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Abstract: Within the framework of Randers spaces with non-constant potential, the mean curvature form of hy-
persurfaces is determined, and the equations which characterize the area-minimizing graph surfaces are explicitly
derived as associated Euler-Lagrange PDEs. By applying the extended framework to the particular case of graphs
in Randers spaces with constant potential, the known result of Souza-Spruck-Tenenblat ([27]) is confirmed. It is
shown that the only linear affine potentials for which the Randers metric admits all the affine planes as minimal
graphs, are necessarily constant. As well, the ODE which characterizes the generating curve of surfaces of revolu-
tion is derived, this extending the result obtained by Souza-Tenenblat in [26] in the constant potential case.
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1 Introduction

The recent numerous and proficient applications of
minimal and CMC (constant mean curvature) surfaces
in biology, engineering, bionics, relativity and nan-
otechnology have drawn a significant interest towards
the open problem of classifying CMC and minimal
hypersurfaces both in isotropic and anisotropic media.
Regarding the latter concern, the foundations of the
related Finslerian BH (Busemann-Hausdorff) mean
curvature theory go back to H.Rund ([19, 20, 21])
and M.Matsumoto ([13, 12]). Recently Z.Shen ([24])
obtained for the first time a feasible expression for
the BH mean curvature form, related to the area-
minimizing variational problem. As well, an alter-
native approach based on the Holmes-Thompson vol-
ume (e.g., in [17, 18]) has been developed. How-
ever, in both cases, the technical obstructions related
to the volume computation of the induced hypersur-
face indicatrix have recommended a limited number
of classes of Finsler spaces for deriving explicit results
regarding the minimal BH submanifolds, especially
surfaces. Significant progress has been obtained for
(α, β) locally Minkowski Finsler metrics, in the Ran-
ders case by M. de Souza, J. Spruck and K. Tenenblat
([26, 25, 27]) and in the Kropina case by the author
([1, 2]).

In the present note, we extend the results obtained

in [26] to the more general (non-locally Minkowski
Randers) case, recovering the originar ones as partic-
ular cases when the potential formβ = b(x)dxn+1

has constant coefficient.

Let hereafter(M̃, F̃ ) be a Finsler structure, i.e.,
there exists a function (the Finsler norm)F̃ : TM̃ →
R+ which obeys the following properties:
i) F̃ is continuous onTM̃ andC∞ outside the null

section ofTM̃ ;
ii) F̃ is positively homogeneous of first order on the
fibers of the tangent bundle(TM̃, π, M̃), i.e.,

F̃ (x, λy) = λF̃ (x, y), ∀λ ∈ R+;

iii) the halvedy-Hessian ofF̃ 2, gij(x, y) =
1
2

∂2F̃ 2

∂yi∂yj

is positively definite for all(x, y) ∈ TM̃ .

Let furtherϕ : (M,F ) → (M̃, F̃ ) be an isomet-
ric immersion, withF induced byF̃ . Then the follow-
ing result proved by Z. Shen ([24, (57), p.563]) holds
true:

Theorem 1. The mean curvature of the isometri-
cally imbedded submanifoldM ⊂ M̃ is given by

H̃ϕ(X) =
Gxi −Gzi

εzj
η
· ϕj

uεuη −Gxjzi
ε
· ϕj

uη

G
Xi, (1)

WSEAS TRANSACTIONS on MATHEMATICS Vladimir Balan

ISSN: 1109-2769
1

Issue 1, Volume 7, January 2008



where lower indices stand for corresponding partial
derivatives and:

• (ua, vb)a,b∈1,n are local coordinates inTM
(dim M = n);

• (xi, yj)i,j∈1,m are local coordinates inTM̃

(dim M̃ = m);
• zi

a are the entries of the Jacobian matrix
[J(ϕ)] = (∂ϕi/∂ua)a=1,n,i=1,m;

• ϕt : M → M̃, t ∈ (−ε, ε), ϕ0 = ϕ, is a varia-
tion of the surface;

• X is the vector fieldXx =
∂ϕt

∂t

∣∣∣∣
t=0

(x) in-

duced alongϕ attached to the variation;
• G is the Finsler induced volume form

Gẽ(z) =
vol[Bn]

vol{(va) ∈ Rn | F̃ (vazi
aẽi) ≤ 1}

, (2)

where z = (zi
a)a=1,n,i=1,m ∈ GLm×n(R), ẽ =

{ẽi}i=1,m is an arbitrary basis inRm andBn ⊂ Rn

is the standard Euclidean ball.

As well, in the same cornerstone work [24], it was
proved that the variation of the volume ofM reaches a
minimum while the associated Euler-Lagrange PDEs
Hϕ(X) = 0 hold true for allX ∈ X (M̃). Recent ad-
vances in constructing BH minimal surfaces based on
the relation 2 were provided in ([25, 26]), by charac-
terizing the minimal surfaces of revolution in Finsler
(α, β)−spaces(M̃ = R3, F̃ ) with the Randers funda-
mental function

F̃ (x, y) = α(x, y) + β(x, y),

whereα(x, y) =
√

aij(x)iyj , β(x, y) = bi(x)yi, for
the particular case whenaij = δij (the Euclidean met-
ric) and constant potentialβ = b ·dx3, with b ∈ [0, 1).
As well, in [27], were derived the minimality equa-
tions for 2-dimensional graphs, in the case of constant
potential formβ.

2 Free potential Randers
hypersurfaces

Recently, within the framework of Geometric Dynam-
ics ([28, 29]), promising extensions of the Plateau
problem ([10]) have been derived in [16]. As well,
within the extension provided by the background of
Finslerian Geometry, we shall derive in the follow-
ing the mean curvature form and the explicit Euler-
Lagrange equations for the Randers case with non-
constant potential, then rewrite them in a form con-
venient for further technical processing, and specify

them for graphs and surfaces of revolution in the case
n = 2.

First, we consider the case wheñM = Rn+1 is
a Randers space endowed with the fundamental func-
tion

F̃ (x, y) =
√

δijyiyj + bn+1(x)yn+1, (3)

with bn+1(x) ∈ [0, 1),∀x ∈ M̃, which is reducible
for bn+1 = const. = b ∈ [0, 1) to the case studied by
M. Souza and K. Tenenblat ([25, 26]).

Let M = Im ϕ, ϕ : D ⊂ Rn → M̃ = Rn+1

be a isometrically immersed simple hypersurface. We

denotezi
α =

∂ϕi

∂uα
, u = (u1, . . . , un) ∈ D, and

hαβ =
n+1∑
i=1

zi
αzj

β. From ([25, p.627],[26]), it is known

that the defining function in (1) is in this case given by

G = C · (1−B)(n+1)/2,

where B = b2(x)zn+1
a zn+1

b hab, b = bn+1, C =√
det(hαβ), and the volume form of the hypersurface

M is dVF = G · du1 ∧ . . . ∧ dun.

Then we have the following:

Theorem 2. ([3]). The components of the mean
curvature 1-form of the hypersurfaceM , isometri-
cally immersed in the Randers spacẽM = Rn+1 en-
dowed with the fundamental function (3), are given by

H̃i = − (n + 1)Bωi

1−B
− 1

C(1−B)2
·

·
[
(n2 − 1)

4
Bzi

ε
Bzj

η
C + (1−B)2Czi

εzj
η
− n + 1

2
(1−B)·

·
(
Bzi

εzj
η
C + Bzj

η
Czi

ε
+ Bzi

ε
Czj

η

)] ∂2ϕj

∂uε∂uη
+

+
(n + 1)ωj

C(1−B)

[
BCzi

ε
+

(
1− B(n− 1)

2(1−B)

)
CBzi

ε

]
·

·∂ϕj

∂uε
, i = 1, n + 1, with ωi =

∂ ln b

∂xi
.

(4)
We note that in the caseb = const. (i.e., for ωi =

0,∀i ∈ 1, n + 1), H̃iv
i = 0 becomes the minimal-

ity equation obtained in [26, Theorem 2, p. 629] by
Souza-Tenenblat. As well, using laborious computa-
tions, one infers a useful alternate form of the mean
curvature, as follows:
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Corollary 1. The mean curvature form compo-
nents rewrite in terms ofC andE = B2C as follows:

H̃i = − 1
C(C2−E)

[
(C2)zi

εzj
η
· kc2 − Ezi

εzj
η
· ke2+

+Ezi
ε
Ezj

η
· ke12 + (Czi

ε
Ezj

η
+ Czj

η
Ezi

ε
) · kce+

+Czi
ε
Czj

η
· kcc

]
ϕj

εη + (n+1)
C(C2−E)

[
ECzi

ε
+

+ km · (CEzi
ε
− 2ECzi

ε
)
]
ωjϕ

j
ε −

(n + 1)E
C2 − E

ωi.

(5)

where

kc2 = C2+nE
2C , ke2 = (n+1)C

2 ,

ke12 = (n2−1)C
4(C2−E)

, kce = (n+1)(C2−nE)
2(C2−E)

,

kcc = n(n+2)E2−2nEC2−C4

C(C2−E)
, km = 1− (n−1)E

2(C2−E)

In particular, for surfaces (n = 2), we infer the fol-
lowing

Corollary 2. For M Randers surface isometri-
cally immersed inM̃ = R3, the mean curvature form
H̃ = H̃idxi has the components:

H̃i = − 3E
C2−E ωi + 3

2C(C2−E)2

[
2(2E − C2)ECzi

ε
+

+(2C2 − 3E)CEzi
ε

]
ωjϕ

j
ε − 1

C(C2−E)

{
− 3C

2 Ezi
εzj

η
+

+ 3C
4(C2−E)Ezi

ε
Ezj

η
+ 3(C2−2E)

2(C2−E) (Czi
ε
Ezj

η
+ Czj

η
Ezi

ε
)+

+ 8E2−4EC2−C4

C(C2−E) Czi
ε
Czj

η
+ C2+2E

2C (C2)zi
εzj

η

}
ϕj

εη,

(6)
As consequence, one can characterize the CMC sur-

faces in a Randers space with nonconstant potential,
as satisfying the PDẼHiX

i = k, with H̃ given by
(6), and

X = ||N ||−1
F̃

·N, N i = εijk(G∗Z
1)j(G∗Z

2)k,

whereZα = zi
α

∂
∂xi , α ∈ 1, 2, with εijk the skew-

symmetrization symbol andG∗v defined by the equal-
ity

(G∗v)(v′) = 〈v, v′〉F̃ =
1
2

∂F̃ 2

∂yi∂yj
viv′j .

We note thatN ≡ ∗((G∗Z
1) ∧ (G∗Z

2)) andX ∈
Ker(G∗Z

1)∩Ker(G∗Z
2)∩{y ∈ Tϕ(u)M̃ | F̃ (y) =

1}, where ”*” is the Euclidean Hodge operator.

Then, in the particular casek = 0 one obtains the
minimal surfaces equation, and further, forb = const
andX = Z1 × Z2 is recaptured the minimality equa-
tion obtained by Souza and Tenenblat ([26, Corollary
3, p. 630]).

3 Free potential Randers minimal
graphs

We shall further consider the case when the immersion
ϕ : D ⊂ R2 → R3 which provides the surfaceM =
ϕ(D) is a graph (a Monge patch) defined byϕ : D ⊂
R2 → R,

ϕ(u1, u2) = (u1, u2, f(u1, u2))

=
3∑

i=1

(u1δi1 + u2δi2 + fδi3).

Then, by choosingX = ϕu1×ϕu2 = −δi1f1−δi2f2+
δi3, the minimal graph equatioñHiX

i = 0 can be
explicitly derived, as follows:

Theorem 3. The minimal graph equation
for the Randers space with free potentialβ =
b(x) dx3, b(x) ∈ [0, 1),∀x ∈ R3 has the form:

3b2

τ2(1− b2)
· (b2 + 2τ − 3b2τ)[f1ω1 + f2ω2+

+ω3(f2
1 + f2

2 )]− 1− b2

τ2(τ − b2)
{
τ(τ − 3b2)·

· [(1 + f2
1 )f22 − 2f1f2f12 + (1 + f2

2 )f11]+

+3b2(τ + b2)[f2
1 f11 + 2f1f2f12 + f2

2 f22]
}

+

+
3b2(1− τ)
τ(1− b2)

(−f1ω1 − f2ω2 + ω3) = 0,

(7)
whereτ = b2 + C2(1 − b2), C =

√
det(hαβ) =√

1 + f2
1 + f2

2 , fi = ∂f/∂xi and fij =
∂2f/∂xi∂xj , i, j = 1, 2.

Remark. The equation (7) can be rewritten in the
condensed form:

3b2

τ2(1− b2)
· (b2 + 2τ − 3b2τ)[f1ω1 + f2ω2+

+ω3(f2
1 + f2

2 )]− 1− b2

τ2(τ − b2)

 ∑
i,j∈1,2

τ(τ − 3b2)·

·(δij − fifjC
−2) + 3b2(τ + b2)fifjC

−2
]
+

+
3b2(1− τ)
τ(1− b2)

(−f1ω1 − f2ω2 + ω3) = 0.

(8)
As consequence of Theorem 3, forb = const., one

easily infers the known result:
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Corollary 3. ([27]) Any minimal graph immersed
in a Randers space with constant potentialβ =
bdx3, b ∈ [0, 1) satisfies the equation:

τ(τ − 3b2)[(1 + f2
1 )f22 − 2f1f2f12 + (1 + f2

2 )f11]+

+3b2(τ(τ + b2)[f2
1 f11 + 2f1f2f12 + f2

2 f22] = 0,
(9)

or, equivalently,∑
i,j∈1,2

τ(τ−3b2)
(

δij −
fifj

C2

)
+3b2(τ+b2)

fifj

C2
= 0.

(10)
As well, more particular, forb = 0, one obtains the

classic result:

Corollary 4. Any minimal graph immersed in the
Euclidean space satisfies the minimal surfaces PDE
([10]):

(1 + f2
1 )f22 − 2f1f2f12 + (1 + f2

2 )f11 = 0. (11)

Regarding the simplest Euclidean minimal
graphs - the affine planes, one can prove the follow-
ing result in the framework of Randers spaces with
non-constant potential:

Corollary 5. The only Randers spaces (3) en-
dowed withaffine linearpotential functionb(x), for
which all the affine planes are minimal, are the ones
with constant potential.

Proof. After replacing in (8)u(x) = Ax1+Bx2+
Cx3 + D with x = (x1, x2, x3) = (u1, u2, f(u1, u2))
andf(u) = mu1 + nu2 + p (whereA, B, C, D, m,
n, p ∈ R), the left-hand side of the equation properly
scaled provides a polynomialP ∈ R[A,B, C]. The
arbitrariness ofm,n, p, u1, u2 for whichP = 0 holds,
leads subsequently to:

K4,0,3,2,0P (A,B, C) = −8A5 ⇒ A = 0;

K3,1,8,0,0P (0, B, C) = 13C5 ⇒ C = 0;

K0,4,4,1,0P (0, B, 0) = −4B5 ⇒ B = 0,

where Ki1,i2,i3,i4,i5P (a, b, c) is the coefficient of
(u1)i1(u2)i2mi3ni4pi5 in P (a, b, c). HenceA = B =
C = 0 andb(x) = D = const., which reduces the
linearly affine functionb(x) to the particular case con-
sidered in [26]. ut

4 Free potential Randers surfaces of
revolution

For the case of surfaces of revolution, in the case of
nonconstant Randers potential, Theorem 3 leads to an
extension of the result obtained in [26], as follows:

Corollary 6. Let M = Σ = Im ϕ ⊂ R3 be a
surface of revolution of Randers type (3) described by

ϕ(t, θ) = (f(t) cos θ, f(t) sin θ, t),

for (t, θ) ∈ D = R × [0, 2π). ThenM is minimal iff
the functionf satisfies the ODE

−3b2

1 + g2 − b2
(−ω1 cos θ − ω2 sin θ + ω3g)+

+
6b2g[2(1 + g2)− 3b2]

(1 + g2 − b2)2
(ω1g cos θ + ω2g sin θ+

+ω3)−
1

f(1 + g2)(1 + g2 − b2)2
{−fh·

·[(1− b2 + g2)(1 + 2b2 + (1− 3b2)g2)+

+3b4g2] + [(1 + g2)(1− b2 + g2)(1− b2+

+(1− 3b2)g2)]} = 0,
(12)

whereg = f ′ andh = f ′′.

Specifying this result to the particular subcase of
constant potential, we infer:

Corollary 7. LetM be a minimal surfaces of rev-
olutionM in the Randers spaceR3 endowed with the
metric (3). Then:

a) for b = const, the minimality equation for sur-
faces of revolution (12) becomes ([26]):

−ff ′′[3b4f ′2 + (1− b2 + f ′2)(1 + 2b2+

+(1− 3b2)f ′2)] + (1 + f ′2)(1− b2 + f ′2)·

·[1− b2 + (1− 3b2)f ′2] = 0.

(13)

b) for b = 0, the ODE (13) leads to the classi-
cal minimality equation of surfaces of revolution iso-
metrically immersed in the Euclidean space ([10]):
1 + f ′2 − ff ′′ = 0.

It should be finally emphasized that, though the
complexity degree in the PDEs (7)-(9)-(11) which
characterize minimal graphs in Randers spaces (b(x),
b = constant and Euclideanb = 0 cases, respec-
tively), decreases, the problem of classification of
minimal surfaces is still open, even in the simplest
classical case (11). Among notable recent approaches
in this respect, it is the DPW method (e.g., [8, 11, 4].
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