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Abstract: Within the framework of Randers spaces with non-constant potential, the mean curvature form of hy-
persurfaces is determined, and the equations which characterize the area-minimizing graph surfaces are explicitl
derived as associated Euler-Lagrange PDEs. By applying the extended framework to the particular case of graph
in Randers spaces with constant potential, the known result of Souza-Spruck-Tenenblat ([27]) is confirmed. It is
shown that the only linear affine potentials for which the Randers metric admits all the affine planes as minimal
graphs, are necessarily constant. As well, the ODE which characterizes the generating curve of surfaces of revolu
tion is derived, this extending the result obtained by Souza-Tenenblat in [26] in the constant potential case.
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1 Introduction

The recent numerous and proficient applications of
minimal and CMC (constant mean curvature) surfaces
in biology, engineering, bionics, relativity and nan-

otechnology have drawn a significant interest towards
the open problem of classifying CMC and minimal

hypersurfaces both in isotropic and anisotropic media.
Regarding the latter concern, the foundations of the
related Finslerian BH (Busemann-Hausdorff) mean
curvature theory go back to H.Rund ([19, 20, 21])

and M.Matsumoto ([13, 12]). Recently Z.Shen ([24])

obtained for the first time a feasible expression for
the BH mean curvature form, related to the area-
minimizing variational problem. As well, an alter-

native approach based on the Holmes-Thompson vol-
ume (e.g., in [17, 18]) has been developed. How-
ever, in both cases, the technical obstructions related
to the volume computation of the induced hypersur-
face indicatrix have recommended a limited number
of classes of Finsler spaces for deriving explicit results
regarding the minimal BH submanifolds, especially

in [26] to the more generalnpn-locally Minkowski
Randers) case, recovering the originar ones as partic-
ular cases when the potential forfh = b(z)dz"+
has constant coefficient.

Let hereafter( M, F) be a Finsler structure, i.e.,
there exists a function (the Finsler norii): TM —
R, which obeys the following properties:
i) F is continuous o’/ and C™ outside the null

section of T’ M;
ii) F'is positively homogeneous of first order on the
fibers of the tangent bundl@ M, =, M), i.e.,

F(x7)‘y) = Aﬁ(mvy)v VA€ R-‘r;

iii) the halvedy-Hessian off2, g;;(z, y) = L o2
y ’ gZ] x? y~ - 2 8y’8y3
is positively definite for al{x, y) € TM.

Let furthere : (M, F) — (M, F) be an isomet-
ricimmersion, withF induced byF'. Then the follow-
ing result proved by Z. Shen ([24, (57), p.563]) holds

surfaces. Significant progress has been obtained for trye:

(a, ) locally Minkowski Finsler metrics, in the Ran-

ders case by M. de Souza, J. Spruck and K. Tenenblat

([26, 25, 27]) and in the Kropina case by the author
([1, 2]).

In the present note, we extend the results obtained
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Theorem 1. The mean curvature of the isometri-
cally imbedded submanifoltd C M is given by

~ Gri — Gzi 23 ('/Qiiu’i — Guizi - Wi’l .
1,(X) S Xt (1)
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where lower indices stand for corresponding partial
derivatives and:

o (u*,0"), e are local coordinates inl’M
(dim M = n); B

e (z',y7); jerm are local coordinates inl'M

(dim M = m);

o z. are the entries of the Jacobian matrix
[J(p)] = (09" 0u®) 17 i=Tim:

e M — M,t e (—¢¢),00 = p, is avaria-

tion of the surface;

Aot
ot
duced alongp attached to the variation;

e (G is the Finsler induced volume form

e X is the vector fieldX, = (x) in-

t=0

() = vol[ B"]
Gelz) = vol{(v*) € R | F(vezig;) <1}’ @)

where z (20)a=TmieTm € GLmxn(R), €
{éi}i—tm isan arbitrary basis inR™ and B" C R"
is the standard Euclidean ball.

As well, in the same cornerstone work [24], it was
proved that the variation of the volume bf reaches a
minimum while the associated Euler-Lagrange PDEs
H,(X) = 0hold true for allX € X(M). Recent ad-
vances in constructing BH minimal surfaces based on
the relation 2 were provided in ([25, 26]), by charac-
terizing the minimal surfaces of revolution in Finsler

(o, B)—spacegM = R3, F) with the Randers funda-
mental function

F(z,y) = a(z,y) + Blz,y),

wherea(z,y) = v/ai;(x)y7, B(z,y) = bi(x)y’, for

the partlcular case when; = ¢;; (the Euclldean met-
ric) and constant potentig = b-dz3, withb € [0, 1).

As well, in [27], were derived the minimality equa-
tions for 2-dimensional graphs, in the case of constant
potential formg.

2 Free potential Randers
hypersurfaces

Recently, within the framework of Geometric Dynam-
ics ([28, 29]), promising extensions of the Plateau
problem ([10]) have been derived in [16]. As well,
within the extension provided by the background of
Finslerian Geometry, we shall derive in the follow-
ing the mean curvature form and the explicit Euler-
Lagrange equations for the Randers case with non-
constant potential, then rewrite them in a form con-
venient for further technical processing, and specify
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them for graphs and surfaces of revolution in the case
n = 2.

First, we consider the case whafi = R"t! is
a Randers space endowed with the fundamental func-

tion
F(z,y) = \/0iy"y7 + bppa(x)y™ ™,

with b, 1(z) € [0,1),Yz € M, which is reducible
for b,4+1 = const. = b € [0, 1) to the case studied by
M. Souza and K. Tenenblat ([25, 26]).

Let M = Im ¢, ¢ : D C R* — M = R"!
be a isometrically immersed simple hypersurface. We

. agpi
denotez,, P
n+1

has = Y _ 242),. From (25, p.627],[26)), it is known

3)

v = (ul,...,u") € D, and

=1
that the defining function in (1) is in this case given by

G=C-(1- B2

where B = b?(2)z0T1 20T het, b = by, C =
det(hqp), and the volume form of the hypersurface

MisdVy =G -du' A ... A du™.

Then we have the following:

Theorem 2. ([3]). The components of the mean
curvature 1-form of the hypersurfack!, isometri-
cally immersed in the Randers spate = R"*! en-
dowed with the fundamental function (3), are given by

L 1-B C(1—- B)?
{ BZLB ,C+(1-B) cziz%—";lu_B).
0?7

( ,C+ B C. + B.iC,, )} bt

(n+1Dw; _ B(n—1)

+7C(1_B) BC.: + (1 B CB.:

o0 ~ Olnb
.au‘f? Z—l,n+1, Wlthw,—W

4)
We note that in the casle = const. (i.e., forw; =
0,Vi € T,n+ 1), Hv' = 0 becomes the minimal-
ity equation obtained in [26, Theorem 2, p. 629] by
Souza-Tenenblat. As well, using laborious computa-
tions, one infers a useful alternate form of the mean
curvature, as follows:
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Corollary 1. The mean curvature form compo-
nents rewrite in terms af' and E = B2C as follows:

Hi = 7C(C+—E |:(C2)z"’zj : kC2 - Ez;z% ' k62+
+Ez;EZZ * Reqs (C E + C E ) ~keet
5)
O (n+1) (
+Czécz% . cci| (,0577 + C(CIQ [EC +
. (n+1)FE
where
C%+4nE +1)C
kczz 2+CT’L ) kEQZ(TLQ) y
b =DC L (nt1)(C?nE)
€12 T 4(02_E)7 ce — 2(02—E) 5
Lo — n(n+2)E%2—2nEC?—-C* o o—1_ (n-DE
cc — C(C?=E) ’ m — m

In particular, for surfacesi( = 2), we infer the fol-
lowing

Corollary 2. For M Randers surface isometri-
cally immersed i/ = R3, the mean curvature form
H = H;dz" has the components:

Hi= -2 w, + QC(CQ 5 [22E — C*)EC.; +
+(202 — SE)CEZ;:I wjgog — ﬁ { 32CEZ Z]7+
+ 1 B B +W(c B, +C,E..)+

} Ol

+8E27(4ggC2 C4C C +c +2E(C2)

(6)

As consequence, one can characterize the CMC sur-
faces in a Randers space with nonconstant potential,

as satisfying the PDE,; X* =
(6), and

k, with H given by

X =|IN|Iz" N, N* =G 2")(G. 2%,

where 7 = z{ 2 o € 1,2, with e7* the skew-
symmetrization symbol an@..v defined by the equal-
ity

no__ "o 71 aFQ i 15
(G*U>(U ) - <1}7U >F - 28yiaij v
We note thatN = *((G.Z') A (G.Z%)) and X €

Ker(G.ZY)NKer(G.Z2)N{y € TyyM | F(y) =
1}, where ™" is the Euclidean Hodge operator.
Then, in the particular cage= 0 one obtains the
minimal surfaces equation, and further, fo& const
andX = Z! x Z? is recaptured the minimality equa-

tion obtained by Souza and Tenenblat ([26, Corollary

3, p. 630]).
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3 Free potential Randers minimal
graphs

We shall further consider the case when the immersion
¢ : D C R? — R3 which provides the surfackl =
(D) is a graph (a Monge patch) defined py D C

R? — R,

1

p(ul,u?) = (u',u?, f(u',u?))

w

= Z(u15i1 + u%6i0 + fOi3).

Then, by choosing = ¢,1 x¢,,2 = —§i1f1—5i2f2+
di3, the minimal graph equatiof/; X* = 0 can be
explicitly derived, as follows:

Theorem 3. The minimal graph equation
for the Randers space with free potentigdl =
b(z) dz3,b(z) € [0,1),Vz € R? has the form:

3% 2 2
m (0% + 27 — 3b°7) [ frwr + fawat
+ws(ff + f3)] = {T — 3b)-

U+ D) fa2 - 2f1f2f12 + ( + f3) ful+
F302(7 + ) [f2fun + 21 fafiz + fafaol} +

201 —
+37b(1(1_b;))(—f1w1 — faws +w3) =0,
(7)
wherer = b2 4+ C*(1 — b?), C = \/det(hag) =
\/m, f@ = af/al‘l and fij =

0?f/0x'0x7, i,j =1, 2.

Remark. The equation (7) can be rewritten in the
condensed form:

3v?

2 2
m . (b + 27— 3b T)[fl(.dl + f2u]2+

22
7_217_7_1)[)2) Z T(T—3b2)-

i,jeL,2

+ws(ff + f3)] -

(65 — fif5C
3v?(1—1)
+7-(17—b2)(7f1w1 -

8

As consequence of Theorem 3, foe= const., one
easily infers the known result:

2) 4+ 30%(T + ) fi f;C 2] +

fows + w3) = 0.
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Corollary 3. ([27]) Any minimal graph immersed
in a Randers space with constant potentjal =
bdz3,b € [0, 1) satisfies the equation:

(7 = 36%)[(1 + f2) fo2 — 2f1fafri2 + (L4 f3) fun]+
+3b% (1 (7 + V) [f2 f11 + 2f1 f2fr2 + f2f20) 2(09,)

or, equivalently,

Z T(T*3b2) <5z] — %éj>+3b2(7+b2)%£] =0.

i,j€1,2

(10)
As well, more particular, fob = 0, one obtains the
classic result:

Corollary 4. Any minimal graph immersed in the

Euclidean space satisfies the minimal surfaces PDE

((10]):
(L+ fD) fa2 = 2f1 fofra + (L4 £3) f11 = 0. (11)

Regarding the simplest Euclidean minimal

graphs - the affine planes, one can prove the follow-

Vladimir Balan

Corollary 6. LetM =X = Im ¢ C R3be a
surface of revolution of Randers type (3) described by

o(t,0) = (f(t)cosb, f(t)sinb, 1),

for (t,0) € D = R x [0,27). ThenM is minimal iff
the functionf satisfies the ODE

_3b2
m(_wl cos O — wo sin @ + wsg)+
6b2¢g[2(1 2y _ 3p2
9([1 :_ gt L(i 2)2)2 ] (w1g cos b + wagsin O+
1

F(L+g*) (1 + g2 - b?)
(1 =02+ ¢g?)(1 + 2% + (1 — 3b)g?)+
+3b%2) + [(1 + ¢2) (1 — b + ¢*)(1 — b>+

+(1=3b%)g*)]} =0,
(12)
whereg = f' andh = f”.

Specifying this result to the particular subcase of

ing result in the framework of Randers spaces with constant potential, we infer:

non-constant potential:

Corollary 5. The only Randers spaces (3) en-
dowed withaffine linearpotential functionb(z), for

which all the affine planes are minimal, are the ones

with constant potential.

Proof. After replacing in (8y(z) = Az'+Bx?+
Cx3+ Dwithz = (21,22, 2%) = (ul,u?, f(ul,u?))
and f(u) = mu' + nu? + p (whereA, B, C, D, m,

n, p € R), the left-hand side of the equation properly
scaled provides a polynomid@ € R[A, B,C]. The
arbitrariness ofn, n, p, u', u? for which P = 0 holds,
leads subsequently to:

Ki0320P(A,B,C)=—-84% = A=0;
K3717870,0P(05 B; C) == 1305 = (C = 0’
K0»474’170P(07 37 0) - _435 = B = 0’

where K, i, 5,05 P(a,b,c) is the coefficient of
(ul)t (u?)2m®Bn'p’ in P(a,b, c). HenceA = B =

C = 0andb(z) = D = const., which reduces the
linearly affine functiorb(z) to the particular case con-

sidered in [26]. O

4 Free potential Randers surfaces of
revolution

Corollary 7. Let M be a minimal surfaces of rev-
olution M in the Randers spadg? endowed with the
metric (3). Then:

a) for b = const, the minimality equation for sur-
faces of revolution (12) becomes ([26]):

—FfBVA 2+ (1 =02 + )1+ 207+
H(L =30 )]+ (L+ f2) (1 = 0° + f?):
J1—=0%+ (1 -3 f? =0.

(13)

b) for b = 0, the ODE (13) leads to the classi-
cal minimality equation of surfaces of revolution iso-
metrically immersed in the Euclidean space ([10]):
L+ f2—ff"=0.

It should be finally emphasized that, though the
complexity degree in the PDEs (7)-(9)-(11) which
characterize minimal graphs in Randers spatés)(

b = constant and Euclidearb = 0 cases, respec-
tively), decreases, the problem of classification of
minimal surfaces is still open, even in the simplest
classical case (11). Among notable recent approaches
in this respect, it is the DPW method (e.g., [8, 11, 4].

Acknowledgements: The author is grateful to
Yi-Bing Shen and Constantin Udriste for useful dis-
cussions on the present topic. A detailed version of the

For the case of surfaces of revolution, in the case of present work including existence results for certain
nonconstant Randers potential, Theorem 3 leads to an classes of CMQ«, 3) hypersurfaces for both Ran-

extension of the result obtained in [26], as follows:
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ders and Kropina spaces will be published elsewhere.
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