpha \beta}(t)+B\left(t, x(t), x_{\gamma}(t)\right)=0
$$

where $\left(A^{\alpha \beta}\right)$ is a nondegenerate matrix with the inverse $A_{\alpha \beta}$. Then the associated anti-trace PDE system is

$$
A^{\alpha \gamma}\left(t, x(t), x_{\gamma}(t)\right) x_{\alpha \beta}(t)+\frac{1}{m} B\left(t, x(t), x_{\gamma}(t)\right)=0
$$

or

$$
x_{\alpha \beta}+\frac{1}{m} A_{\alpha \beta} B=0
$$

That is why, our initial PDE system extends to the semi-spray $F_{\alpha \beta}=-\frac{1}{m} A_{\alpha \beta} B$ and the components of the associated dynamical connection are

$$
H_{\alpha}=\frac{1}{m} A_{\alpha \beta}\left(\frac{\partial A^{\mu \lambda}}{\partial x_{\beta}} A_{\mu \lambda} B-\frac{\partial B}{\partial x_{\beta}}\right)
$$

$$
H_{\alpha \beta}=\frac{1}{m} A_{\gamma \beta}\left(\frac{\partial A^{\mu \lambda}}{\partial x_{\gamma}} A_{\mu \lambda} B-\frac{\partial B}{\partial x_{\gamma}}\right) x_{\alpha}
$$

Example. Let us take the PDE

$$
\omega^{2} x_{11}-x_{22}-k x_{2}+h_{1} \omega^{2} x_{1}-h_{2}\left(x_{2}+k x\right)=0
$$

where ω, k are constants and $h_{i}=h_{i}\left(t^{1}, t^{2}\right), i=$ 1,2 . In this case

$$
\begin{aligned}
& A^{11}=\omega^{2}, A^{12}=A^{21}=0, A^{22}=-1 \\
& A_{11}=\frac{1}{\omega^{2}}, A_{12}=A_{21}=0, A_{22}=-1
\end{aligned}
$$

It appears the semi-spray

$$
\begin{gathered}
F_{11}=-\frac{1}{2 \omega^{2}}\left(h_{1} \omega^{2} x_{1}-\left(k+h_{2}\right) x_{2}-k h_{2} x\right) \\
F_{12}=F_{21}=0, F_{22}=-\omega^{2} F_{11}
\end{gathered}
$$

and the dynamical connection

$$
\begin{gathered}
H_{1}=-\frac{h_{1}}{2}, H_{2}=-\frac{k+h_{2}}{2} \\
H_{11}=-\frac{h_{1} x_{1}}{2}, H_{12}=H_{21}=0, H_{22}=-\frac{\left(k+h_{2}\right) x_{2}}{2} .
\end{gathered}
$$

Now, let

$$
\mathcal{L}\left(t, x(t), x_{\alpha}(t)\right)=L\left(t, x(t), x_{\alpha}(t)\right) G_{\tau}(t)
$$

be a multitime Lagrangian. Since the d-tensor field $g_{i j}^{\alpha \beta}=\frac{\partial^{2} L}{\partial x_{\alpha}^{i} \partial x_{\beta}^{j}}$ is the dominant coefficient for a geometrical theory, we writte the Euler-Lagrange PDEs of \mathcal{L} in the form

$$
\begin{gathered}
\frac{d}{d t^{\alpha}} \frac{\partial L}{\partial x_{\alpha}^{i}}-\frac{\partial L}{\partial x^{i}}+\frac{g_{\tau^{\alpha}}^{\prime \prime}\left(t^{\alpha}\right)}{g_{\tau^{\alpha}}^{\prime}\left(t^{\alpha}\right)} \frac{\partial L}{\partial x_{\alpha}^{i}}= \\
\frac{\partial^{2} L}{\partial x_{\alpha}^{i} \partial x_{\beta}^{j}} x_{\alpha \beta}^{j}+\frac{\partial^{2} L}{\partial x_{\alpha}^{i} \partial x^{j}} x_{\alpha}^{j} \\
+\frac{\partial^{2} L}{\partial x_{\alpha}^{i} \partial t^{\alpha}}-\frac{\partial L}{\partial x^{i}}+\frac{g_{\tau^{\alpha}}^{\prime \prime}\left(t^{\alpha}\right)}{g_{\tau^{\alpha}}^{\prime}\left(t^{\alpha}\right)} \frac{\partial L}{\partial x_{\alpha}^{i}}=0 .
\end{gathered}
$$

This system can be identified directly to $g_{i j}^{\alpha \beta} x_{\alpha \beta}^{j}+$ $B_{i}=0$ and we can apply the previous theory. But, to show that the previous way is not unique, we prefer another extension as the anti-trace PDEs system

$$
\begin{gathered}
\frac{d}{d t^{\gamma}} \frac{\partial L}{\partial x_{\alpha}^{i}}-\frac{1}{m} \delta_{\gamma}^{\alpha}\left(\frac{\partial L}{\partial x^{i}}-\frac{g_{\tau^{\sigma}}^{\prime \prime}\left(t^{\sigma}\right)}{g_{\tau^{\sigma}}^{\prime}\left(t^{\sigma}\right)} \frac{\partial L}{\partial x_{\sigma}^{i}}\right)= \\
\frac{\partial^{2} L}{\partial x_{\alpha}^{i} \partial x_{\beta}^{j}} x_{\beta \gamma}^{j}+\frac{\partial^{2} L}{\partial x_{\alpha}^{i} \partial x^{j}} x_{\gamma}^{j}+\frac{\partial^{2} L}{\partial x_{\alpha}^{i} \partial t^{\gamma}}
\end{gathered}
$$

$$
-\frac{1}{m} \delta_{\gamma}^{\alpha}\left(\frac{\partial L}{\partial x^{i}}-\frac{g_{\tau^{\sigma}}^{\prime \prime}\left(t^{\sigma}\right)}{g_{\tau^{\sigma}}^{\prime}\left(t^{\sigma}\right)} \frac{\partial L}{\partial x_{\sigma}^{i}}\right)=0
$$

If the Lagrangian density of energy L is nondegenerate, then the matrix $\left(g_{i j}^{\alpha \beta}\right)$ has an inverse $\left(g_{\alpha \beta}^{i j}\right)$. Therefore a semi-spray associated to the Euler-Lagrange PDEs is characterized by the functions

$$
\begin{aligned}
F_{\alpha \beta}^{i}= & g_{\alpha \epsilon}^{i j}\left(\frac{1}{m} \delta_{\beta}^{\epsilon}\left(\frac{\partial L}{\partial x^{j}}-\frac{g_{\tau^{\gamma}}^{\prime \prime}\left(t^{\gamma}\right)}{g_{\tau^{\gamma}}^{\prime}\left(t^{\gamma}\right)} \frac{\partial L}{\partial x_{\gamma}^{j}}\right)\right. \\
& \left.-\frac{\partial^{2} L}{\partial x_{\epsilon}^{j} \partial x^{k}} x_{\beta}^{k}-\frac{\partial^{2} L}{\partial x_{\epsilon}^{j} \partial t^{\beta}}\right)
\end{aligned}
$$

Automatically, the formulas (15) produce the components of the associated dynamical connection.

Poincaré-Cartan form. Let $\Gamma_{\alpha}, \alpha=1, \ldots, m$, be a semi-spray on $J^{1}(T, M)$. The semi-spray is called compatible to a Lagrangian

$$
\mathcal{L}\left(t, x(t), x_{\alpha}(t)\right)=L\left(t, x(t), x_{\alpha}(t)\right) G_{\tau}(t)
$$

if it satisfies the multitime PDEs

$$
\begin{equation*}
\Gamma_{\alpha}\left(\frac{\partial L}{\partial x_{\alpha}^{i}}\right)-\frac{\partial L}{\partial x^{i}}+\frac{g_{\tau^{\alpha}}^{\prime \prime}\left(t^{\alpha}\right)}{g_{\tau^{\alpha}}^{\prime}\left(t^{\alpha}\right)} \frac{\partial L}{\partial x_{\alpha}^{i}}=0 \tag{17}
\end{equation*}
$$

If the semi-spray is given by the formulas (15), then the condition (17) leads to the PDEs

$$
g_{i j}^{\alpha \beta} F_{\alpha \beta}^{j}+B_{i}=0,
$$

where

$$
\begin{gathered}
F_{\alpha \beta}^{j}=F_{\beta \alpha}^{j}, g_{i j}^{\alpha \beta}=\frac{\partial^{2} L}{\partial x_{\alpha}^{i} \partial x_{\beta}^{j}} \\
B_{i}=\frac{\partial^{2} L}{\partial x_{\epsilon}^{i} \partial x^{k}} x_{\epsilon}^{k}+\frac{\partial^{2} L}{\partial t^{\epsilon} \partial x_{\epsilon}^{j}}-\frac{\partial L}{\partial x^{i}}+\frac{g_{\tau^{\gamma}}^{\prime \prime}\left(t^{\gamma}\right)}{g_{\tau^{\gamma}}^{\prime}\left(t^{\gamma}\right)} \frac{\partial L}{\partial x_{\gamma}^{i}} .
\end{gathered}
$$

An arbitrary dynamical connection H on $J^{1}(T, M)$ determines the dual bases

$$
\begin{gathered}
\Gamma_{\alpha}=\frac{\partial}{\partial t^{\alpha}}+x_{\alpha}^{i} \frac{\partial}{\partial x^{i}}+F_{\alpha \beta}^{i} \frac{\partial}{\partial x_{\beta}^{i}} \\
H_{i}=\frac{\partial}{\partial x^{i}}+\frac{1}{2} H_{i \alpha}^{j} \frac{\partial}{\partial x_{\alpha}^{j}}, \quad V_{i}^{\alpha}=\frac{\partial}{\partial x_{\alpha}^{i}}
\end{gathered}
$$

$$
d t^{\alpha}, \theta^{i}=d x^{i}-x_{\alpha}^{i} d t^{\alpha}, \psi_{\alpha}^{i}=d x_{\alpha}^{i}-\frac{1}{2} H_{j \alpha}^{i} \theta^{j}-F_{\alpha \beta}^{i} d t^{\beta}
$$

Let $\omega=d t^{1} \wedge \ldots \wedge d t^{m}$ and

$$
\omega_{\alpha}=(-1)^{m} d t^{1} \wedge \ldots \wedge \hat{d} t^{\alpha} \wedge \ldots \wedge d t^{m}
$$

Then the m-form $\theta^{1}=\mathcal{L} \omega+\frac{\partial \mathcal{L}}{\partial x_{\alpha}^{i}} \theta^{i} \wedge \omega_{\alpha}$ is called the Poincaré-Cartan form.
7.5. Proposition. The $(m+1)$-form $\Omega^{1}=d \theta^{1}$ can be written
$\Omega^{1}=\left(g_{i j}^{\alpha \beta} \psi_{\beta}^{i} \wedge \theta^{j}-\frac{1}{2} J_{i j}^{1 \alpha} \theta^{i} \wedge \theta^{j}\right) \omega_{\alpha}+\mathcal{E}_{i}^{1}(\mathcal{L}) \theta^{i} \wedge \omega$, where
$\mathcal{E}_{i}^{1}(\mathcal{L})=\frac{\partial \mathcal{L}}{\partial x^{i}}-\Gamma_{\alpha} \frac{\partial \mathcal{L}}{\partial x_{\alpha}^{i}}, J_{i j}^{1 \alpha}=H_{i}\left(\frac{\partial \mathcal{L}}{\partial x_{\alpha}^{j}}\right)-H_{j}\left(\frac{\partial \mathcal{L}}{\partial x_{\alpha}^{i}}\right)$.
7.6 Proposition. If the dynamical connection H is associated to a semi-spray which is compatible to \mathcal{L}, i.e., $\mathcal{E}_{i}^{1}(\mathcal{L})=0$, then

$$
\begin{gathered}
\Omega^{1}=\left(g_{i j}^{\alpha \beta} \psi_{\beta}^{i} \wedge \theta^{j}-\frac{1}{2} J_{i j}^{1 \alpha} \theta^{i} \wedge \theta^{j}\right) \omega_{\alpha} \\
J_{i j}^{1 \alpha}=\frac{m-1}{2 m}\left(\frac{\partial B_{j}^{1}}{\partial x_{\alpha}^{i}}-\frac{\partial B_{i}^{1}}{\partial x_{\alpha}^{j}}\right)+\frac{1}{2}\left(\frac{\partial \phi_{i \beta}^{\alpha}}{\partial x_{\beta}^{j}}-\frac{\partial \phi_{j \beta}^{\alpha}}{\partial x_{\beta}^{i}}\right)
\end{gathered}
$$

where

$$
B_{j}^{1}=\frac{\partial^{2} \mathcal{L}}{\partial x^{i} \partial x_{\alpha}^{j}} x_{\alpha}^{i}+\frac{\partial^{2} \mathcal{L}}{\partial t^{\alpha} \partial x_{\alpha}^{j}}-\frac{\partial \mathcal{L}}{\partial x^{j}} .
$$

If $m=1$, then $\Omega^{1}=g_{i j} \psi^{i} \wedge \theta^{j}, g_{i j}=$ $\frac{\partial \mathcal{L}}{\partial \dot{x}^{i} \partial \dot{x}^{j}}, \dot{x}^{i}=\frac{d x^{i}}{d t}$. If $n=1$, then $\Omega^{1}=h^{\alpha \beta} \psi_{\alpha} \wedge$ $\theta \wedge \omega_{\beta}, h^{\alpha \beta}=\frac{\partial \mathcal{L}}{\partial x_{\alpha} \partial x_{\beta}}$.

The previous theory refers to classical Riemann actions. Its reformulation for Stieltjes actions is obvious. For example, the Poincaré-Cartan m-form can be written $\theta=L \tilde{\omega}+\frac{\partial L}{\partial x_{\alpha}^{i}} \theta^{i} \wedge \tilde{\omega}_{\alpha}$, where

$$
\tilde{\omega}=d g_{\tau^{1}}\left(t^{1}\right) \wedge \ldots \wedge d g_{\tau^{m}}\left(t^{m}\right)
$$

$\tilde{\omega}_{\alpha}=(-1)^{m} d g_{\tau^{1}}\left(t^{1}\right) \wedge \ldots \wedge \hat{d} g_{\tau^{\alpha}}\left(t^{\alpha}\right) \wedge \ldots \wedge d g_{\tau^{m}}\left(t^{m}\right)$.
Since $\tilde{\omega}=G_{\tau}(t) \omega, \quad \tilde{\omega}_{\alpha}=\frac{g_{\tau^{\alpha}}^{\prime \prime}\left(t^{\alpha}\right)}{g_{\tau^{\alpha}}^{\prime}\left(t^{\alpha}\right)} \omega_{\alpha}$, we can writte

$$
\theta=G_{\tau}(t) L \omega+\frac{\partial L}{\partial x_{\alpha}^{i}} \frac{g_{\tau^{\alpha}}^{\prime \prime}\left(t^{\alpha}\right)}{g_{\tau^{\alpha}}^{\prime}\left(t^{\alpha}\right)} \theta^{i} \wedge \omega_{\alpha} .
$$

7.7 Proposition. The $(m+1)$-form $\Omega=d \theta$ can be written

$$
\begin{gathered}
\Omega=\left(g_{i j}^{\alpha \beta} \psi_{\beta}^{i} \wedge \theta^{j}-\frac{1}{2} J_{i j}^{\alpha} \theta^{i} \wedge \theta^{j}\right) \frac{g_{\tau^{\alpha}}^{\prime \prime}\left(t^{\alpha}\right)}{g_{\tau^{\alpha}}^{\prime}\left(t^{\alpha}\right)} \omega_{\alpha} \\
+\mathcal{E}_{i}(L) G_{\tau}(t) \theta^{i} \wedge \omega
\end{gathered}
$$

where

$$
\mathcal{E}_{i}(L)=\Gamma_{\alpha}\left(\frac{\partial L}{\partial x_{\alpha}^{i}}\right)-\frac{\partial L}{\partial x^{i}}+\frac{g_{\tau^{\alpha}}^{\prime \prime}\left(t^{\alpha}\right)}{g_{\tau^{\alpha}}^{\prime}\left(t^{\alpha}\right)} \frac{\partial L}{\partial x_{\alpha}^{i}}
$$

$$
J_{i j}^{\alpha}=H_{i}\left(\frac{\partial L}{\partial x_{\alpha}^{j}}\right)-H_{j}\left(\frac{\partial L}{\partial x_{\alpha}^{i}}\right) .
$$

7.8 Proposition. If the dynamical connection H is associated to a semi-spray which is compatible to L, i.e., $\mathcal{E}_{i}(L)=0$, then

$$
\Omega^{1}=\left(g_{i j}^{\alpha \beta} \psi_{\beta}^{i} \wedge \theta^{j}-\frac{1}{2} J_{i j}^{\alpha} \theta^{i} \wedge \theta^{j}\right) G_{\tau}(t) \omega_{\alpha}
$$

$J_{i j}^{\alpha}=\frac{m-1}{2 m}\left(\frac{\partial B_{j}}{\partial x_{\alpha}^{i}}-\frac{\partial B_{i}}{\partial x_{\alpha}^{j}}\right)+\frac{1}{2}\left(\frac{\partial \phi_{i \beta}^{\alpha}}{\partial x_{\beta}^{j}}-\frac{\partial \phi_{j \beta}^{\alpha}}{\partial x_{\beta}^{i}}\right)$,
where
$B_{j}=\frac{\partial^{2} L}{\partial x^{i} \partial x_{\alpha}^{j}} x_{\alpha}^{i}+\frac{\partial^{2} L}{\partial t^{\alpha} \partial x_{\alpha}^{j}}-\frac{\partial L}{\partial x^{j}}+\frac{g_{\tau^{\alpha}}^{\prime \prime}\left(t^{\alpha}\right)}{g_{\tau^{\alpha}}^{\prime}\left(t^{\alpha}\right)} \frac{\partial L}{\partial x_{\alpha}^{i}}$.

8 Multitime Hamilton-Poisson systems on jet bundle

If (T, h) and (R, g) are Riemannian manifolds, we shall use the adapted dual bases

$$
\begin{gathered}
\left(\frac{\delta}{\delta t^{\alpha}}=\frac{\partial}{\partial t^{\alpha}}+H_{\alpha \beta}^{\gamma} x_{\gamma}^{i} \frac{\partial}{\partial x_{\beta}^{i}},\right. \\
\left.\frac{\delta}{\delta x^{i}}=\frac{\partial}{\partial x^{i}}-G_{i k}^{h} x_{\alpha}^{k} \frac{\partial}{\partial x_{\alpha}^{h}}, \frac{\partial}{\partial x_{\alpha}^{i}}\right) \\
\left(d t^{\beta}, d x^{j}, \delta x_{\beta}^{j}=d x_{\beta}^{j}-H_{\beta \lambda}^{\gamma} x_{\gamma}^{j} d t^{\lambda}+G_{h k}^{j} x_{\beta}^{h} d x^{k}\right)
\end{gathered}
$$

as frames on the jet bundle $J^{1}(T, M)$. Then the induced Riemann Sasaki-like metric on $J^{1}(T, M)$ is

$$
S=h_{\alpha \beta} d t^{\alpha} \otimes d t^{\beta}+g_{i j} d x^{i} \otimes d x^{j}+h^{\alpha \beta} g_{i j} \delta x_{\alpha}^{i} \otimes \delta x_{\beta}^{j} .
$$

We first notice that, on the Riemannian manifold $\left(J^{1}(T, M), S\right)$ there exists a globally defined 1-form d-tensor

$$
\omega=g_{i j} x_{\alpha}^{j} d x^{i} \otimes d t^{\alpha}
$$

Its exterior differential

$$
\Omega=d \omega=\left(-g_{i j} d x^{i} \wedge \delta x_{\alpha}^{j}\right) \otimes d t^{\alpha}
$$

is also globally defined 2-form d-tensor, and has the components

$$
\left(\Omega_{\alpha A B}\right)=\left(\begin{array}{cc}
0 & -g_{i j} \delta_{\alpha}^{\beta} \\
g_{i j} \delta_{\alpha}^{\beta} & 0
\end{array}\right)
$$

in the adapted frame. Of course we can find a suitable geometry produced by ω and Ω on $J^{1}(T, M)$.

The section $t^{\alpha}=c^{\alpha}, \alpha=1, \ldots, p$, is an $(1+$ $p) n$-dimensional Riemann submanifold of $J^{1}(T, M)$ which can be identified with the Riemann manifold $\left.{ }^{p} \mathcal{T}(M), g+h^{-1} \otimes g\right)$, where h has constant components, and ${ }^{p} \mathcal{T}(M)=\bigcup_{x \in M}\left(\mathcal{T}_{x} M\right)^{p}$. The closed 2forms $\Omega_{\alpha}=-g_{i j} d x^{i} \wedge \delta x_{\alpha}^{j}$, and the metric $g+h^{-1} \otimes g$ produce an almost p-Kählerian structure on ${ }^{p} \mathcal{T}(M)$ in the sense of Grassi [16].

A theory of Hamilton-Poisson systems on $J^{1}(T, M)$ can be obtained in the following way. Let L_{1}, L_{2} be two real C^{∞} functions on $J^{1}(T, M)$, i.e., two Lagrangians. The maps

$$
\begin{gathered}
\left\{L_{1}, L_{2}\right\}_{\alpha}=g^{i j} h_{\alpha \beta}\left(\frac{\delta L_{1}}{\delta x^{i}} \frac{\partial L_{2}}{\partial x_{\beta}^{j}}-\frac{\partial L_{1}}{\partial x_{\beta}^{i}} \frac{\delta L_{2}}{\delta x^{j}}\right), \\
\alpha=1, \ldots, m
\end{gathered}
$$

define a Poisson structure on the jet bundle $J^{1}(T, M)$ via the 1 -form Poisson bracket $\left\{L_{1}, L_{2}\right\}=$ $\left\{L_{1}, L_{2}\right\}_{\alpha} d t^{\alpha}$. Also the maps $\left\{L_{1}, L_{2}\right\}_{\alpha}$ define a p-Poisson structure on $\left({ }^{p} \mathcal{T}(M), g+h^{-1} \otimes g\right)$ compatible with the almost p-Kählerian structure $\Omega_{\alpha}=$ $-g_{i j} d x^{i} \wedge \delta x_{\alpha}^{j}$.

A similar theory can be introduced on the dual jet bundle $J^{1}(T, M)^{*}$ of local coordinates $\left(t^{\alpha}, x^{i}, p_{i}^{\alpha}\right)$.

Acknowledgements: Partially supported by Grant CNCSIS 86/ 2007 and by 15-th ItalianRomanian Executive Programme of S\&T Cooperation for 2006-2008, University Politehnica of Bucharest.

References:

[1] I. Butulescu, D. Opriş, Mechanique analytique des milieux; methodes continues et discretes, Seminarul de Mecanica, 45, 1995, West University of Timisoara.
[2] G. S. F. Federico, D. F. M. Torres, Constants of motion for fractional action-like variational problems, Int. J. App. Math., 19, 1, 97-104.
[3] H. Goldschmidt, S. Stenberg, The HamiltonianCartan formalism in the calculus of variations, Ann. Inst. Fourier, Grenoble, 23, 1 (1973), 203267.
[4] C. Gunther, The polysymplectic Hamiltonian formalism in field theory and calculus of variations. The local case, J. Diff. Geom. 25 (1987).
[5] Gh. Ivan, M. Ivan, D. Opriş, Fractional EulerLagrange and fractional Wong equations for Lie algebroides, Proceedings of The 4-th International Colloquium of Mathematics in Engineering and Numerical Physics (MENP-4), October

6-8, 2006, Bucharest, Romania, BSG Proceedings $14,73-80$.
[6] A. R. El-Nabulsi, A fractional approach to nonconservative Lagrangian dynamical systems, Physika A, 14, 4 (2005), 289-298.
[7] A. R. El-Nabulsi, Some fractional geometric aspects weak field approximation and Schwarzschild space time, Internet, 2007.
[8] A. R. El-Nabulsi, D. F. M. Torres, Necessary optimality conditions for fractional action-like integrals of variational calculus with RiemannLiouville derivatives of order (α, β), arXiv: math-ph/0702099v1, 28 Feb 2007; Math. Methods Appl. Sci., 30, 15 (2007), 1931-1939.
[9] P. J. Olver, Applications of Lie groups to differential equations, Graduate Text in Mathematics, vol. 107, Springer-Verlag, New York, 1993.
[10] D. Opriş, I. Butulescu, Metode geometrice în studiul sistemelor de ecuaţii diferenţiale, Editura Mirton Timişoara, 1997.
[11] V. E. Tarasov, Wave equation for fractal solid string, Modern Physics Letters B, 19, 15 (2005), 721-728.
[12] D. F. M. Torres, Proper extensions of Noether's symmetry theorem for nonsmooth extremals of the calculus of variations, Commun. Pure Appl. Anal., 3, 3 (2004), 491-500.
[13] C. Udrişte, Nonclassical Lagrangian Dynamics and Potential Maps, Conference in Mathematics in Honour of Professor Radu Roşca on the occasion of his Ninetieth Birthday, Katholieke University Brussel, Katholieke University Leuwen, Belgium, December 11-16, 1999; http://xxx.lanl.gov/math.DS/0007060, (2000).
[14] C. Udrişte, Solutions of ODEs and PDEs as Potential Maps Using First Order Lagrangians, Centenial Vrânceanu, Romanian Academy, University of Bucharest, June 30-July 4, (2000); http://xxx.lanl.gov/math.DS/0007061, (2000); Balkan Journal of Geometry and Its Applications, 6, 1 (2001), 93-108.
[15] C. Udrişte, Tools of geometric dynamics, Buletinul Institutului de Geodinamică, Academia Română, 14, 4 (2003), 1-26; Proceedings of the XVIII Workshop on Hadronic Mechanics, honoring the 70-th birthday of Prof. R. M. Santilli, the originator of hadronic mechanics, University of Karlstad, Sweden, June 20-22, 2005; Eds. Valer Dvoeglazov, Tepper L. Gill, Peter Rowland, Erick Trell, Horst E. Wilhelm, Hadronic Press, International Academic Publishers, December 2006, ISBN 1-57485-059-28, pp 10011041.
[16] C. Udrişte, From integral manifolds and metrics to potential maps, Atti dell'Academia Peloritana dei Pericolanti, Classe I di Scienze Fis. Mat. et Nat., 81-82, C1A0401008 (2003-2004), 1-16.
[17] C. Udrişte, Geodesic motion in a gyroscopic field of forces, Tensor, N. S., 66, 3 (2005), 215228.
[18] C. Udrişte, Multi-time maximum principle, short communication at International Congress of Mathematicians, Madrid, August 22-30, 2006; Plenary Lecture at 6-th WSEAS International Conference on Circuits, Systems, Electronics, Control\&Signal Processing (CSECS'07) and 12-th WSEAS International Conference on Applied Mathematics, Cairo, Egypt, December 2931, 2007.
[19] C. Udrişte, M. Ferrara, D. Opriş, Economic Geometric Dynamics, Monographs and Textbooks 6, Geometry Balkan Press, Bucharest, 2004.
[20] C. Udrişte, I. Ţevy, Multi-Time Euler-LagrangeHamilton Theory, WSEAS Transactions on Mathematics, 6, 6 (2007), 701-709.
[21] C. Udrişte, Multi-Time Controllability, Observability and Bang-Bang Principle, 6th Congress of Romanian Mathematicians, June 28 - July 4, 2007, Bucharest, Romania.
[22] C. Udrişte, I. Ţevy, Multi-Time Euler-Lagrange Dynamics, 7th WSEAS International Conference on Systems Theory and Scientific Computation (ISTASC'07), Vouliagmeni Beach, Athens, Greece, August 24-26, 2007.
[23] C. Udrişte, Maxwell geometric dynamics, European Computing Conference, Vouliagmeni Beach, Athens, Greece, September 24-26, 2007.
[24] C. Udrişte, Multi-time Stochastic Control Theory, Selected Topics on Circuits, Systems, Electronics, Control\&Signal Processing, Proceedings of the 6-th WSEAS International Conference on Circuits, Systems, Electronics, Control\&Signal Processing (CSECS'07), pp. 171176; Cairo, Egypt, December 29-31, 2007.

