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Abstract: Our aim is three-fold: to point out that the fractional integral actions are coming from Stieltjes actions,
find the roots and the geometry of some Euler-Lagrange or Hamilton ODEs or PDESs, to evidentiate some ideas
include the fractal theory of solids. Section 1 discusses the Euler-Lagrange ODEs associated to single-time Stie
actions. Teir dual Hamilton ODEs are analized in Section 2. Section 3 studies the geometry associated to sir
time Euler-Lagrange or Hamilton operators. Section 4 analyzes the Euler-Lagrange PDEs associated to multi
Stieltjes actions (multiple or curvilinear integrals). Section 5 formulates the multitime perimetric problem of nor
renewable resources. Section 6 studies the Hamilton PDEs associated to multitime Stieltjes actions. Secti
describes the geometry associated to multitime Euler-Lagrange or Hamilton operators (dynamical connection
semi-spray, PoincéarCartan form, Hamilton-Poisson systems on jet bundle). Section 8 formulates a multitim
Hamilton-Poisson systems theory on jet bundle.
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1 Euler-Lagrange ODEs associated wherel is the Euler function; then
to single-time Stieltjes actions r
J ) Rf = s [ e

I'(r) Jo

which is known as thdractional Riemann-Liouville
integral of orderr;

Two functionsf : R — Randg : R x Ry —

R, g(t,7) = ¢-(t), 7 > 0 with suitable proper-
ties determine the simple Stieljes integral (generalized
convolution) of f(¢) with respect tay,(¢), on the in-

terval [0, 7|, denoted byl f = / f(t)dg-(t). The

0
best simple existence theorem states thgtig con-
tinuous andy is of bounded variation ofo, 7], then

g:RxRy = R, g;(t) = ——;

the integral exists. Note thatis of bounded variation T

if and only if it is the difference between two mono-
tone functions. If the convolution is not desirable, the
interval of integration can be taken independent .of

If the functiong.(¢) should happen to be every-
where differentiable, then the previous Stieltjes inte-
gral is reduced to a special Riemann integralf =

/ f(t)g.(t)dt. The well-known situations appear-
0
ing in applications are:

"= (r—=1t)"

g:RXR-‘r_)Rv gT(t): F(1—|—T) )

r e (0,1],
(1)
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thenl,f =

JO
nomics when we speak about discounjéd) at rate
T,

f(t)e "dt, an integral used in eco-

T

t
g:Rx Ry — R, g:(t) = —; (3)

thenr can be taken as a fractal dimension dnd =

c
/ f(t)t"~Ldt is a fractional integral used as a fractal
0

action.

Now, let(t, z, #) be a local system of coordinates
onJY (R, M), wherezx = (%), = (2%),i = 1,...,n.
Any C* real functionL = L(t,z(t),%(t)) defined
onJ'(R, M) is calledLagrangian density of energy
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Thesingle-time Stieltjes actias defined via the Stiel-
jes integral ofL with respect tay,(¢) in the sense of
functional

Toa()) = [ L(t.a(t),a(0)dg, (1),

Particularly, we define thesingle-time action of
L(t,z(t), z4(t)) with respect to the weight/(¢) by
the Riemann integral

_ /OT L(t,(t), &(t))g.

where 7 is fixed. The functionl(t,z(t),2(t)) =
L(t,z(t), (t))g.(t) is calledLagrangian
Examples 1) Thefractional actionfrom physics

T,(e() = 3 [ Lt (0.3

(t)dt,  (4)

— )" tat

obtained for the functiop. (¢) in (1). Particularly, for
r = 1 we obtain the classical action.
2) The discounted action at rate- from eco-

nomics
/ L t, x

obtained forg.(¢) in (2).
3) Thefractal actionfrom physics [11]

/Ltm

obtained forg- () in (3).
1.1. Proposition  The single-time Euler-
Lagrange ODEs associated to the action (4) are

) _Ttdt

(t))t™Ldt

OL d oL gl(t) oL .
- ——— =T -1 =1,...
ozt dt o7 g;(t) gz 1= Lo ()
where the symboﬁ — + 3 9 + i stands
8 oxt o’

for the total derlvatlve
Examples 1) Letg = (g;;) be a metric on the
manifold M andI™, the associated Christofell sym-

bols. The Euler-Lagrange ODEs associated to the La-

grangiant = 5g;;(w ()" (t)i (¢)g; (t) are
d%a , dad da® g!(t) dat

a2 TN g A gy a T "
Forg-(t) in (1), this is just thdractional Newton sec-
ond lawfrom Physics.

2) Now, fora € (—1,1), we use the Lagrangian
density

1 1
L:RxR—R, L(x,yb):—§332—ax9'c—§x2
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and a differentiable functiog, : R — R. Then
the Euler-Lagrange ODE associated to the Lagrangian
L= L(z,&)g.(t) is

if g is given by (2), thert — 74 + (1 + at)z = 0.
Remarks. 1) A particular weighy’.(¢) can be ob-
tained taking the Riemannian manifold&, - (t) >
0) instead the Euclidean manifo(d, 1). In this case
the Lagrangian isC = L(t, xz(t),%(t))/h-(t) and

97(t) = Vh- ().
2) If we have in mind only the Lagrangian density
!
L, then the tern¥; = g’TEt; SL in Euler-Lagrange

ODEs (4) stands for aexternal force
3) If the functiong;(¢) is given by (1), then the
ODEs (4) reduce to

OL d OL

o da 1—rdL i1
o'  dtoit -

T — 103" ’

vy T

In particular, forr = 1 we obtain the classical Euler-
Lagrange ODEs.

4) If the functiong.(¢) is given by (2), then the
ODEs (4) reduce to

oL d oL _ oL
ort  dtdit

1=1,..,n.

o

2 Hamilton ODEs associated to
single-time Stieltjes actions

To pass from Euler-Lagrange ODEs of second order
to Hamilton ODEs of first order, suppose that the mo-
oL ,
ment systenp; = W(t,ac,g’c), 1 = 1,...,n, define
xr
a bijectionz < p. A sufficient condition is that
the Lagrangian density of enerdyto be regular, i.e.,
0%L
det —
0z 0xI
nian function

# 0. Then we introduce the Hamilto-

H:JYR,M)* — R, H=p;i"— L(t,z,).

Remark. In the geometrical theories [1]-[4],
[13]-[20], the d-tensor field
%L
o1t LI
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is used like a vertical metric. A very important case
for geometry and field theory is that of Kronecker de-
composabilityg;; (t, z, &) = g4 (t, x, &)h(t).

2.1. Proposition The Euler-Lagrange ODEs (5)
are equivalent to the Hamilton ODEs

OH
Op;

i(t) =

(¢, 2(t), p(t))

Bilt) = ~ 9% (b, 2(0). plt)) + it p(1)

(6)

Filt.pl) = 200

Single-time Hamilton-Poisson systems on dual
jet bundle. Let f, h : JY(R,M)* — R be differen-
tiable functions. The Poisson bracket is defined by

pi(t).

_0f Oh  Of Oh
by = Op; 0x' Oz Op;’ 9
From (6) and (7), it follows
{H,pi} =pi — F;, {H,2"} =i,

Also, for any differentiable function
¢: JY(R,M)* — R,
we have
dE_ O gy - %0, 9
dt ot g-(t)" Op;

T

3 Geometry associated to single-time
Euler-Lagrange derivative

We consider the jet bundlé'(R, M) and the local
chart(t, =, 2). A natural local basis for the 1-forms on
JY(R, M) is given by the 1-form@’ = da® — #idt.

These 1-forms and the vertical vector fie&gﬁﬁq de-
X

fines the endomorphisisi = 6’ ® %
X

. 0 . 0 0 0
ertlesS(—t) = -z P S(_axi) = 95 The vgc—
tor valuedl-form S is used in the classical Hamilton-
Cartan formalism for problems in the calculus of vari-
ations.

A C* vector fieldl' on J*(R, M) is called semi-
spray (ime-dependent second order vector field or
field of second order ODEsif it satisfies the condi-
tions

with the prop-

dt(T') =1, 6(I")
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Locally,
9 8 0 -
T = 7 A 7 oo/ 11 M)).

The semi-spray is used in the study of time-dependent
mechanics o x T'M.
Any  Lagrangian density of  energy
L : JY(R,M) — R generates a PoingCartan
1-form
0L oL i
T 8xl)dt + BIT dx

Letwy = —dfr. If the Lagrangian density of en-

82L>#0

0y, :Ldt—i-S(L), 0, :( —

Li te, i.e.
ergy L is nondegenerate, i.e., det——— 57

then there exists a semi-spréyas solution of the
equationirw; = 0, calledLagrangian spray Lo-
cally,

0 8 ; oL d oL . 0
e

815 8 ox?  dt oz’ ozt
%L

(99) = (arme)

Commentary. 1) The single-time Stieltjes ac-
tions of type (3) are studied in the papers [11].

2) Similar technigues can be applied to the Lie
algebroids [5].

4 Euler-Lagrange PDEs associated
to multitime Stieltjes actions

The functionsf : R™ — R andg, : R x R, —

R, ga(ta77-a) = gTa(ta>7 ™ >0, =1,.,m,
with suitable properties, determine the multiple Stiel-
jes integral (generalized convolution) ft) with re-
spect to the functiong.« (t“), on the hyperparallelip-
iped(y, in R (fixed by the diagonal opposite points
0= (0,...,0) andr = (7}, ...,7™)), denoted by

I = [ 5t)dgos(t)-wdgom (¢7).

If the convolution is not desirable, the hyperparallelip-
iped of integration can be taken independent .of

If all the functionsg,«(t*) should happen to be
everywhere differentiable, then the Stieltjes integral is
reduced to a special Riemann integral,

ITf:/Q FO) G (£l ()L .. dE™

Let us extend the fractional action theory from
single-time case to the multitime case. For that we
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introduce the jet bundle of order on€ (T, M) and
a local chart(t, x, z,) on it defined by a local chart
t = (t%), a = 1,...,m, ("multitime”) on the man-
ifold T, a local chartz = (2%), i = 1,...,n, On

7
the manifoldM and a local chart?!, = a—xa, i =
1,...,n;, a=1,...,m, on the vertical fibre.

Any C* real functionL = L(t,z(t), z,(t)) de-
fined onJ! (R, M) is calledLagrangian density of en-
ergy. Themulti-time Stieltjes actionis defined via a
multiple Stieljes integral of. with respect to the func-
tions g« (t*),« = 1, ...,m in the sense of functional

T(a() = | L(ta(t), za(t)dges (1) dgon (™)

0T

or, particularly, agnultitime Riemann action

To(x() = | Lt 2(t), za(t) G- ()dt' ...dt"™,
QOT

where G-(t) = TIi g (tY). We define
the multitime action of the Lagrangian density
L(t,z(t), z4(t)) with respect to the weight¥, () by

T (x()) = L(t,z(t), 24(t)) Gy (t)dt" ...dt™.

QOT
| (8)
The function

£(t,2(t), 2(8)) = L(t, 2(t), 2 (1)) G (1)

is calledLagrangian
4.1. Proposition The multitime Euler-Lagrange
PDEs associated to the action (8) are

oL d OL  gla(t*) OL

gy 4 98 : 9
Ozt dt*0xl,  gla(t™) 0x?, ©)
1=1,...,n a=1,....m,

d 0 .9 9
where the symboéﬁ = 5 + ﬂa% + xgﬁa?g
stands for the total derivative.

Proof. Since

L(t, (1), xa(t» = L(t, z(t), xa(t»GT(t)

and 00 (1)
T _ Yra
ote () = s (t)GT(t)’

the classical Euler-Lagrange PDEs

oL d oL 0
oxt  dtv 9zl

can be written as in Proposition.

ISSN: 1109-2769
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Remarks. 1) A particular weightG,(t) can
be obtained taking a Riemannian diagonal mani-
fold (7', h.«(t*)) instead the Euclidean manifold
(T,0a3)- In this case the Lagrangian i =
L(t,x(t), z,(t))/det(hr«(t%)) and the weight is
G- (t) = det(ha(t)).
2) If we have in mind only the Lagrangian density
g7 (1) OL
L, thenthe ternf; = = :
gTa(tO‘) 8.%’0[
PDEs (9) stands for thexternal forces
Examples 1) If

in Euler-Lagrange

(7-04)7‘@ o (Ta _ ta)ra
ro(t%) = , 0<ry <1,
g ( ) F(l + ra) rOL —=
Vo (t* 1-— .
then 7~ ) _ @ and the PDEs (9) are writ-
e (t) ~ 70— g0

ten agnultitime Euler-Lagrange PDEs with fractional
forces

oL d 0L  1-ry OL
T — o Qxl,’

90 dio oan

2) If g;«(t%) = t*, the PDEs (9) are written as
the classical multitime Euler-Lagrange PDEs.

_roo
3) If g,a(t*) = ————, the PDESs (9) are writ-
T
ten as Euler-Lagrange PDEs from economics

oL  d AL 0L
oxrt  dt> Oxl,

)
ox?,

TOI

t .
4) If g7« (t*) = —, the PDEs (9) are written as
T
Euler-Lagrange PDEs from fractal theory of solids

OL d OL a4 0L
oxt  dtv dxi, ozt

In order to introduce the multitime fractional
functional like a path independent curvilinear integral,
we start with a generic Lagrangian density of energy
L and we build the total derivative

La(t,x(t), zq(t)) = gtLﬁ(t,x(t),xa(t))Jr

Bt 1 0) 70 () S50+ 5 (0,20), 2o () G 1)

For such type of functions we define tharvilinear
Stieltjes functional

Fa() = [ Lo(t.(t).za(®)dgst), (10)

wherel' , is an arbitrary piecewis€'! curve joining
the points) andr in o, C R".

Issue 1, Volume 7, January 2008
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4.2 Proposition[20], [22]. 1) If z*(-) is an ex- o e Tt ,
tremal of the Lagrangian density of enerdy then andg,=(t%) = — 72  we find
x*(+) is an extremal ofi L. )
2) If *(-) is an optimum point of the functional Sinz — z19 = _%m — 2.
Jr(z(+)), thenz*(-) is the solution of the multitime T
Euler-Lagrange PDEs 2) (Degenerate Lagrangiad. The degenerate
OLg - iaLg L g (t%) OLg ) two-time Lagrangian
ozt dte oz, P gl (to) Oz’ £:JYR% R = R,
;=consti=1,..,n; a=1,..,m. 1
v P e b L0 20) = 5 (~) = (@) + a?al + 2}
Commentary. 1) The fractional multitime action —xla? — x1x§> g (tH)gla ()

can be represented as multiple integral or as curvilin-
ear integral. For this purpose it is enough to replace produces an Euler-Lagrange system of order one
the volume elementt!...dt™ by dg, (t)...dg.m (t™)

or the linear elemer(idt®) by (dg, s (t°)). R, 197 (tl)x2 i 197 (tQ)m?)
2) The multitime dynamics with fractional action LT 2 (8 24,(t?)
is suitable for the differential geometry of problems in 1", (t)
Continuous Mechanics including fractal theory. Par- 2?4+ zi=-2 ,Tl T L
ticularly, it describes qualitative propertiesrafflows 29 (")
and their associated geometric dynamics [13]-[23]. 5 ) 19 (th)
3) A fractional multi-time action lead to the Euler- —x” 1y = —59/ (tl)w
Lagrange PDEs with external forces which are proper Tt
for the system. 3) (Modified hyperbolic PDE). The two-time

4) Let us point out some criteria to select the Lagrangian
functions ¢,5(t%). For example, ift' represents

the time, then it is suitable to take,:(t!) = L:JYR*R)— R,
(rH — (7t = thHn it 42 he dil . 1
; if t* represents the dilatation,
T(1+m) P Lt 1%, x) = 56“2 ((21)20? = (22) - 2kaws
theng,»(t?) = t2; if t3 represents the discounting,
e —k%2?) g1 (") gy (1)
theng,s(t*) = ————; if ¢* represents the fractal-
T a7 defines the hyperbolic Euler-Lagrange PDE
ization, thenyg,+ (t*) = ( 21 : g (Y
T 1
5) The results from [13]-[24] can be reformulated —z1w? + T + kag = =T (tl)w%cl
for the fractional multi-time actions. It
Applications and Examples We start from ex- 14" (t2)
amples in continuous mechanics [9], modified in the —5 T 2 (x2 + kx).
previous sense. 2 (%)
1) (Modified sine-Gordon PDE). The two-time Taking successively
Lagrangian o o _ sorr
o7l 2 o _ o
L:JY(R*R)—R gre (1) = 19, gTa(ta):(T ) . ( ) ’
1 (1+7a)
[’(tlu tz’ l’) = (51‘11‘2 - COSJI)Q;J (tl)g;—z (tQ) a2
e T
determines thenodified sine-Gordon PDE gre(t7) = = a7
. 14" 1 14" 2 we find
SNz — x12 = 5571 Etliwl + 5?72 Et2§$2. —x11w2 + x99 + kxo =0
i i —r1 Wt T tkry = 1-n Wit L= (xo+kx)
Taking H S - 22\
L (7)) — (71 — g1y — 1w 4 x99 + kxe = —7 Wzt + 7'2(952 + kx)
gr(t) = T(1+7r) respectively.
ISSN: 1109-2769 Issue 1, Volume 7, January 2008
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5 The multitime perimetric problem
of non-renewable resources

Consider a society endowed with a known finite stock

Constantin Udriste, Dumitru Opris

6 Hamilton PDEs associated to mul-
titime Stieltjes actions

To convert the multitime Euler-Lagrange PDEs of sec-

S of some non-renewable resources which are essen-ond order to multitime Hamilton PDEs of first or-

tial to the economy, i.e.,

/ Ga(D)dt® = S,
FOT

whereq(t) = (q1(t), ..., gn(t)) is the vector of quanti-
ties of the resources extracted for consumption at mul-
titime ¢. The objective is to maximize the utility of
consumptionug, (ga ), With u”(g.) < 0 < ul,(qa),
discounted at rate = (r,), i.e.,

max/ ua(qa(t))e*”atﬁdt“.
For
Define the remaining stock at multitimies Q- as

x(t)=5— qa(s)ds®,
Lot

%(t) = —qy(t), 2(0) =S, x(r) = 0.

The objective functional

Ty La(tv Q(t)v .’E’y(t), p(t))dta7

is based on the Lagrangian covector
La(t, q(t), ZEA/(t)’p(t)) = ua(Qa(t))e_Tﬁtﬁ

—0(t) (aa(0) + 1))

Here we use the multitime Euler-Lagrange PDEs as-
sociated to path independent curvilinear integral [20],

oL, d 0L, —ratB
g5 dv ., 945 = (up(ga)e " —p)dap = g
8(@)
OLa d oL _ v _,
O dt78(5i) oot
oty

It follows p(t) = bat® + ¢, uy(qa(t)) = (p(t) +
aw)erﬁtﬁ . Consequently, the optimal extraction rate
q*(t) should be such that

b (g5(6) = (p(t) + aaa)e™?,

i.e., the marginal utility of consuming non-renewable
resourceu,, (¢ ) should increase exponentially at rate
r Which, in view of the concavity of eaah, (¢,), im-

plies that later generations should consume less than

earlier generations.

ISSN: 1109-2769
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der, we accept that thaulti-momentunsystemp =
8L(
ozt
ficient condition is that the Lagrangian density of en-
ergy L to be regular, i.e.,

t,x, z,) determine a bijection, < p*. A suf-

2
det 8 L - | #£0
ngﬁxfg

In the geometrical theories [1], [3], [4], [13]-[23], the
d-tensor field

gz‘ajﬁ (t7 :L‘(t), Ly (t)) =

is used like a vertical metric. A very important case
for geometry and field theory is that of Kronecker de-
composability

g5 (&, (1), 2 (1)) = gij(t, 2 (1), 2, ()R (1),

The Lagrangian functiop determines thelamil-
tonian function

H(ta xvp) = pzaxza(t :L",p) - L(ta x,p)
If z(-) is a solution of the multitime Euler-Lagrange
PDEs
OL d 0L
ozt dt> Oxl,

and definep(+) (p%(-)) as above, then the pair
(z(-),p(+)) is a solution of the multitime Hamilton
PDEs

gzwzgﬁwwﬂm
a1 (0=~ 050,00

We remark that the classical multitime Euler-
Lagrange or Hamilton PDEs are of divergence-type
PDEs. We can generalize the Hamilton PDEs intro-
ducing two tensor fields:

- theHamiltonian tensor field

a ot 1 a
Hﬂ (t7 :C,p) =P; x,@(ta x7p) - EL(t l’,p)(sg,
H(t,xz,p) = H(t, z,p);
- themoment-energy tensor fielidbm physics

T4 (t, x,p) = piaj(t, x,p) — L(t, z,p)65.

Issue 1, Volume 7, January 2008
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The classical Hamilton PDEs can be extended to
PDEs that contains the Jacobian matrix of the Legen-
dre transformation.

6.1. Proposition Letz(-) be a solution of the
multitime Euler-Lagrange PDEs and defip¢) =
(p(-)) as above. Then the pafe:(-), p(-)) is a solu-
tion respectively for the generalized multitime Hamil-
ton PDEs

xt OHY
O =5 L et p)  (12)
\ a oz’
+ (5380 - A5 0)) G2 (1. (0).5(0),
Y OHY
L8P (1) = 2 (1, (1), p(1)):
T o1y
5oL =5 A 0a) (9
(%pj( )= 8305 (0)) G0, 0(0) (1),

Proof: Let us justify the PDEs (12). We find

8

0

oxt

(t x, zy(t, z,p)).

OL

Now pf(t) e
ox’

ata(t) = x4(t,z(t),p(t)). Therefore the Euler-

Lagrange PDEs imply the multitime Hamilton PDEs
in the second place.
Now we compute the partial derivatives

(t,z(t),z,(t)) if and only if

j A
aHB _5a$z + p Oz B_i aaLax&
op] A5 gp] mﬁ@xf\ap;w
Ox J
which contains the Jacobian matr€< *) of the
]

Legendre transformation. On the other hapitlit) =
oL .
e (x(t), zy(t)), implies x4(t) = xq(x(t),p(t)).
That is why, we get the multitime Hamilton PDEs in
the first place.

Remark. After our knowledge, here is the first
time when the Jacobian matrix of the Legendre trans-
formation is involved in the Hamilton PDEs.

ISSN: 1109-2769
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6.2. Proposition The multitime Euler-Lagrange
PDEs (9) are equivalent to the multitime Hamilton
PDEs

000 - ;ﬁ;(t,x(t»pu))
gfff (t) = glf@ 2(t),p(t) + Fi(t, p(t)), (14)
o gra( ) a
oL

7 Geometry associated to multitime
Euler-Lagrange derivative

Dynamical connection and semi-spray We use the
jet bundle of order one/!(T, M) and a local chart
(t,z,x,) defined by a local chart = (), «
1,...,m, on the manifold7, a local chartx
(%), i = 1,...,n, on the manifoldM and a local

chart for partial velocities, = (z%,) = (gi) Ex-

plicitly, the system of local coordinates(ig", ¢, z%,).
The manifoldJ! (T, M) is endowed with the follow-
ing natural structures:

1) the total derivative operator

0 .0
a@m”

2) the contact 1-form@&’ = da’ — 2! dt®;
3) the total derivative 1-form operator

01 = do ® dt;

do = =

4) the vector-valued contact foréh = i@ ® 6%
5) the vertical endomorphism field

J=J®de, J = = @0,

ozt

where{i} Is a basis of vertical distributioW (ver-
CL‘

tical vector fields).

A C*> vector-valuedl-form H on JY(T, M) is
calleddynamical connectioon J! (T, M) if it satis-
fies the conditions

910H:0, QQOHZGQ, H\V == —Zd|V

7.1. Proposition The local expression of the
dynamical connection/ with respect to the chart
(t*,x" xk) is

0 0

H=(-zx H’Baz)@@dta

aaﬂL
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0
ozt

+( +Hfaa—x£)®dm " o) ® das.

7.2. Proposition 1) The rank of the matrix asso-
ciated to the dynamical connection(is: + 1)n.

2) The dynamical connection defines an
f(3,—1)-structure.

As any f(3,—1)-structure, the dynamical con-

nection determines the projectors
(=HoH=H? m=—-H*>+1

having the following properties:

=0 mP=m, lom=mol=0,L+m=1I

0 0 0

Up) = ~Thp s — (wh, H]y + Hiﬂ)%
50~ ) "]
M) = o (ah H Hiwai%
i) =0 ) =0

A set of C*° vector fieldsl'y, o = 1,...,m, on
JYT, M) is called semi-spraynfultitime-dependent
second order vector field or field of second order
PDEJ if it satisfies the conditions

dt*(T'g) = 65, 6'(Ig) =0, i=1,...,n.
Locally,

Fa:i‘f—x 9

i 0 0
ot > Ozt

Al € C=(JN (T, M)).
This semi-spray can be used to study "multitime-
dependent mechanics” oft (7', M).
7.3. Proposition The vector-valued-form H =
(m — 1)8; — Lr,J* is a dynamical connection on
JYT, M), whereLr, is the Lie derivative with re-
spect to the vector field,,.

7.4. Proposition A quasilinear second order
PDEs system of the type

APt w(t), 24 (1) 2l 5(1) + Bi(t, a(t), 24 () = 0,
where
af _ gPo _ qaf af
Ay =4y = 4,77, det (Aij ) 70,
& — rows, f — columns

ISSN: 1109-2769
26

Constantin Udriste, Dumitru Opris

extends to a semi-spray

_ 9
ot

9
ozt

0

Fa Txiﬂa

+alh o=+ Flg (15)

where .
ap = Ady < 38~ m5§Bj)
and

8 _ i Y AT Y
Pip =0, Ady0js = Ag Pja-

Proof. To prove this statement we use two ingre-
dients: (1) an anti-trace PDEs system

AT (42 (t), 20 ()2l 5(2) + %%Bi(t, (1), 2o (t))

= zﬁ(tv .T(t), xU(t))u
where gf)?ﬂ are arbitrary C>° functions satisfying
qbfﬁ =0, (2) the inverse{Ai{B) of the matrix(A?jﬁ),

ie., AY Ak = §06%. Infact, the anti-trace PDE sys-
tem is equivalent to the semi-spray

. 5 1
Top = Ady ( j8 m(sgBﬂ')

it Al 7, = A ¢

ayvjB T By Fjar

To simplify, we accepqzﬂﬁ = 0. Then the compo-
nents of the dynamical connection determined by the

previous PDE system are

. . de
Hj, = iA‘é’; aAlf‘h AlB — aBik
m 8xﬁ 8x6
; 1 [OA% 0B ,
] J kh ahl 7

(16)

Particularly, let us consider a PDE of the form
A (t 2 (t), 24 (8))zap(t) + B(t, z(t),a4(t) = 0,
where (A°?) is a nondegenerate matrix with the in-
versed,z. Then the associated anti-trace PDE system
is
1
AY(t,x(t), (1)) zap(t) + %B(t,x(t),xv(t)) =0
or
1
That is why, our initial PDE system extends to the
. 1
semi-sprayf,3 = ——A,sB and the components
m
of the associated dynamical connection are

A
L (M 2
m Ozg Oxg
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Example. Let us take the PDE

w2x11 — x99 — kxo + h1w2w1 - hg(l‘z + k‘SU) =0,

wherew, k are constants ant; = h;(t!,t?),
1, 2. In this case

All:w2 A12:A21:0 A22:

1
A = E,An = A =0,A = —

It appears the semi-spray

1
Fii=—--—

2w2 (/C + hz)l’Q — khzx),

(hlwle —

Fig = Fy =0, Fp = w1y

and the dynamical connection

h k+h
H1:_717H2:_ e
2 2
h k+h
Hyp = — 1361 ,Hig = Ho1 = 0, Hyp = —%
Now, Iet

L(t,(t), 20 () = L(t, 2(), 20()) G (1)

be a multitime Lagrangian. Since the d-tensor field
0’L . . -
f‘jﬁ = — is the dominant coefficient for a ge-
0zt 01
ometrical theory, we writte the Euler-Lagrange PDEs
of £ in the form

d OL 9L  gla(t*) OL _
dtoxi,  0z'  gla(t®) Oxi,
%L 9*L

J J
Oz, 0l op T Oxt Oxd ~

N 9%L
ozt Ot

oL
ozt

gl (t*) OL
oo (1) D,

This system can be identified directly 965 J

B; = 0 and we can apply the previous tf1eory But,
to show that the previous way is not unique, we prefer
another extension as the anti-trace PDEs system

d oL 1 a(aL_g’T’a(tU) 8L>_

dt’ dxi,  m ort  gho(t7) Ol

&FL N FL N &L
Oul, 0 By 9zt 9z Ot ot
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—léa (8L _ 97.(t7) 8L> B

m Y \oxt  gl.(t7) 0zl )
If the Lagrangian density of enerdyis nondegener-
ate, then the matrlﬁgo‘ﬁ) has aninversgy?,). There-

fore a semi-spray assomated to the Eﬂuler Lagrange
PDEs is characterized by the functions

i i (Lge (9L _gh) oL
o0 =S\ m ™\ 027 T g () o
d*L

0?L
Oxloxk Oxloth
Automatically, the formulas (15) produce the compo-
nents of the associatelynamical connectian
Poincaré-Cartan form. LetT',, a = 1,...,m,
be a semi-spray o' (T, M). The semi-spray is
calledcompatibleto a Lagrangian

ﬁ(t7 $(t)7 ma(t)) = L(t7 x(t)a xa(t))GT(t)

if it satisfies the multitime PDEs

( oL ) OL  g’a(t*) OL
| (e =
ox?,

Ort  gha(t™) Ozl
If the semi-spray is given by the formulas (15), then
the condition (17) leads to the PDEs

(17)

gzj/BngB +B; =0,

where )
B g 0°L
Fl, Fga,;‘;—aiaj,
B _ 0L o PL 9L  gh (") OL
" 0xi0xk T ppegad 0zt gl (17) Oal

An arbitrary dynamical connectiond on
JY(T, M) determines the dual bases

0 0 .0
Fa . FZ - .
g+ Tagg T Fas oz,
0 1. 0 0
= o + ag;Ja oxt,

1

dt®, 0" = da'—a dt®, ' = dz’, —le 07 —F zdt”.

Letw = dt! A ... Adt™ and

wo = (=)t A AdEY A LA dE™.

= Lw+ 87/;91- Aw, is called the
ox?

[0}

Then them-form §!
Poincare-Cartan form
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7.5. Proposition The(m + 1)-form Q! = d6*
can be written

Q' = (g vhne’ - Jz‘ljagi N )wo +EH (L) Nw,

where

9L
ort

oL . o OL.
g = H ) (5 ),

(L) =
7.6 Proposition If the dynamical connectio®l

is associated to a semi-spray which is compatible to

L,i.e.,& (L) =0,then

QO = (g vl A 0T — J}jaaiAeﬂ')wa

jla_m=—1 (05, 0B\ 1 (06 095
ij 2m \ Ozl oxh) 2\ ouf,  Ox} ’
where
2 ' 2
010, otedxd, 0
If m = 1, then Q' = gy’ A 09, g =
oL X dx?
2 — af

Pk dta'ﬁ A5 A
0 hoB = )

A, 0r,0x3

The previous theory refers to classical Riemann
actions. Its reformulation for Stieltjes actions is obvi-

ous. For example, the Poinéa€artann-form can be

. oL .
writtend = Lo + a—.el A @, Where
xl

O = dgp (t) A oo Adgem (tT),

G = (=1)™dgo1 (A Adgra (F)A .. Adgem (™).
gra (%)
Gra (t*)
aL g/I (a)
afx TO‘( )

7.7 Proposition The(m + 1)-formQ = df can
be written

Since® = G, (t)w, W4 = wqe, We can writte

0=G(t)Lw+ 0 A wq.

g-,-a ( a)
g‘r(’ (ta)

[0}

0= (ngw N fJO‘HZ A eﬂ)

+&(L)G(1)0" A w,

where

(L) =T, (%) _
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oL oL
(6
5= (57) 1 (5t)
7.8 Proposition If the dynamical connectio®l

is associated to a semi-spray which is compatible to
L,i.e, & (L) =0, then

QO = (g2l A 0T — JgeiAeﬂ')GT(t)wa
OB

Lo (00 9%
dra/) 2\ dxyy  Orp ’

%L
ataﬁxé

a

m—1 (8B]

2m  \ Ox?,
where

%L
0ziox,

0L gla(t*) OL
0xd  gla(t) Oxl,

)
a

j =

8 Multitime Hamilton-Poisson sys-
tems on jet bundle

If (T,h) and (R, g) are Riemannian manifolds, we
shall use the adapted dual bases

50 9
(&a g o g,

o
S0 D a>
T opi kT O‘aa:h’ ozt

dat
(dtP, da, 51:]5 = dxﬁ — mefydt)‘ + thxgdzk)

as frames on the jet bundlg' (7, M). Then the in-
duced Riemann Sasaki-like metric gh(T', M) is

S = haﬁdta®dtﬂ+gijd$i Qdx? —}—ho"ggij&xg@éxé.
We first notice that, on the Riemannian manifold
(JY(T, M), S) there exists a globally defined 1-form
d-tensor o
w = gjjxldr’ @ dt.
Its exterior differential
Q = dw = (—gijdz" A d2l) @ dt®

is also globally defined 2-form-tensor, and has the

components
0 —gijég >
gijég 0

in the adapted frame. Of course we can find a suitable
geometry produced hy andQ2 on J(T', M).

(Qoz AB) = <
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The section® = ¢*, o = 1,...,p,isan(1 +
p)n-dimensional Riemann submanifold gt (7', M)
which can be identified with the Riemann manifold
(PT (M), g + h~! ® g), whereh has constant com-
ponents, ané7 (M) = U (7 M)P. The closed 2-

zeM
forms$, = —g;;dz' Aoz, and the metrig+h~'®g
produce an almogt-Kahlerian structure ofZ (M) in
the sense of Grassi [16].

A theory of Hamilton-Poisson systems on
JY(T, M) can be obtained in the following way. Let
L1, Lo be two realC*> functions onJ! (T, M), i.e.,
two Lagrangians. The maps

(L1, Lo} = ghs (5L18Lz 9L, 6L2) |

Szt 83% B 856% oxd

a=1,....m

define a Poisson structure on the jet bunf€T’, M)
via the 1-form Poisson bracke{L;, Lo} =
{L1, La},dt®. Also the maps{L,, L2}, define a
p-Poisson structure off7 (M), g + h~! ® g) com-
patible with the almosp-Kahlerian structureé, =
—gizda’ A Szl

A similar theory can be introduced on the dual jet
bundleJ(T, M)* of local coordinate$t®, x¢, p&).
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