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Abstract: In this article, the numerical schemes of collocation methods for an approximate solution of singular
integro- differential equations with kernels of Cauchy type are explained. The equations are defined on arbitrary
smooth closed contours. The theoretical background of collocations methods in Lebesgue spaces is obtained.
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1 Introduction

Singular integral equations with Cauchy kernels (SIE)
and Singular Integro- differential equations with
Cauchy kernels (SIDE) are used to model many prob-
lems in elasticity theory, aerodynamics, mechanics,
thermoelasticity, queuing system analysis, etc. [1]-
[9].

The general theory of SIE and SIDE has been
widely investigated in the last decades [10]-[12].

It is known that the exact solution for SIDE is pos-
sible in some particular cases. That is why it is neces-
sary to elaborate the approximation methods for solv-
ing SIDE connected with the corresponding theoreti-
cal background. In this article we will study the col-
location methods for approximate solution of SIDE.

The problems for an approximate solution of
SIDE using collocation methods were studied in [13]-
[15]. The SIDE were defined on the unit circle.

However, the case in which the contour of integra-
tion is arbitrary smooth closed curve (not a unit cir-
cle), has not been throughly investigated. Transition
to another contour, different from the standard one,
creates many difficulties. Conformal mapping from
the arbitrary smooth contour to the unit circle using
the Riemann function does not solve the problem on
the contrary, it complicates it.

The theoretical background of collocation meth-
ods and reduction methods for SIDE in Generalized
Hölder spaces is proven in [22]-[25]. In this study
the equations were defined on arbitrary smooth closed
contours. Numerical examples can be found in [24],
[25]. The stability of collocation methods for SIDE
was proven in [25].

2 The main definitions and notations

Let Γ be an arbitrary smooth closed contour bounding
a simply connected regionF+ of the complex plane
and t = 0 ∈ F+, F− = C \ {F+ ∪ Γ}, C is the
complex plane.

Let z = ψ(w) be a Riemann function, mapping
conformably and unambiguously the outside of unit
circle Γ0 = {|w| = 1} on the domainF−, so that
ψ(∞) = ∞ , ψ(′)(∞) = 1.

We assume that the contour belongs to the class
C(r;µ) (wherer is a positive integer and0 < µ < 1 )
if the Riemann functionψ(w) is r times continuously
differentiable function on{|w|} > 1 andψ(r)(w) ∈
Hµ(Γ0), onΓ0 = {|w| = 1}. [21].

Let Un be the Lagrange interpolating polynomial
operator constructed on the points{tj}2n

j=0 for any
continuous function onΓ :

(Ung)(t) =
2n∑

s=0
g(ts) · ls(t);

lj(t) =
2n∏

k=0,k 6=j

t− tk
tj − tk

(
tj
t

)n

≡
n∑

k=−n
Λ(j)

k tk, t ∈ Γ, j = 0, . . . , 2n.

(1)

S denotes the singular integral operator (with a
kernel of Cauchy type )onΓ :

(Sϕ)(t) =
1
πi

∫

Γ

ϕ(τ)
τ − t

dτ t ∈ Γ.

We introduce the Riesz operatorsP =
1
2
(I + S) and
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Q =
1
2
(I − S), whereI is an identical operator and

S is a singular operator.
From [20],[23] we have the following formulae:

(Px)(r)(t) = (Px(r))(t), (Qx)(r)(t) = (Qx(r))(t)
(2)

and the relations

(tk+q)(r) =
(k + q)!

(k + q − r)!
tk+q−r, k = 0, . . . , n;

(t−k)(r) = (−1)r (k + r − 1)!
(k − 1)!

t−k−r, k = 1, . . . , n;

(3)

Problem formulation. In the complex space
Lp(Γ)(1 < p <∞) with norm

||g||p =


1
l

∫

Γ

|g|p|dτ |



1
p

,

wherel is the length ofΓ, we consider the singular
integro-differential equation (SIDE)

(Mx ≡)
ν∑

r=0

[Ãr(t)x(r)(t)+

B̃r(t)
1
πi

∫

Γ

x(r)(τ)
τ − t

dτ

+
1

2πi

∫

Γ

Kr(t, τ) · x(r)(τ)dτ ] = f(t), t ∈ Γ, (4)

whereÃr(t), B̃r(t), f(t) andKr(t, τ), (r = 0, . . . , ν)
are known functions onΓ; x(0)(t) = x(t) is an un-

known function;x(r)(t) =
drx(t)
dtr

(r = 1, . . . , ν) and

ν is a positive integer.
We search for a solution of (4) in the class of func-

tions, satisfying the conditions

1
2πi

∫

Γ

x(τ)τ−k−1dτ = 0, k = 0, . . . , ν − 1. (5)

Using the Riesz operators we rewrite (4) in the follow-
ing convenient form

(Mx ≡)
ν∑

r=0

(
Ar(t)(Px(r))(t) +Br(t)(Qx(r))(t)+

+
1

2πi

∫

Γ

Kr(t, τ)x(r)(τ)dτ


 = f(t), t ∈ Γ, (6)

whereAr(t) = Ãr(t) + B̃r(t), Br(t) = Ãr(t) −
B̃r(t), r = 0, . . . , ν.
Equation (6) with conditions (5) will be denoted as
”problem (6)-(5).”

We define the spaces
◦
W

(ν)

p (Γ) = {g; ∃ g(r) ∈
C(Γ), r = 0, ν − 1, g(ν) ∈ Lp(Γ)}. The functions

from
◦
W

(ν)

p (Γ) satisfy conditions (5). The norm in
◦
W

(ν)

p (Γ) is given by formula

||g||p,ν = ||g(ν)||Lp .

Lp,ν denote the image of spaceLp under the mapping
P+t−νQwith the same norm as inLp. The following
lemmas are used to prove convergence theorems.

Lemma 1 The differential operatorD̂ν :
◦
W

(ν)

p →
Lp,ν , (D̂νg)(t) = g(ν)(t) is continuously invertible

one and its inverse operator̂D−ν : Lp,ν →
◦
W

(ν)

p is
determined by the equality

(D̂−νg)(t) = (N̂+g)(t) + (N̂−g)(t),

(N̂+g)(t) =
(−1)ν

2πi(ν − 1)!

∫

Γ

(Pg)(τ)(τ − t)ν−1

ln(1− t

τ
)dτ,

(N̂−g)(t) =

(−1)ν−1

2πi(ν − 1)!

∫

Γ

(Qg)(τ)(τ − t)ν−1 ln(1− τ

t
)dτ.

The proof can be found in [18].

Lemma 2 The operatorB̂ :
◦
W

(ν)

p → Lp, B̂ = (P +
tνQ)D̂ν is continuously invertible operator and

B̂−1 = D̂−ν(P + t−νQ).

The proof can be found in [18].

Auxiliary result We will formulate one result from
[17], establishing the equivalence (in terms of solv-
ability) of problem (6)-(5) and the singular integral
equation (SIE). We will use this result to prove Theo-
rem 4 .

Using the integral representations

dν(Px)(t)
dtν

=
1

2πi

∫

Γ

ζ(τ)
τ − t

dτ, t ∈ F+

dν(Qx)(t)
dtν

=
t−ν

2πi

∫

Γ

ζ(τ)
τ − t

dτ, t ∈ F−.





(7)
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we reduce problem (6)-(5) to equivalent (in terms of
solvability) singular integral equation (SIE) for un-
known functionζ(t).

(Θζ ≡)C(t)ζ(t) +
D(t)
πi

∫

Γ

ζ(τ)
τ − t

dτ

+
1

2πi

∫

Γ

h(t, τ)ζ(τ)dτ = f(t), t ∈ Γ, (8)

where

C(t) =
1
2
[Aν(t) + t−νBν(t)],

D(t) =
1
2
[Aν(t)− t−νBν(t)] (9)

andh(t, τ) is a continuous Ḧolder function. The ob-
vious formula forh(t, τ) can be found [17, (4.7)].

Note that the right-hand sides in SIDE (4) and SIE
(8) coincide by virtue of condition (5). The equiva-
lence of the existence of the solutions of SIE (8) and
problem (6)-(5) is formulated in the following lemma.

Lemma 3 The system of SIE (8) and problem (6)-(5)
are equivalent in terms of solvability. That is, for each
solutionζ(t) of (8) there is a solutionx(t) of problem
(6)-(5), determined by formulae

(Px)(t) =
(−1)ν

2πi(ν − 1)!

∫

Γ

ζ(τ)[(τ−t)ν−1 ln
(

1− t

τ

)

+
ν−1∑

k=1

α̃kτ
ν−k−1tk]dτ, (10)

(Qx)(t) =
(−1)ν

2πi(ν − 1)!

∫

Γ

ζ(τ)τ−ν [(τ−t)ν−1 ln
(

1− τ

t

)
+

ν−2∑

k=1

β̃kτ
ν−k−1tk]dτ,

( α̃k, k = 1, . . . , ν − 1, andβ̃k, k = 0, . . . , ν − 2, are
real numbers), and vice verso for each solutionx(t)
of problem (6)-(5) there is a solutionζ(t)

ζ(t) =
dν(Px)(t)

dtν
+ tν

dν(Qx)(t)
dtν

,

to the SIE (8).
Furthermore, for linear-independent solutions

ζ(t) of (8) there are corresponding linear-independent
solutions of problem (6)-(5) and vice verso.

In formulae (10) ln
(

1− t

τ

)
and ln

(
1− τ

t

)

there are branches that vanish at the pointst = 0 and
t = ∞, respectively.

3 Numerical schemes of the colloca-
tion methods

The numerical schemes of collocation methods were
obtained.

Now we need to find the approximate solution of
problem (6)-(5) in polynomial form

xn(t) =
n∑

k=0

ξ
(n)
k tk+ν +

−1∑

k=−n

ξ
(n)
k tk, t ∈ Γ, (11)

where unknown coefficientsξ(n)
k = ξk, (k =

−n, . . . , n); obviously xn(t), derived from formula
(11), satisfies conditions (5).

Let Rn(t) = Mxn(t) − f(t) be the residual of
SIDE. The collocation methods consist in setting it
equal to zero at chosen pointstj , j = 0, . . . , 2n on Γ
and thus obtaining system linear algebraic equations
for the unknown coefficientsξk, which will be deter-
mined by solving it.

Rn(tj) = 0, j = 0, . . . , 2n. (12)

Using formulae (2), (3) from (12), we obtain the fol-
lowing system of linear algebraical equations (SLAE)
for collocation methods:

ν∑

r=0

{Ar(tj)
n∑

k=0

(k + ν)!
(k + ν − r)!

tk+ν−rξk

+Br(tj)
n∑

k=1

(−1)r (k + r − 1)!
(k − 1)!

·t−k−r
j · ξ−k +

1
2πi

·
n∑

k=0

(k + ν)!
(k + ν − r)!

∫

Γ

Kr(tj , τ)τk+ν−rdτ · ξk (13)

+
n∑

k=1

(−1)r (k + r − 1)!
(k − 1)!

· 1
2πi

∫

Γ

Kr(tj , τ)τ−k−rdτ · ξ−k} = f(tj),

where j = 0, . . . 2n are distinct points onΓ and
Ar(t) = Ãr(t) + B̃r(t), Br(t) = Ãr(t) − B̃r(t),
r = 0, . . . , ν.
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4 Convergence theorem of colloca-
tion methods

The theoretical backgrounds of collocation methods
methods are given in the following theorems.

Theorem 4 Let the following conditions be satisfied:
be

contourΓ ∈ C(2, µ), 0 < µ < 1;

the functionsAr(t) and Br(t) belong to the space
Hα(Γ), 0 < α < 1, r = 0, . . . , ν;

Aν(t) 6= 0 Bν(t) 6= 0, t ∈ Γ;

the index of functiontνB−1
ν (t)Aν(t) is equal to zero;

the functionKr(t, τ) ∈ Hβ(Γ) 0 < β ≤ 1 (for both
variables) and functionf(t) ∈ C(Γ);

operatorM :
◦
W

(ν)

p → Lp(Γ) is linear and invertible;

pointstj (j = 0, . . . , 2n) form a system of Féer knots
onΓ [16]:

tj = ψ

[
exp

(
2πi

2n+ 1
(j − n)

)]
, j = 0, . . . , 2n, i2 = −1.

(14)
Then, beginning with numbersn ≥ N1, the SLAE
(13) of collocation methods have the unique solution
ξk (k = −n, . . . , n). The an approximate solution
xn(t), constructed by formula (11), converge in the

norm of space
◦
W

(ν)

p (Γ) asn→∞ to the exact solu-
tion x(t) of problem (6)-(5). Furthermore, the follow-
ing formula holds:

||x−xn||p,ν ≤ O

(
1
nα

)
+O

(
ω(f ;

1
n

)
)

+O
(
ωt(h;

1
n

)
)
.

(15)

Proof of Theorem 4
Using conditions (12)

Rn(tj) = 0, j = 0, . . . , 2n (16)

we obtain that (13) is equivalent to the operator equa-
tion

UnMUnxn = Unf, (17)

whereM is the operator defined in (6).
We show that ifn ≥ N1 large enough, then the

operatorUnMUn is invertible. The operator maps

from the subspace
◦
Xn=

{
tν

n∑
k=0

ξkt
k+

−1∑
k=−n

ξkt
k
}

(the norm defined as in
◦
W

(ν)

p (Γ)) to the subspace

Xn =
n∑

k=−n
r̄kt

k, (the norm defined as inLp(Γ) ).

Similarly, using formulae (7), we represent the

functions
dν(Pxn)(t)

dtν
and

dν(Qxn)(t)
dtν

by Cauchy

type integrals with the same densityζn(t) :

dν(Pxn)(t)
dtν

=
1

2πi

∫

Γ

ζn(τ)
τ − t

dτ, t ∈ F+

dν(Qxn)(t)
dtν

=
t−ν

2πi

∫

Γ

ζn(τ)
τ − t

dτ, t ∈ F−.




(18)

By Υn we denote the polynomial class of the form
n∑

k=−n
γkt

k, whereγk are arbitrary complex numbers.

Using formulae (2) and relations (3) we obtain
from (18) that

ζn(t) =
n∑

k=0

(k + ν)!
k!

tkξk+(−1)ν
n∑

k=1

(k + ν − 1)!
(k − 1)!

t−kξ−k

and soζn(t) ∈ Υn, for t ∈ Γ.
Using (17), (18) as well as problem (6)-(5) can be

reduced to an equivalent equation (in terms of solv-
ability)

UnΘUnζn = Unf, (19)

treated as an equation in the subspaceXn.
Obviously, (19) is the equation of collocation

methods for SIE (8). The collocation methods were
considered in [21] for SIE, where sufficient conditions
for the solvability and convergence of these meth-
ods were obtained. From (18) andζn(t) ∈ Υn

we conclude that ifζn(t) is the solution of equation
(19), thenyn(t) is the discrete solution of the system
UnMUnxn = Unf and vice verso.

We can determineyn(t) from the following rela-
tions

(Pyn)(t) =
(−1)ν

2πi(ν − 1)!

∫

Γ

ζn(τ)
{

(τ − t)ν−1 ln
(

1− t

τ

)

+
ν−1∑

k=1

α̃kτ
ν−k−1tk

}
dτ ; (20)

(Qyn)(t) =
(−1)ν

2πi(ν − 1)!

∫

Γ

ζn(τ)τ−ν
{

(τ − t)ν−1 ln
(

1− τ

t

)

+
ν−2∑

k=1

β̃kτ
ν−k−1tk

}
dτ.

As mentioned above, functionyn(t) is deter-
mined throughζn(t) from (20) uniquely.
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It follows that if equation (19) has a unique solu-
tion ζn(t) in subspacesXn, then the following relation
is true

yn(t) = xn(t). (21)

We will show that for (8) all the conditions of
Theorem 1 for the collocation methods from [21] are
satisfied.

From condition 3 of theorem 4 and formula (9),
we obtain condition 3 of the theorem 1 from [21].

From equality[C(t) − D(t)]−1[C(t) + D(t)] =
tνB−1

ν (t)Aν(t) and the condition 4 of the theorem 4,
we conclude that the indices of the functions[C(t) −
D(t)]−1[C(t) +D(t)] are equal to zero. We have the
condition 4 from the Theorem 1. [21]. From condi-
tions 3),4),6), lemma 2, the invertibility of operator
Υ : Lp(Γ) → Lp(Γ) follows. The other conditions
of theorem 4 coincide with the conditions of Theorem
1[21].

Conditions 1)-7) in theorem 4 provide the validity
of all the conditions of theorem 1 in [21]. Therefore,
beginning with the numbersn ≥ N1, the equation
(19) is uniquely solvable.

The an approximate solutionζn(t) ∈ Υn of (19)
converge to the exact solutionζ(t) of SIE (8) in the
norm of the spaceLp(Γ) asn→∞. Therefore, oper-
ator equationUnMUnxn = Unf and SLAE (13) have
unique solutions forn ≥ N1.

We know from Theorem 1 in [21] that the follow-
ing relation holds:

||ζ−ζn||Lp ≤ O

(
1
nα

)
+O(ω(f ;

1
n

))+O
(
ωt(h;

1
n

)
)
.

(22)
From (7) and (18) we obtain

(Px)(ν)(t) = (Pζ)(t) and (Qx)(ν)(t) = t−ν ·(Qζ)(t).
We therefore have that

(Pxn)(ν)(t) = (Pζn)(t),

(Qxn)(ν) = t−ν(Qζn)(t).

We proceed to get an error estimate

||x− xn||p,ν = ||x(ν) − x(ν)
n ||Lp

≤ ||P (ζ − ζn)||Lp + ||t−νQ(ζ − ζn)||Lp

≤ ||P || · ||ζ − ζn||Lp + ||t−ν ||Lp · ||Q|| · ||ζ − ζn||Lp

≤ (||P ||+ ||t−ν || · ||Q||)||ζ − ζn||
≤ (||P ||+ c1||Q||)||ζ − ζn||. (23)

Here we have used the inequality

||t−ν ||Lp =


1
l

∫

Γ

|t−ν |pdt



1
p

=


1
l

∫

Γ

|t−pν |dt



1
p

≤

1
l
· 1
min
t∈Γ

|t|p·ν · l



1
p

=


 1

min
t∈Γ

|t|p·ν




1
p

= c1.

From the previous relation and from (23), using (22),
we obtain (15).

Theorem 4 is then proven.
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