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Abstract: The basic theory regarding Nonclassical Lagrangian Dynamics and Potential Maps was announced in
[7]. Since its mathematical impact is now at large vogue, we reinforce some arguments. Section 1 extends the
theory of harmonic and potential maps in the language of differential geometry. Section 2 defines a generalized
Lorentz world-force law and shows that any PDE system of order one (in particular, p-flow) generates such a law
in a suitable geometrical structure. In other words, the solutions of any PDE system of order one are harmonic or
potential maps, i.e., they are solutions of Euler-Lagrange prolongation PDE system of order two built via Riemann-

Lagrange structures and a least squares Lagrangian. Section 3 formulates open problems regarding the geometry
semi-Riemann manifolds/! (T, M), S1), (J*(T, M), S2). Section 4 shows that the Lorentz-Udriste world-force

law is equivalent to certain covariant Hamilton PDES @h(T, M), S;). Section 5 describes the maps determining

a continuous group of transformations as ultra-potential maps.
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1 Harmonic and Potential Maps

All maps throughout the paper are smooth, while man-
ifolds are real, finite-dimensional, Hausdorff, second-
countable and connected.

Let (T,h) and (M, g) be semi-Riemann mani-

The canonical form of the energy denskyy) of
the mapyp is defined by

Eo()(t) = 51 (£)gis (e (1))ai () ).

folds of dimensiong andn. Hereafter we shall as-
sume that the manifold’ is oriented. Greek (Latin)
letters will be used for indexing the components of
geometrical objects attached to the manifdldman-
ifold M). Local coordinates will be written

t=(t%), a=1,...,p

r= (2, i=1,...,n,

and the components of the corresponding metric

tensor and Christoffel symbols will be denoted by
hag, 9i5, H,, Gj,. Indices of tensors or distin-

guished tensors will be rised and lowered in the usual

fashion. ‘ .
Letp: T — M, p(t) =z, 2" = 2'(t
map (parametrized sheet). We set

(1)

“) be aC>

.01t 0%t
— — Y
Ty = pTeL Top = 08 - H B;U —I—ka l‘ﬁ
Thenz},, «},; transform like tensors under coordinate

transformationg — #,  — . In the sequet?,, xgﬁ
will be interpreted like distinguished tensors.
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For a relatively compact domaid c 7', we define

the energy
2= [, B

wheredv;, = \/[h]dt! A ... A dtP denotes the volume
element induced by the semi-Riemann metric A
map ¢ is calledultra-harmonic magf it is a critical
point of the energy functiondly, i.e., an extremal of
the Lagrangian

(t)dvp,

L = Eo(e)(t)y/|hl,

for all compactly supported variations. Th#tra-
harmonic map equatiois a system of nonlineaiitra-
hyperbolic-Laplace PDEsf second order and is ex-
pressed in local coordinates as

(2) T((p)i = haﬁxéﬁ =0.

The vector fieldr(¢)? defines a section of the pull-
back bundle>—17M of the tangent bund& M/ of the
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manifold M along ¢, and is called theéension field
of ¢. If the metrich is a Riemann metric, then we
recover the theory of harmonic maps [1].

The product manifold” x M is coordinated by
(t*,z%). The first order jet manifold/*(T, M), i.e
the configuration bundle, is endowed with the adapted
coordinates(t®, z*, 2! ). The distinguished tensors
fields and other distinguished geometrical objects on
T x M are introduced using the jet bundlé(T, M)

[4], 5], [15].

Let X! (t,z) be a givenC> distinguished tensor
field onT x M andc(t, x) be a giverC'*° real function
onT x M. The general energy density(y) of the
mapy is defined by

B(p(1)) = 51 (i (1)) (1) )
—hP (1) gij ((£) 2 () X5(t, 2 (1)) + e(t, ).
Of courseE(y) is a perfect square iff
¢= %haﬁ(t)gij(ﬂc(t))Xé(t, (1) X5(t, (t)).

Similarly, for a relatively compact domain C T', we
define the energy
/ E(y

A mapy is calledultra-potential magf it is a critical
point of the energy functionak, i.e., an extremal of
the Lagrangian

(t)dvp,.

L= E(p)(t)y/|hl,

for all compactly supported variations. Thatra-
potential map equatiois a system of nonlineartra-
hyperbolic-Poisson PDEaNd is expressed locally by

. Jc

ha’B aﬂ—g 67+

() = W (Vi X

3)

whereD is the Levy-Civita connection of7’, ) and
V is the Levy-Civita connection df)/, g). Explicitly,
we have

(4)

— ki 9" V1 X)ak + h*P Do X,

. OX’ OX’
(5) Fj'a = V; X} — gnjg* Vi X),
(6) ,
a9; Oh®
8;] szth+GZj9hia B ﬁAhAB—HfAhO‘A.

If the metrich is a Riemann metric, then we recover
the theory of potential maps.
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2 Lorentz-Udriste World-Force Law

In nonquantum relativity there are three basic laws
for particles: the Lorentz World-Force Law and two
conservation laws [6]. Now we shall generalize the
Lorentz World-Force Law (see also [7]-[18]).

2.1 Definition. Let F,, = (F}%,) andU,s =
( éﬁ) be C* distinguished tensors ¢h x M, where
wjia = gniFj"o is skew-symmetric with respect {o
andi. Letc(t,z) be aC* real function onl” x M.
A C*® mapy : T — M obeys thelLorentz-Udriste
World-Force Lawwith respect taf,, U,g, ciffitis a
solution of theultra-hyperbolic-Poisson PDEs
gz] 86 - haBF]zal,ﬁ ha,BUz

Now we show that the solutions of a system of
PDEs of order one are ultra-potential maps in a suit-
able geometrical structure. First we remark thata
distinguished tensor field? (¢, ) onT x M defines
a family of p-dimensional sheets as solutions of the
PDE system of order one

(8) = Xo(t (1),

if the complete integrability conditions
0Xjp 0Xj
ot oxd ~ ¢

oxX:
otP
are satisfied.

The distinguished tensor field?, and semi-
Riemann metricd andg determine thepotential en-

ergy

oxt
Oz TP

f:TxM—R, f= %ho‘ﬁginéXé.

The evolution pointt = (¢,...,t?) is called mul-
titime. The distinguished tensor field (family q@f
dimensional sheetsY! on (T x M, h + g) is called:

1) multitimelike if f < 0;

2) nonspacelike or causaf f < 0;

3) null or lightlike, if f = 0;

4) spacelikeif f > 0.

Let X! be a distinguished tensor field of every-
where constant energy. X (the system (8)) has no
critical point on M, then upon rescaling, it may be

supposed thaf € {— 0,5 . Generally,é ¢ M

27
is the set of critical points of the distinguished ten-
sor field X?, and this rescaling is possible only on
Tx(M\E).

Using the operator (derivative along a solution of
PDEs (8)),

5
ath e

0%at
otxotP
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we obtain the prolongation (system of PDEs of order 2) The solutions of PDE system (12) are the ex-
two) tremals of the Lagrangian
(2 _ (2 . 7 J . .
©) Tap = DX + (V;Xa)z. L= (;ho‘ﬁgijw;x]ﬁ + f) \/m
The distinguished tensor fielﬁg, the metricg,
and the connectiolV determine theexternal distin- 3) If the LagrangiansL are independent of the
guished tensor field variablet, then the PDE systems (11) or (12) are con-
; : o 3 servative, the energy-impulse tensor field being
F] a — v]Xa —4g gk‘]tha7
« 7 oL «
which characterizes thkelicity of the distinguished T%p =z 5 — Log.
tensor fieldX?,. @
First we write the PDE system (9) in the equiva- 4) Both previous Lagrangians produce the same
lent form Hamiltonian

7 ih ky,.J i o,J A
= (VX F; DsgX}. 1 -
Tap = 905 (VaXa) s + oy + DpXo H= (Qhaﬁgijx;xé —f) h].
Now we modify this PDE system into
Proof. 1) and 2) If we writeL = E\/|h|, where
E is the energy density, then the Euler-Lagrange equa-

Of course, the PDE system (10) is still a prolongation tions of extremals

of the PDE system (8). oL 9 oL
Taking the trace of (10) with respect t8® we 9ok 9o ok 0

obtain that any solution of PDE system (8) is also a * Ta

solution of the ultra-hyperbolic-Poisson PDE system -5 pe written

(10) ahs = 9" gi;(VaXE) X} + Fj 2l + DpXL.

h‘“fvi@ = gihhaﬁgkj(ths)Xé (13) OF 0 0B ., OF _ 0
oxk  Ote Oxk Tk

(11) +hOFyaal + h*° DX, We compute

2.2 Theorem The ultra-hyperbolic-Poisson PDE OF 9 9
system (11) is an Euler-Lagrange prolongation of the Frie 2 o 83:2’1 R ai” !l X7,
PDEs system (8)

If F}¢, = 0, then the PDE system (11) reduces to 9 09X’
(12) , ' . . + haﬁ aglj Xl XJ haﬁgl] oot ,3

h*Pxls = g™ h g (Vi XE) XY + h*P D X, oxt
. . af J

The first term in the second hand member of g5 % Ok e X
the PDE systems (11) or (12) igrad f)'. Con- OF ' _
sequently, ch?osing the metrids and ¢ such that ok = h*P grjaty — hP gi; X3,
f € {—2,0,2}, then the preceding PDE systems “
reduce to o OE  9h*P o8 99k) 1

. o A Toteogk oo TRITB T Tgul TaTs
(11) h*Pal s = WP Fy qaly + b D X, o
0?7 OhoB
—hoP X7

(12') heal s = h*P DXL, 953 grages  pga I8

J J
2.3 Theorem 1) The solutions of PDE system +ha539ky ! X] + 1By, 9X By aXﬁxz .
(11) are the extremals of the Lagrangian Ozt 7\ ote oxl

I —h o, _xi _ xi nl — We replace in (13) tgking into account the formulas
9ij (e — X (@l — X5/ I (1), (4) and (6). We find
- (2ha’ggijf€3% — h* gy, X} + f) Vil WP gl s = i (Vi X)X
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—l—haﬁgkj(VlXé)xla—ho‘ﬁgij:rzkaé—i—ho‘ﬁgkjDaXé.

Transvecting byg™* and using the formula (5),
we obtain

haﬁ 1 _ gzkha,@gl (kal )X] 4 haﬂ ozxg

+h*P Do X,

3) Taking into account the Euler-Lagrange equa-
tions, we have

OT§ _ %' oL, , L . 0L ;.
ata = 910018 02, 0 ot TP guigal, U
g L 0% 0L, OL
ﬁaxz o1 o0~ 9t g P
oL 0%xI oL

(0

S ath

Open problem. Determine the general expres-
sion of the energy-impulse tensor field as object on
JY(T, M), and compute its divergence.

4) We use the formula

9z oot P

- OL
=g oxi,
2.4 Corollary. Every PDE generates a La-

grangian of order one via the associated first order
PDE system and suitable metrics on the manifold of
independent variables and on the manifold of func-
tions. In this sense the solutions of the initial PDE are
ultra-potential maps.

2.5 Theorem (Lorentz-Udriste World-Force
Law).

1) Every solution of the PDE system (12) is a
ultra-potential map on the semi-Riemann manifold
(T x M,h+ g).

2) Let N(3); = Gipat — Fj'a, M()s =
—H(Z/B:xg. Every solution of the PDE system (11) is a
horizontal ultra-potential map of the semi-Riemann-
Lagrange manifold

(T x M, h+g, N(});, M(Z)ﬁ)~

3 Open problems regarding the ge-
ometry of jet bundles

If (t*, 2% 2%) are the coordinates of a point in
JYT, M), and Hg. , GZ are the components of the
connection mduced b)y andg, respectively, then

0 0 0
(&a g T g,

ISSN: 1109-2769
15

Constantin Udriste

50 n ok 0 a)
Szt Ot ik “Pxh’ Ozl )’

(dtﬁ, da?, 5:1:% = da;jé — Hﬂ)\xﬂ/dt’\ + tha:gda;k)

dtf6<5> 5ﬁdt5< )_Odtﬁ( )
ot
dx? (5) =0, dx? () = 5] da? ( )
5te ’ St
S s ™

The induced Sasaki-like metric th( M) is
defined by

are dual frames od* (T, M), i.e

S = haﬂdta®dt’8+gijdxi®dxj+haﬁgij5:ng®5xé.

Problems

1) The geometry of the semi-Riemann manifold
(JL(T, M), S1), which is similar to the geometry of
the tangent bundle endowed with Sasaki metric, was
finalized in our research group [4]-[5], [7]-[18]. As
was shown here this geometry permits the interpreta-
tion of solutions of PDE systems of order one (8) as
potential maps. In this sense the solutions of every
PDE of any order are extremals of a least squares La-
grangian of order one.

2) Study the geometry of the dual space of
(Jl(Tv M)a Sl)

3) Find a Sasaki-like&sy metric on the jet bundle
of order two and develop the geometry of the semi-
Riemann manifold J%(T, M), S3). In this manifold,
the PDEs of Mathematical Physics (of order two) ap-
pear like hypersurfaces. Most of them are in fact al-
gebraic hypersurfaces.

Hint. The tangent vectors

0 0 0
Da - ’D — 7D7(/X = ;)
ot ozt ox?,
0 aB 0
b Ok, ! (<h) Iy

determine a natural basis
(D, Di, Df', D, D (o < ),
whose dual basis is
(dt®, dz’, dat, d:raﬁ(a < B)).

These basis are not suitable for the geometry of
(J2(T, M) since they induce complicated formulas.
We suggest to take frames of the form

59 .0 9 9
5w~ i +Ae g+ Aa) gur + Aeln) g
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M(Zﬁ = Al) o Al ot 833
+A(p) () 6; * azﬂ

dual to coframe of the form
ot? = dt? + B;%da? + B())’dad + B()*)dal s
§27 = BJdt" + da + B(})Y da® + B}’ dat
daly = By(J)dt" + By(})da* + dwl + B())dats
oty = Bs(%, )dt’ +By(h, ) da* + B(}) (4, ) da§+da,
In this context, we can define the Sasaki like metric
Sy = hagdt® @6t° + gijo2' ® 62 + h*Pg;;6x, @ 6

+h°‘7hﬂ/\gij5:v"aﬂ & (535%.

4) Study the geometry of the dual space of
(J2(T, M), S2).

4 Covariant Hamilton Field Theory
(Covariant Hamilton PDES)

Let us show that the PDE systems (11) and (12) induce
Hamilton PDE systems on the manifoltt (7', M).
The results are similar to those in the papers [2], [3].
Let (7, h) be a semi-Riemann manifold wihdi-
mensions, and}, g) be a semi-Riemann manifold
with n dimensions. ThetJ (T, M), h+g+h~1xg)
is a semi-Riemann manifold with—+ n + pn dimen-
sions.
We denote byX? aC* distinguished tensor field
onT x M, and byw;;, the distinguished 2-form as-
sociated to the distinguished tensor field

Fjia = Vng — gihgijth

. . . 1 )
via the metricg, i.e.,w = —g o F. Of courseX},
2

Fj, are distinguished globally defined objects on
JYT, M).

Recall that on a symplectic manifold), 2) of
even dimensiory, the Hamiltonian vector field(y,
of a functionf; € F(Q) is defined by

X 1Q =df,

ISSN: 1109-2769
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and the Poisson bracket ¢, > is defined by

{f1, fo} = Q( Xy, Xpy).

The polysymplectic analogue of a function ig-form
calledmomentum observable'he Hamiltonian vec-
tor field X, of such a momentum observabfe is
defined by

X5, ]Q =df1,

where(2 is the canonicalg + 2)-form on the appro-

priate dual ofJ}(T, M). Since() is nondegenerate,
this uniquely defines(;, . The Poisson bracket of two
suchn-forms f1, f5 is then-form defined by

{fh f2} = XflJ (Xf2JQ)'

Of course{f1, f2} is, up to the addition of exact
terms, another momentum observable.
4.1 Theorem The ultra-hyperbolic PDE system

WPl = g"hP g XV, Xk
transfers inJ'(T, M) as a covariant Hamilton PDE

system with respect to the Hamiltonian (momentum
observable)

1 o
H = <2ho‘ﬂgi]~xgxig - f) dup,

and the non-degenerate distinguished polysymplectic
(p + 2)-form

Q=Qu@dt* Q= gijdz" A5zl A dvp,.
Proof. Let
0 =0,dt% 0= gija’de’ Adoy,

be the distinguished Liouville(p + 1)-form on
JYT, M). It follows

Qq = —db,.
We denote by
) s sull o
X,=x8 2 xB _ B —
H=XagE 0= S0 B gl

the distinguished Hamiltonian object of the observ-
able d. Imposing

X§ Q0 = dH,
where
dH = (h*Pgijaloxl, — h*P gi; XV X1 da®) A doy,
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we find

gijuméx dl‘ = ho‘ﬂgzjx] St

LT 81&
—h*Pg;; X3V, X L dz" moduloduy,.

Consequently, it appears the Hamilton PDE system

or haﬁl,zﬂ
Su™ hipaf J k
ot =9 h gijﬁ<tha)

(up to the addition of terms which are cancelled by the
exterior multiplication withdvy,).
4.2 Theorem The ultra-hyperbolic PDE system

haﬁwgﬁ = gihhaﬁgkj(Vth)Xé + ho"@Fjiafﬁ%

+h*P Dy X},

transfers inJ' (T, M) as a covariant Hamilton PDE
system with respect to the Hamiltonian (momentum
observable)

1 .
H= <2h°‘ﬂgij:cgacig - f) dvy,

and the non-degenerate distinguished polysymplectic
(p + 2)-form
Q=Q, ®dt,
Qo = (gijda" A 52l + wijoda’ A da?
+9ij(DsX2)dt? A da?) A doy,.
Proof. Let

0=0,dt% 0,= (gijxgdxj — ginédxj) A dvy,
be the distinguished Liouville(p + 1)-form on
JYT, M). It follows

Qo = —dby

(of course the term containint}® disappears by exte-
rior multiplication withdvy,). We denote by

50 9 9
=X T s i Bl

Xn H 515°

Xy =h" 5t

the distinguished Hamiltonian object of the observ-
able H. Imposing

X% |0, = dH,
where
dH = (h*P giatdal,—hP g X3(V e X1)da®) Aduy,

ISSN: 1109-2769
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we find

ai ua] J
(giju 6, ~ 9 g da' + 2wijou® idx
+hPg;;(DsXL)da?) A dvy, = dH.
Consequently, it appears the Hamilton PDE system

5uai

— poByi 2
ote

b, = g"hP g X5(V XE)

—i—Zghiwjhauo‘j + haﬁDgXé

(up to the addition of terms which are cancelled by the
exterior multiplication withdvy,).

5 Application to continuous groups
of transformations

The C* vector fields¢, on the manifold)M and the
1-forms A% on the manifoldl” satisfying

[€ar &8l = C5¢,,  C7ap = constants
045 _ o4y ABA
8ﬂ 8tﬁ = Cxs 45

determine a continuous group of transformations via
the PDEs
= E(a(t) AL(H).

Conversely, ifz! = 2*(t%,y7) are solutions of a
completely integrable system of PDEs of the preced-
ing form, where thed’s and¢’s satisfy the conditions
stated above, such that for valugsof ¢'s the deter-
minant of theA’s is not zero and

xi(tga yj> = yja
thenz! = 2¢(t*,y’) define a continuous group of
transformations.

Using a semi-Riemann metric on the manifold
T, a semi-Riemann metrig¢ on the manifoldM, then
the maps determining a continuous group of transfor-
mations appear like extremals (ultra-potential maps)
of the Lagrangian

,h P95 (xh, — AN (@ — €,A5),/|h].

Open problem. Find the geometrical meaning of
ultra-potential maps which are not transformations in
the given group.
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