
The On-line Cross Entropy Method for Unsupervised Data
Exploration

Ying Wu
University of the West of Scotland

School of Computing
Paisley, PA1 2BE, UK
ying.wu@uws.ac.uk

Colin Fyfe
University of the West of Scotland

School of Computing
Paisley, PA1 2BE, UK
colin.fyfe@uws.ac.uk

Abstract: We investigate the use of the new Cross Entropy method as a tool for exploratory data analysis. We
show how this method can be used to perform linear projections such as principal component analysis, exploratory
projection pursuit and canonical correlation analysis. We further go on to show how topology preserving mappings
can be created usin the cross entropy method. We also show how the cross entropy method can be used to train
deep architecture nets which are one of the main current research directions for creating true artificial intelligence.
Finally we show how the cross entropy method can be used to optimize parameters for latent variable models.

Key–Words: Cross entropy, Linear projections, Topographic mapping.

1 Introduction

The cross entropy method has been well introduced
as [4] and was motivated by an adaptive algorithm for
estimating probabilities of rare events in complex sto-
chastic networks [12]. For example, a Monte Carlo
simulation which draws instances from the true distri-
bution of events would require an inordinate number
of draws before enough of the rare events were seen
to make a reliable estimate of their probability of oc-
curring. It was soon realized that the cross entropy
method can also be applied to solving difficult com-
binatorial optimization problems with a simple mod-
ification of the method of [12]. Generally speaking,
the basic mechanism involves an iterative procedure
of two phases:

1. draw random data samples from the currently
specified distribution.

2. identify those samples which are, in some way,
“closest” to the rare event of interest and update
the parameters of the currently specified distrib-
ution to make these samples more representative
in the next iteration.

The application of Exploratory Data Analysis
(EDA) has received a great deal of investigation re-
cently. The primary goal of EDA is to optimize the
analyst’s insight into a data set and into the under-
lying structure of a data set. Some unsupervised
exploratory data analysis techniques such as princi-
pal component analysis (PCA), independent compo-
nent analysis (ICA) and canonical correlation analy-

sis (CCA) have been widely investigated. Recently,
we applied the cross entropy method to independent
component analysis with batch learning. In this paper,
we derive a general method by applying the cross en-
tropy method to several unsupervised exploratory data
analysis techniques with on-line cross entropy learn-
ing.

2 The Cross Entropy Method

The Cross Entropy method is best approached from
the perspective of its use in estimates of statistics due
to rare events such as the probability measure associ-
ated with the rare event. We discuss this first before
going on to apply the method to the field of optimiza-
tion.

2.1 The Cross Entropy Method for Rare
Event Simulations

The cross entropy method generally uses importance
sampling rather than simple Monte Carlo methods: if
the original pdf of the data is f(x), then we require to
find a pdf, g(x), such that all of g()’s probability mass
is allocated in regions in which the samples are close
to the rare-event. More formally, let l = (S(x) > γ)
be the event in which we are interested. Then

l =
∫

I{S(x)>γ}
f(x)
g(x)

g(x)dx = Eg()

[
I{S(X)>γ}

f(X)
g(X)

]

(1)

WSEAS TRANSACTIONS on MATHEMATICS Ying Wu, Colin Fyfe

ISSN: 1109-2769
865

Issue 12, Volume 6, December 2007



where IT is the indicator function describing when T
in fact occurred. An unbiased estimator of this is

l̂ =
1
N

N∑

i=1

I{S(Xi)>γ}W (Xi) (2)

where W (x) = f(x)
g(x) is the likelihood ratio and Xi are

the samples drawn from g(). Then the simplest algo-
rithm [4] depends on working within a family of pdfs
whose parameters we update i.e. let f(x) = f(x,u),
u being a parameter of the family to which f() be-
longs; then the basic algorithm is

1. Define v̂0 = u. Set t=1.

2. Generate random samples, X1, ...,XN from
f(x,vt−1).

3. Calculate S(X1), ..., S(XN ) and order them.
Let γ̂t be the 1− ρ sample quantile, above which
we identify the “elite” samples.

4. Use the same samples to calculate

v̂t,j =

∑N
i=1 I{S(Xi)>γ̂t}W (Xi,u, v̂t−1)h(xij)∑N

i=1 I{S(Xi)>γ̂t}W (Xi,u, v̂t−1)
(3)

5. If γ̂t = γ, continue; else t = t + 1 and return to
2

6. Generate a sample X1, ...,XN1 from f(x, v̂t)
and estimate

l =
1

N1

N1∑

i=1

I{S(Xi)>γ̂t}W (Xi,u, v̂t−1) (4)

Note that, although step 3 looks formidable, it is actu-
ally only counting the fraction of samples which sat-
isfy the current criterion. The “cross entropy method”
is so-called since we wish to minimise the Kullback-
Leibler divergence between the data distribution and
the importance sampling distribution which is related
to the cross entropy via

CEf(.,v)(f(., u)) = H(f(., v))+KL(f(., v), f(., u))
(5)

where CE is the cross entropy, KL is the Kullback-
Leibler divergence and H(.) is the Shannon entropy.
Since H(.) is constant, [10] equates the cross entropy
with the Kullback-Leibler divergence.

2.2 Cross Entropy Method for Optimization

For unsupervised data exploration, we need to turn the
data exploration methods into the so-called associated
stochastic problem(ASP) firstly. The basic method is

• Generate random samples from the associated
stochastic problem using some randomization
method.

• Update the parameters (which will typically be
parameters of the pdf generating the samples)
to make the production of better samples more
likely next time. For a Gaussian distribution, this
results in updates only to the mean, µ, and co-
variance, Σ.

Note that, unlike the rare event simulations, we do not
have a base parameterisation to work to and hence no
need to have the W (Xi,u, v̂t−1) term in the calcu-
lation. Of course we could have this term defined in
terms of v̂t and v̂t−1 but [10] show that this is not
essential and indeed tends to introduce unnecessary
noise to the convergence.

We usually wish to maximize some performance
function S(x) over all states x in data set ℵ. Denoting
the maximum by γ∗, we have

γ∗ = max
x∈ℵ

S(x) (6)

Thus, by defining a family of pdfs {f(. ;v),v ∈ ν}
on the data set ℵ, we follow [10] to associate with (6)
the following estimation problem

l(γ) = Pv(S(X) ≥ γ)) = EvI{S(x)>γ} (7)

where X is a random vector with pdf f(. ;v),v ∈ ν.
To estimate l for a certain γ close to γ∗,we can
make adaptive changes to the probability den-
sity function according to the Kullback-Leibler
cross-entropy. Thus we create a sequence
f(. ;v0), f(. ;v1), f(. ;v2), . . . of pdfs that are
optimized in the direction of the optimal density and
for the fixed γ̂t and v̂t−1, we derive the γ̂t from the
following program

max
v

D̂(v) = max
v

1
N

N∑

i=1

I{S(Xi)>γ̂t} ln f(Xi;v)

One advantage that this representation has is that
it is very simple to change the base learner. Typically,
we use Gaussian distribution in this paper, which
means we need to estimate the mean and variance of
the elite samples as

µ̂ =
1

Nelite

Nelite∑

i=1

Xi

WSEAS TRANSACTIONS on MATHEMATICS Ying Wu, Colin Fyfe

ISSN: 1109-2769
866

Issue 12, Volume 6, December 2007



Σ̂ =
1

Nelite

Nelite∑

i=1

(Xi − µ̂)(Xi − µ̂)T

3 ICA as Associated Stochastic Prob-
lem

We stated that the main idea of combinatorial opti-
mization via cross entropy methods is to first turn each
Combinatorial Optimization Problem into a rare-event
estimation problem, the so-called associated stochas-
tic problem(ASP). We wish to maximize some perfor-
mance function S(x) over all states x in data set ℵ.
We define a family of pdfs {f(. ;v),v ∈ V} on the
data set and optimize the parameters v ∈ V of these
pdfs in the direction of the optimal density so that we
can then obtain an estimate of the “reference parame-
ter vector” v∗ via the CE algorithm.

In this section, we investigate a new ICA algo-
rithm with the cross-entropy method for optimization.
We use stochastic units drawn from a Gaussian distri-
bution to sample the elements of the demixing ma-
trix, wi. With the CE algorithm, we make adap-
tive changes to the probability density function of wi

according to the value of the performance function.
Since we adopt the basic idea that all components
should be as non-Gaussian as possible, the perfor-
mance function can be the measurement of the non-
gaussianity of a vector, for example by using kurtosis.
The reference parameters of the pdfs are thus steered
in the direction of the theoretically optimal density.

To be specific: we wish to transform a set of ob-
servations x1, . . . ,xn that are the result of a linear
mixing of statistically independent sources s1, . . . , sn

by x = As, into several components that are statis-
tically independent by y = Wx. To maximize the
absolute values of the kurtosis of each output compo-
nent with the CE algorithm for optimization, we wish
to maximize the performance function

Si(wi) = |kurt(wT
i x)| (8)

where i is the index of the independent compo-
nent. We denote the maximum by γ∗, thus γ∗ =
maxw S(w). We consider the associated stochastic
problem (ASP) that

l(γ) = Pu(S(w) ≥ γ) = EuI{S(w)>γ} (9)

which is our estimate of l for γ close to γ∗ and typi-
cally S(w) > γ is a rare event. We assume the demix-
ing weight, wi, is sampled from the Gaussian distri-
bution with mean m and variance β2. With the CE
algorithm, we make adaptive changes to the probabil-
ity density function, specifically the mean m and the

variance β2 and the update rule for the parameters is
in the form of

m̂ =

∑N
i=1 I{S(wi)≥γ̂t}wi∑N

i=1 I{S(wi)≥γ̂t}
(10)

and

β̂2 =

∑N
i=1 I{S(wi)≥γ̂t}(wi − m̂)2

∑N
i=1 I{S(wi)≥γ̂t}

. (11)

Moreover, we wish to maintain the online up-
date capabilities of cross entropy and so we use the
batch-elite method described above rather than an in-
stantaneous gradient ascent update. Actually [10]
has already moved some way towards this in that a
“smoothed version” of the parameter updating is used:

vt = αv̂t + (1− α)v̂t−1 (12)

where α is called the smoothing parameter with 0.7 ≤
α ≤ 1

Thus we summarize our ICA algorithm with CE
method as follows:

1. Initialize m0 and β2
0 . Set t=1.

2. Generate random samples, w1, ...,wN from
the density N (mt−1, β

2
t−1). From the sec-

ond independent component onwards, ensure
w1, . . . ,wN is orthogonal to the previous
weights, for example simply by using the Gram-
Schmidt deflation method.

3. Compute the sample (1 − %) quantile γ̂t of the
performance function according to (8).

4. Use the “elite” samples and update the reference
parameters, m and β2 according to (10) and (11).
We denote the solution by v̂t.

5. Apply (12) to smooth out the vector vt.

6. If not finished, return to step 2.

To demonstrate how well our ICA algorithm
works, we use a 3-D real data set, in which the orig-
inal signals are pieces of records from different hu-
mans speaking as shown in the left column of Figure
1. The number of observations is 40000 and we set
% = 0.1, N = 50, α = 0.7. The number of iterations
for each independent component is 20. The recovered
independent components are shown in Figure 2. The
batch learning is performed with the Gram-Schmidt
method.

It is clear that all independent components have
been separated as shown in Table 1 and the Amari er-
ror in this case is 0.0115. We find that the ICA al-
gorithm converges so quickly that the simulation time

WSEAS TRANSACTIONS on MATHEMATICS Ying Wu, Colin Fyfe

ISSN: 1109-2769
867

Issue 12, Volume 6, December 2007



Figure 1: 3-D real data set used in simulation. Left:
the original data set. Right: the mixed observations.

Figure 2: The ICs recovered by the ICA network with
3-D real data set.

is less than 60 seconds. Note that with a simulation
using reinforcement learning, in which even when the
number of observations is only 10000, the simulation
time was around 15 minutes. Moreover, we can see
that the CE algorithm has identified all the indepen-
dent components with high accuracy from Table 2.

4 The On-line Cross Entropy
Method in unsupervised data
exploration

In this paper, we wish to maintain the on-line cross en-
tropy method, considering that the performance func-
tion may be too complex to optimize. Therefore we
generate samples or actions from the current estimated
distributions but do not have a set of target answers
for these samples/actions and then get an estimated
performance function value from the generated sam-
ples or actions. We use stochastic units drawn from a
Gaussian distribution to sample a variety of network
weights, which means the weights W are all drawn
from N(µ, β2I), the Gaussian distribution with mean

Kurt. 1 Kurt. 2 Kurt. 3
Originals 10.7588 9.8449 6.6837
Mixtures 6.5276 7.2470 8.1544
Recovered ICs 10.7590 9.8428 6.6834

Table 1: The kurtosis of the original signals, mixed
observations and recovered independent components
(ICs).

1.0000 0.0036 0.0008
0.0045 1.0000 0.0094
0.0031 0.0099 0.9999

Table 2: Correlation between the original sources and
recovered signals.

µ and variance β2.
We will also use an instantaneous gradient ascent

update rather than the batch-elite method to optimize
mean µ and variance β2. As stated [10] has already
developed a smoothed version of the parameter up-
dating and uses:

v̂t = αṽt + (1− α)v̂t−1 (13)

where ṽt is the update which would have been
found by the simple version of the algorithm de-
scribed above. Thus, we create an initial M samples,
w0,1, ...,w0,M from N(m, β2), an n−dimensional
isotropic Gaussian distribution with centre, m. We
calculate the performance values for each of these
samples and put the samples in order of increas-
ing performances, w0,p(1), ...,w0,p(M) where p(i) ∈
1, ...,M and select the r highest performing samples,
w0,p(M−r), ...,w0,p(M). We then move the distribu-
tion closer to these ‘elite’ samples, with the learning
rules

µ ← (1− η)µ

+ η(
1
r

M∑

j=M−r

w0,p(j) − µ) (14)

β2 ← (1− η)β2

+
η

r

M∑

j=M−r

(w0,p(j) − µ)T (w0,p(j) − µ)

(15)

where η is the learning rate. We then create another
M samples, w1,1, ...,w1,M from the new distribution,
and iterate the process. We point out that η is also the
parameter to reduce the possibility that wt,p(j) will be
zero or one, so that the mean and variance can be up-
dated smoothly. This is important for the problem in
continuous space such as principal component analy-
sis. For η = 1, one might have either wt,p(j) = 0 or
wt,p(j) = 1, which causes the algorithm converge to a
wrong solution.

We summarize our algorithm as follows:

1. Select one data from the data set randomly

2. Generate a sample wt,1, ...,wt,M from the cur-
rently estimated distribution N(mt, β

2
t ) and

WSEAS TRANSACTIONS on MATHEMATICS Ying Wu, Colin Fyfe

ISSN: 1109-2769
868

Issue 12, Volume 6, December 2007



PC1 0.0144 0.0086 -0.0061 -0.0282 -0.9994
PC2 0.0136 -0.0411 -0.0111 0.9986 -0.0283
PC3 -0.0127 -0.0076 0.9998 0.0108 -0.0067
PC4 0.0418 0.9982 0.0077 0.0409 0.0080
PC5 0.9989 -0.0414 0.0126 -0.0147 0.0144

Table 3: The weights from the artificial data experi-
ment for five principal components by cross entropy
method

compute the sample 1− %-quantile γ̂t of the per-
fomance according to the performance function

3. Update the parameters of the distribution to make
a higher reward more likely in future with (15)
and (14).

4.1 Principal Component Analysis

Principal Component Analysis (PCA) finds the lin-
ear projection of a data set with maximal variance (or
alternatively which gives a projection with minimal
mean squared error between the projection and the
original data set). Let the data be x ∈ X ⊂ Rn. Then
PCA finds the n-dimensional vector w such that the
variance of (wTx) is maximal (or again alternatively
such that (wTx)w is closer (in Euclidean norm) to x
over all the distribution than any other linear projec-
tion).

To perform PCA, we use the performance func-
tion r = 1

1+exp(−γ|wT x|) . To identify multiple com-
ponents, in this paper, we use Gram-Schmidt method
as the deflation method. Thus, from the second com-
ponent, right after generating a sample wj from the
currently estimated distribution N(mt, β

2
t I), we sub-

tract (wT
j mk)mk, k = 1, 2, . . . , j − 1 from wj .

To illustrate our algorithm, we create a 5-
dimensional artificial data set of 1000 samples, whose
elements are drawn independently from Gaussian dis-
tributions with xi ∼ N(0, i), so x5 has the greatest
variance and x1 has the lowest variance. We can see
that the five principal components have been identified
clearly as shown in Table 3 and our algorithm con-
verges smoothly as shown in Figure 3.

4.1.1 Deflationary orthogonalization in perfor-
mance function

Another way in which to identifying multiple com-
ponents is to integrate deflationary orthogonalization
with the perfocmance function directly. The basic
idea is to eliminate the parts that contain the infor-
mation of the previous components having been esti-
mated from the current component vector being esti-
mated. In the PCA problem, assuming we have found

0 5000 10000
−1

−0.5

0

0.5

1
PC= 1

0 5000 10000
0.4

0.6

0.8

1
PC= 2

0 5000 10000
0.2

0.4

0.6

0.8

1
PC= 3

0 5000 10000
0.4

0.6

0.8

1
PC= 4

Figure 3: Convergence of the PCA weight vectors to
the optimal directions

j − 1 principal components, wk, k = 1, 2, . . . , j − 1,
thus unless the jth component is orthogonal to the
components having been estimated, it contains the
information of the previous components that can be
work out by the sum of projection between the cur-
rent weight vector wj to be estimated and wk, k =
1, 2, . . . , j − 1 having been estimated and denoted by
Σj =

∑j−1
k=1(w

T
j mk)mk, k = 1, 2, . . . , j − 1. There-

fore, we re-define the performance function as

S(w) =

{ 1
1+exp(−γ|wT

1 x|) if j=1
1

1+exp(−γ|wT
j x−ΣT

j x|) if j>1 (16)

Another way to explain the new perfomance func-
tion is PCA problem itself. PCA problem is to find the
linear projection of a data set which contains maximal
variance, E(wT (x− x̄)(x− x̄)Tw). If the first princi-
pal component has been estimated, we have the largest
variance, wT

1 x. Estimating the second principal com-
ponent leads to the second largest variance. However,
before the second principal component vector reaches
the target, the variance will also contain part of the
first largest variance, ΣT

j x, which must be eliminated.
We demonstrate deflationary orthogonalization in

performance function with the same data set. We can
see that the five principal components have been iden-
tified clearly as shown in Table 4.

4.2 Exploratory Projection Pursuit

Exploratory Projection Pursuit (EPP) [5, 6] is another
projection technique which maximises some index
of “interestingness”, instead of maximising variance.
Here “interesting” means most projections of a high
dimensional data set tend to be Gaussian and some-
what uninteresting, thus we can quantify how “inter-
esting” the projection is as how different the distribu-
tion is from Gaussian distribution. The simplest way

WSEAS TRANSACTIONS on MATHEMATICS Ying Wu, Colin Fyfe

ISSN: 1109-2769
869

Issue 12, Volume 6, December 2007



PC1 -0.0027 0.0052 0.0222 0.0291 0.9980
PC2 0.0123 0.0710 0.0200 0.9937 0.0480
PC3 0.0608 -0.0531 -0.9946 0.0190 0.0376
PC4 0.0533 0.9936 -0.0365 -0.1061 -0.0042
PC5 0.9966 -0.0697 0.0928 0.0028 0.0130

Table 4: The weights from the artificial data experi-
ment for five principal components by cross entropy
method. Deflationary orthogonalization is integrated
into the performance function

EC1 -0.0023 0.0028 -0.0019 0.0051 1.0000

Table 5: The weights from the artificial data experi-
ment for EPP by cross entropy method

is to use the third moment or the fourth moment of the
distribution.

To illustrate our method, we create 1000 samples
of 5 dimensional data set in which 4 elements of each
vector are drawn from N(0, 1), while the fifth con-
tains data with negative kurtosis: we draw this also
from N(0, 1), but randomly add or subtract 5. Be-
fore performing the algorithm, we sphere the data set
by elimating the mean of data set and deviding by the
inverse of the square root of its variance to give the
data set in all directions that have zero mean and unit
variance. We use S(w) = | tanh(wTx)| as the per-
formance function. Table 5 shows the outcome of the
simulation. We can see that the distribution with neg-
ative kurtosis has been identified with high accuracy.
We can also see extremely stable and quick conver-
gence, as shown in Figure 4, to the optimal direction.

4.3 Canonical Correlation Analysis

Canonical Correlation Analysis (CCA) is used when
we believe there is some underlying relationship be-

0 500 1000 1500 2000
−0.5

0

0.5

1
EC= 1

Figure 4: Convergence of EPP simulation by cross en-
tropy method

tween two data sets. We can regard such a prob-
lem as that of maximizing the objective function
g(w1|w2) = E(y1y2). Such problem is an uncon-
strained maximization problem which clearly has no
finite solution, so we should add the constraint that
E(y2

1 = 1) and similar with y2. Instead of using
multi- reward functions as we have done in reinforce-
ment learning, we define the performance function for
the first canonical correlation as

S(w) = |wT
1jx1 −wT

2jx2|+ 1
2
|(wT

1jx1)2 − 1|

+
1
2
|(wT

2jx2)2 − 1| j = 1 (17)

To identify multiple canonical correlations, we
eliminate the parts that contain information of the
previous components having been estimated from the
current component vector being estimated. Thus for
j > 1, we have

S(w) = |wT
1jx1 − ΣT

1jx1 −wT
2jx2 + ΣT

2jx2|
+

1
2
|(wT

1jx1)2 − 1|+ 1
2
|(wT

2jx2)2 − 1|
≥ |wT

1jx1 −wT
2jx2|+ |ΣT

1jx1 − ΣT
2jx2|

+
1
2
|(wT

1jx1)2 − 1|+ 1
2
|(wT

2jx2)2 − 1|

To illustrate this method, we use an artificial data
set similar to what had been used in reinforcement
learnng, where there are two sets of artificial data, one
is 4-dimensional vector and the other is 3-dimensional
vector, each of whose elements is drawn from the
zero-mean Gaussian distribution,N(0, 1) and we add
an additional sample from N(0, 1) to the first ele-
ments of each vector and then divide by 2 to ensure
that there is no more variance in the first elements than
in the others. To generate the second correlation, we
add an additional sample from N(0, 0.5) to the second
elements of each vector, which so the second correla-
tion is smaller than that of the first one. We illustrate
the convergence of the CCA weight vectors in Fig-
ure 5: we can see consistent convergence towards the
first two canonical correlation vectors smoothly. Table
6 shows that our algorithm works well in identifying
different canonical correlations.

5 Cross Entropy Latent Variable
Models

The most common approach for Latent Variable Mod-
els is the maximization of the likelihood function us-
ing the EM algorithm. In this section we derive a new

WSEAS TRANSACTIONS on MATHEMATICS Ying Wu, Colin Fyfe

ISSN: 1109-2769
870

Issue 12, Volume 6, December 2007



0 1000 2000 3000 4000 5000
−1

−0.5

0

0.5

1
CC= 1

0 1000 2000 3000 4000 5000
−1

−0.5

0

0.5

1
CC= 2

Figure 5: Convergence of the CCA weight vectors to
the optimal directions

m1 m2
0.9950 0.9905 CC1
0.0066 -0.1370
0.0817 0.0113

-0.0562
-0.0573 -0.0240 CC2
-0.9914 -0.9996
0.1136 0.0726
0.0296

Table 6: The first two Canonical Correlation (CC)
weight vectors found for the artificial data

method for the optimization of the likelihood in la-
tent variable models that is based on the cross entropy
(CE) method. For latent variable models, we turn the
optimization of the likelihood function into the associ-
ated stochastic problem (ASP) first. The basic method
is

• Generate random samples from the associated
stochastic problem using some randomization
method.

• Update the parameters (which will typically be
parameters of the pdf generating the samples) to
make the production of better samples that cor-
respond to the parameters to be optimized in the
likelihood function next time. For a Gaussian
distribution, this results in updates only to the
mean, µce, and covariance, Σce.

5.1 Probabilistic Principal Component
Analysis

Consider the x-conditional probability distribution
over the data space given by

p(t|x) = (2πσ2)−d/2 exp
{
− 1

2σ2
||t−Wx−µ||2

}

(18)
and p(x) is assumed as a prior distribution over the
latent variables, which is defined by

p(x) = (2π)−q/2 exp
{
− 1

2
xTx

}
(19)

We then obtain the joint distribution of t and x

p(tn,xn) = (2πσ2)−d/2 exp
{
− 1

2σ2
||tn −Wxn − µ||2

}

×(2π)−q/2 exp
{
− 1

2
||xn||2

}
(20)

Thus, the corresponding log-likelihood is given by

Lc(θ) =
∑

n

[ln p(tn|x,W, σ2) + ln p(x)]

=
∑

n

[
− q + d

2
ln(2π)− d

2
ln σ2

− 1
2σ2

(tn −Wx− µ)T (tn −Wx− µ)− 1
2
xT

nxn

]

= −N(q + d)
2

ln(2π)

−
N∑

n=1

{
d

2
ln σ2 +

1
2σ2

(tn − µ)T (tn − µ)

− 1
σ2

xT
nWT (tn − µ)

+
1

2σ2
tr(WT WxxT ) +

1
2
tr(xxT )

}
(21)

WSEAS TRANSACTIONS on MATHEMATICS Ying Wu, Colin Fyfe

ISSN: 1109-2769
871

Issue 12, Volume 6, December 2007



We omit the first term, −N(q+d)
2 ln(2π), and take

the expectation of Lc with respect to the distribution
p(xn|tn,W, σ2), and we have

E{Lc} = −
N∑

n=1

{
d

2
ln σ2

+
1

2σ2
(tn − µ)T (tn − µ)

− 1
σ2

E{xn}TWT (tn − µ)

+
1

2σ2
tr(WTWE{xxT })

+
1
2
tr(E{xxT })

}
(22)

where E{x} is defined as the mean of the conditional
distribution p(xn|tn,W, σ2)

E{x} = M−1WT (t− µ) (23)

and E{xxT} is defined as the variance of the condi-
tional distribution p(xn|tn,W, σ2)

E{xxT } = σ2M−1 + E{x}E{x}T (24)

where M = WTW + σ2I. Thus the parameters to
be estimated are µ,W and σ2. The estimation for µ
is given by the mean of the data set and σ2 can be
determined by

σ2 =
1

Nd

N∑

n=1

{
(tn − µ)T (tn − µ)

−2E{xn}TWT (tn − µ)

+tr(WTWE{xxT })
}

. (25)

Therefore, the likelihood function of (22) is a function
of the parameter W. To optimize W, we incoporate
the cross entropy method into the optimization of the
likelihood function by considering that (22) is the per-
formance function S(W) to be maximized over the
parameter θ in the cross entropy method. Denoting
the maximum by θ∗, we have

γ∗ = max
θ

S(θ) (26)

Thus, by defining a family of pdfs {f(. ;v),v ∈ ν}
on the parameter θ, we follow [10] to associate with
(6) the following estimation problem

l(γ) = Pv(S(θ) ≥ γ) = EvI{S(θ)>γ} (27)

PC1 sigma
0.0028 -0.0160 0.0214 -0.0595 0.9991 7.2971

Table 7: The weights from the artificial data experi-
ment for the 1st principal component by cross entropy
method. The parameters of the performance function
are W.

where θ is the parameters in (22). We use stochastic
units drawn from a Gaussian distribution to sample θ,
which means the set of parameters θ is drawn from
N (m, β2I), the Gaussian distribution with mean m
and variance β2. To estimate l for a certain γ close to
γ∗, we make adaptive changes to the probability den-
sity function N (m, β2I) according to the Kullback-
Leibler cross-entropy. Thus we create a sequence
f(. ;v0), f(. ;v1), f(. ;v2), . . . of pdfs that are opti-
mized in the direction of the optimal density and for
the fixed γ̂t and v̂t−1, we derive the γ̂t from the fol-
lowing program

max
v

D̂(v) = max
v

1
N

N∑

i=1

I{S(θi)>γ̂t} ln f(θi;v)

(28)
Since we use a Gaussian distribution as the base

learner, the mean and variance of the elite samples are
estimated as

m ← (1− η)m + η
1
r

M∑

j=M−r

wp(j) (29)

β2 ← (1− η)β2

+ η(
1
r

M∑

j=M−r

(wp(j) −m)T (wp(j) −m))(30)

To illustrate our algorithm, we use the same artif-
ical data set as before: the size of the data set is 1000
and we set the number of iteration as 50. We can see
that the first principal component has been identified
accurately as shown in Table 7 and our algorithm con-
verges quickly as shown in Figure 6. We also find that
the σ2 in Table 7 is close to that calculated by the esti-
mated lost variance, σ2

ML = 1
D−q

∑D
j=q+1 λj , which

equals the average variance over the lost dimensions.
Futhermore, given that µ is calculated by the

mean of the data set, we can optimize W and σ2 si-
multaneously by considering that (22) is the perfor-
mance function S(W, σ2) to be maximized over the
parameters, W and σ2. We can see in Table 8 that
the first principal component has been identified ac-
curately and Figure 7 shows that our algorithm con-
verges quickly.

WSEAS TRANSACTIONS on MATHEMATICS Ying Wu, Colin Fyfe

ISSN: 1109-2769
872

Issue 12, Volume 6, December 2007



0 20 40 60
−1.3

−1.29

−1.28

−1.27

−1.26

−1.25

−1.24

−1.23

−1.22

−1.21

−1.2
x 10

4 log likelihood

0 20 40 60
7

7.5

8

8.5

9

9.5
sigma2(mean square error)

Figure 6: Convergence of the PCA weight vectors to
the optimal directions.

PC1 sigma
-0.0007 -0.0081 -0.0369 -0.0830 0.9958 6.5497

Table 8: The weights from the artificial data exper-
iment for the 1st principal component by the cross
entropy method. The parameters in the performance
function are W and σ2.

0 20 40 60
−1.31

−1.3

−1.29

−1.28

−1.27

−1.26

−1.25

−1.24

−1.23

−1.22

−1.21
x 10

4 log likelihood

0 20 40 60
6

6.5

7

7.5

8

8.5

9

9.5

10
sigma2(mean square error)

Figure 7: Convergence of the PCA weight vectors to
the optimal directions. The parameters in the perfor-
mance function are W and σ2.

Kurtosis 1 Kurtosis 2
Original signals 3.2958 3.9589
Mixed observations 3.8613 3.5871
Recovered ICs 3.2970 3.9547

Table 9: The kurtosis of the original signals, mixed
observations and recovered independent components
(ICs).

5.2 Independent Component Analysis

MacKay [11] has derived a maximum likelihood al-
gorithm in which independent component analysis is
performed based on a latent variable model. Defin-
ing V as the mixing matrix and W as the demixing
matrix, the mixed observations x are generated from
latent variables s that are independently distributed,
with marginal distributions pi(si), through the linear
mapping x = Vs. Then the likelihood is given by

P (x|V) =
∫

P (x|s)P (s)ds

=
∫ ∏

j

δ(xj − Vijsi)
∏

i

pi(si)ds

=
1

detV

∏

i

pi(V −1
ij xj) (31)

where i is the index of the dimension of the sources
and j is the index of the dimension of the observa-
tions. The log likelihood is then defined as follows

log P (x|V) = − log |detV|+ ∑
i log pi(V−1

ij xj)

= log |detW|+ ∑
i log pi(Wijxj)

(32)
where W ≡ V−1. [11] has stated that the distribution
of the sources can be assumed as pi(si) ∝ 1

cosh(si)
.

Therefore, we define the performance function as

S(W) = N log |detW|+
D∑

j=1

N∑

n=1

1
cosh(wjxn)

(33)
Thus (33) is to be maximized over the set of

unmixed weight vectors W that are drawn from
N (m, β2I), the Gaussian distribution with mean m
and variance β2, which is estimated as (14) and (15).
It is worth noting that if we assume that the number
of sources is equal to the number of observations, in-
stead of measuring different independent components
sequentially by deflation methods, all the independent
components can be evaluated simultaneously.

To illustrate our algorithm, we use the 2-
dimensional real data set, ’chirp’ and ’gong’, provided

WSEAS TRANSACTIONS on MATHEMATICS Ying Wu, Colin Fyfe

ISSN: 1109-2769
873

Issue 12, Volume 6, December 2007



1.0000 0.0276
0.0026 0.9996

Table 10: Correlation between the original sources
and recovered signals.

0 200 400 600 800 1000
−4

−2

0

2

4

0 200 400 600 800 1000
−4

−2

0

2

4

0 200 400 600 800 1000
−4

−2

0

2

4

0 200 400 600 800 1000
−4

−2

0

2

4

0 200 400 600 800 1000
−4

−2

0

2

4

0 200 400 600 800 1000
−4

−2

0

2

4

Figure 8: ICA as latent variable model with CE al-
gorithm. Top: the original signals. Middle: mixed
observations. Bottom: recovered ICs.

by Matlab and the number of signals is 1000. We can
see all the independent components have been identi-
fied as shown in Figure 8 and our algorithm is highly
accurate as shown in Table 10. The Amari error in this
case is 0.0242.

5.3 Topology Preserving Manifolds

A topographic mapping captures some structure in the
data set, in which points which are mapped close to
one another have some common feature while points
that are mapped far from one another do not share
this feature. The most common topographic mappings
are Kohonen’s self-organizing map (SOM) [9]. The
Generative Topographic Mapping (GTM) [3] is a mix-
ture of experts model which treats the data as having
been generated by a set of latent points. In this pa-
per, we follow [3, 7] to create a latent space of points
t1, t2, . . . , tK which lies equidistantly on a line or at
the corners of a grid. To allow non-linear modeling,
we map these latent points through a set of M ba-
sis functions, typically squared exponentials centered
in latent space, and then map the output of the basis
functions to points, m1,m2, . . . ,mK through a set of
weights. Thus, we have

mk =
M∑

j=1

wjΦj(tk), k = 1, . . . , K

=
M∑

j=1

wj exp(−λ||µj − tk||2) (34)

where φj(), j = 1, . . . ,M are the M basis functions,
and wj is the weight from the jth basis function to the

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Figure 9: The data are shown by ‘+‘s and the latent
points’ projections are shown by ‘*‘s

data space. The algorithm is:

1. Randomly select a data point, x.

2. Find the closest prototype, say mk∗, to x.

3. Generate T samples from the Gaussian dis-
tribution, N(mk∗, β2

k∗). Call the samples,
yk∗,1, ...,yk∗,T . We note that we are using
m1,m2, . . . ,mK to perform two conceptually
separate functions, as prototypes or means to
which the data will be quantised and as centres of
Gaussian distributions from which samples will
be drawn.

4. Evaluate the samples using S(y) = exp(− ‖ y−
x ‖2) as the performance function.

5. Sort the samples using p(1) as the worst to p(T )
as the best. i.e. we are identifying the r elite
samples.

6. Update the parameters

w ← w + η(
1
r

T∑

j=T−r

yk∗,p(j) −mk∗)φ(tk∗)

β2
k∗ = β2

k∗

+
η0

r

T∑

j=T−r

(yk∗,p(j) −mk∗)(yk∗,p(j) −mk∗)T

where η, η0 are the learning rates with typically
η = 10η0.

7. Update the prototypes positions using (34).

Figure 9 shows the result of a simulation in which
there are 20 latent points lying equally spaced in a one
dimensional latent space, passed through 5 basis func-
tions and mapped to the data space by the linear map-
ping W . We generate 1000 2-dimensional data points,

WSEAS TRANSACTIONS on MATHEMATICS Ying Wu, Colin Fyfe

ISSN: 1109-2769
874

Issue 12, Volume 6, December 2007



(x1, x2), from the function x2 = x1+1.25 sin(x1)+ρ,
where ρ is the noise from a uniform distribution in
[0, 1]. The number of iterations is 5000. the latent
points’ projections are shown in the figure. We clearly
see that the one dimensional nature of the data has
been identified.

6 Multilayer Topology Preserving
Manifolds

Deep architectures are compositions of many layers
of adaptive non-linear components, which allow rep-
resentations of functions in a more compact form than
shallow architectures. Bengio and LeCun [2] have
demonstrated that deep architectures are often more
efficient for solving complicated problems in terms
of number of computational components and parame-
ters. A greedy, layer-wise unsupervised learning al-
gorithm [1, 8] has recently been introduced to provide
an initial configuration of the parameters with which a
gradient-based supervised (backpropagation) learning
algorithm is initialized, which results in a very much
more efficient learning machine. The idea behind the
greedy algorithm is that simpler models are learned
sequentially and each model in the sequence recieves
a different representation of the data. Thus features
produced by the lower layers represent lower-level ab-
stractions, which are combined to form high-level fea-
tures at the next layer, representing higher-level ab-
stractions.

We extend the topology preserving mapping with
cross entropy to a multilayer topology preserving
mapping. In each layer, we create a q-dimensional
latent space with a regular array of points, X =
(x1, . . . ,xK) that have the structure of lying equidis-
tantly on a line or on a grid. These latent points are
nonlinearly mapped to points, (m1, . . . ,mK) in the
input space through a set of basis function, which
forms a set of reference vectors, mi = Wφ(xi). Each
of the reference vector then forms the centre of the
Gaussian distribution in the input space and we can
represent the distribution of the data points in input
space in terms of a smaller q-dimensional nonlinear
manifold. Thus we have a higher-level representation
of the data points in the input space by the projection
of the data points in the latent space. Denoting the la-
tent space representation of each data point as tlatent

n ,
we have

tlatent
n =

K∑

i=1

rnixi (35)

rni =
exp(−γd2

ni)∑
k exp(−γd2

nk)
(36)

where rni is responsibility of the ith latent point for
the nth data point and dpq = ||tp−mq||, is the euclid-
ean distance between the pth data point and the pro-
jection of the qth latent point. The projection of the
data points in the latent space of this layer then be-
comes the data points in the input space of the next
layer. Therefore, the topology preserving mapping in
each layer performs a non-linear transformation on its
input vectors and produces as output the vectors that
will be used as input for the topology preserving map-
ping in the next layer and the projection of the data
points in higher layers may represent more abstract
features, whereas lower layers extract low-level fea-
tures from the data set.

To demonstrate our multilayer topology preserv-
ing mapping algorithm, we create a deep architecture
model with four layers, in each layer of which we use
a 2 dimensional grid of latent points: we use a 21×21
grid of latent points being passed through a 5 × 5 set
of basis vectors. We illustrate the algorithm on the
well-known wine data set from the UCI Repository of
machine learning databases. It has 178 samples, 13
features and 3 classes. Because some of the features
are scaled up to 1500 and others lie between 0 and 1,
we preprocessed the data by normalizing all features
between -1 and 1. We develop a new way to repre-
sent the experimental results, which makes it easier
for us to evaluate how well the algorithm works: we
calculate the sum of the responsibility vectors over the
data points, R =

∑N
n=1 rn, and then form a respon-

sibility grid using R for each latent point. Since the
latent points are fixed in (35), the data points belong-
ing to the same cluster will have similar responsibility
vectors, and thus the area where one cluster is located
in the responsibility grid will become ‘hot’, which al-
lows us to identify the clusters easily.

A plot of the responsibility grid and the projec-
tion of the data points in the latent space in each layer
is shown in Figure 10. We can see that although the
data points have been mapped into the latent space ac-
curately, there are only several small hot areas in the
responsibility grid, which means we can not identify
different clusters directly. We also find that the higher-
level the layer is, the hotter the areas corresponding to
different cluters is and in the fourth layer, we can see
that the three clusters have been identified clearly and
the data points belonging to the same cluster is much
closer than in the first layer in the latent space. There-
fore, we consider the multilayer topology preserving
mapping model has extracted more abstract features
in the higher layer. In addition, we can also obviously
see that in the fourth layer, the ’square’ cluster and the
’cycle’ cluster are closer to each other, which are far
away from the ’cross’ cluster.

WSEAS TRANSACTIONS on MATHEMATICS Ying Wu, Colin Fyfe

ISSN: 1109-2769
875

Issue 12, Volume 6, December 2007



−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 10: Plot of the responsibility grid and the pro-
jection of the data points in the latent space in each
layer. Each contour line represents a constant value
of R. The cross, square and cycle correspond to the
data points for different clusters. From the top, the 1st

layer,the 2nd layer, the 3rd layer and the 4th layer.

7 Conclusion

In this paper, we have investigated several unsuper-
vised data exploration techniques with the on-line
cross-entropy method. We regard such problems as
an associated stochastic problem and also we consider
our on-line cross-entropy method to be a close rela-
tive of reinforcement learning for perform data explo-
ration. Thus, we use stochastic units drawn from a
Gaussian distribution to sample the network weights.
With the CE algorithm, we make adaptive changes to
the probability density function of network weights
according to the Kullback-Leibler cross-entropy. by
using a variety of appropriate performance functions,
we can see that all the results are accurate and stable.

Although Gram-schmit deflation method works
well in identifying multiple components, in this paper
a new way by integrating deflationary orthogonaliza-
tion with the perfocmance function directly is derived.
It is worth noting that different from what we have
done in reinforcement learning where the immediate
reward is weakened by eliminating sum of angle or
projection between the current weight vector to be es-
timated and the wight vectors having been estimated,
the basic idea is to eliminate the parts that contain the
information of the previous components having been
estimated from the current component vector being
estimated. Comparing both of the two deflation meth-
ods, we think the method used in reinforcement learn-
ing is more general to different problems, but suffer-
ing being diffecult to set the parameters, and however,
deflationary orthogonalization in perfocmance func-
tion shares the same idea, but performed in different
way for different problems. We think deflationary or-
thogonalization in perfocmance function is more di-
rect and more stable.

We have also shown how the cross entropy
method can be used to optimize the parameters for
latent variable models and have illustrated its use on
probabilistic principal component analysis and inde-
pendent component analysis.

Finally we have shown how the CE method may
be used for deep architecture networks which are one
of the main current hopes for true artificial intelli-
gence. Future work will investigate other deep archi-
tectures with the cross entropy method.

References:

[1] Y. Bengio, P. Lamblin, D. Popovici, and
Larochelle H. Greedy layer-wise training of
deep networks. In Advances in Neural Informa-
tion Processing Systems, volume 19, pages 153–
160. MIT Press, 2007.

WSEAS TRANSACTIONS on MATHEMATICS Ying Wu, Colin Fyfe

ISSN: 1109-2769
876

Issue 12, Volume 6, December 2007



[2] Y. Bengio and Y. LeCun. Scaling Learning Al-
gorithms towards AI, chapter Large-Scale Ker-
nel Machines. MIT Press, 2007.

[3] C.M. Bishop, M. Svensen, and C.K.I. Williams.
Gtm: A principle alternative to the self-
organizing map. In Advances in neural infor-
mation processing systems, 5:354–360, 1997.

[4] P.-T. de Boer, D. P. Kroese, S. Mannor, and
R. Y. Rubenstein. A tutorial on the cross-
entropy method. Annals of Operations Research,
134(1):19–67, 2004.

[5] J.H. Friedman. Exploratory projection pursuit.
Journal of the American Statistical Association,
82(397):249–266, 1987.

[6] J.H. Friedman and J.W. Tukey. A projection
pursuit algorithm for exploratory daya analysis.
IEEE Transactions on Computers, c-23(9):881–
889, Sept 1974.

[7] C. Fyfe. Two topographic maps for data visual-
ization. Data Mining and Kownledge Discovery,
14:207–224, 2007.

[8] G. E. Hinton, S. Osindero, and Y. Teh. A fast
learning algorithm for deep belief nets. Neural
Computation, 16:1527–1554, 2006.

[9] T. Kohonen. Self-organising maps. Springer,
1995.

[10] D. P. Kroese and R. Y. Rubinstein. The Cross En-
tropy: A Unified Approach to Combination Op-
timization, Monte-Calo Simulation and Mechine
Learning. Spinger, 2004.

[11] David J.C. MacKay. Maximum likelihood and
covariant algorithms for independent component
analysis. Technical report, Dept. of Physics,
Cambridge University, Dec 1996.

[12] R.Y. Rubinstein. Optimization of computer sim-
ulation models with rare events. European Jour-
nal of Operations Reasearch, 99:89–112, 1997.

WSEAS TRANSACTIONS on MATHEMATICS Ying Wu, Colin Fyfe

ISSN: 1109-2769
877

Issue 12, Volume 6, December 2007


