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Abstract: Electromagnetism in an arbitrary gravitational background vacuum is formulated in terms of Clifford
analysis over a pseudo-Riemannian space with signature (1,3). The full electromagnetic radiation problem is
solved for given smooth compact support electric and magnetic monopole charge-current density source �elds.
We show that it is possible to attack this problem by analytical means in four dimensional form and without
invoking electromagnetic potentials. Our approach reveals that the solution for the full electromagnetic �eld can
be expressed in terms of a fundamental solution of the Laplace-de Rham scalar wave equation, so that calculating
Green's dyadic �elds is super�uous. In the absence of gravity our method reproduces (i) Je�menko's equations and
(ii) an expression for the particular solution of the wave equation satis�ed by the electromagnetic �eld. Expression
(ii) is simpler than Je�menko's result and has the additional advantage that its evaluation avoids integrating over
singularities.
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1 Introduction

Calculating the generation and propagation of electro-
magnetic waves on a curved background vacuum is
a complicated problem. Such problems are usually
solved in the weak-gravity and slow-motion limit by a
method of successive approximations or using multi-
pole expansions, e.g., [1], [4], [7], [16].

The aim of this paper is to show that the solu-
tion of the full electromagnetic radiation problems in
a general curved space-time background can be ob-
tained by analytical means in terms of a fundamen-
tal solution of the underlying scalar wave equation.
We do this by modelling electromagnetism in terms of
modern mathematical language and concepts. It then
becomes apparent that the here considered problem,
which would take a most cumbersome form when
stated in the classical formulation, now allows a short
and elegant solution.

We �rst identify and review the mathematical
structures that are required to formulate electromag-
netism in a vacuum containing a given arbitrary back-
ground gravity �eld. The latter is assumed not to be
in�uenced by the electromagnetic radiation. We then
present a new analytical solution method to calculate
the electromagnetic �eld produced by smooth com-
pact support electric and magnetic monopole sources
in curved space-time. We show that it is possible to

solve this general electromagnetic radiation problem
in four-dimensional form, without assuming the cus-
tomary time harmonic regime, without making the de-
tour of invoking electromagnetic potentials and with-
out the need for a Green's dyadic �eld. The expression
obtained for the solution shows that it is suf�cient to
calculate a causal fundamental solution of the scalar
wave equation in curved space-time, in order to solve
the full electromagnetic radiation problem.

The solution of this problem has important appli-
cations in astronomy, for instance related to the obser-
vation of electromagnetic radiation coming from ion-
ized in-spiraling matter near neutron stars and black
holes. If the observed radiation could be linked to the
orbital motion of the matter around the compact ob-
ject, then this would open an enormous potential for
testing effects of the General Theory of Relativity in
the strong �eld limit, as well as for the direct measure-
ment of the mass of the compact object. The here pre-
sented solution is useful in this context, as it provides
a simple and direct way to model the radiation pro-
duced by the current density of a given moving plasma
distribution.

Our result is a direct consequence of the math-
ematical model that we use to represent electromag-
netism. The model for electromagnetism in the ab-
sence of gravity, still widely in use today in applied
physics and engineering, is a virtually unchanged ver-
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sion that goes back to O. W. Heaviside, [17], [29],
[27], [19], who simpli�ed two earlier models by J. C.
Maxwell, [23], [24]. Heaviside's equations are widely
considered to be the correct model for (classical) elec-
tromagnetism, because they predict numerical values
for the magnitudes of the �eld components that are in
agreement with experimental values. However, Heav-
iside's model does not correctly represent the geo-
metrical content of the electromagnetic �eld, nor all
its physical invariances. Modern physical insight re-
quires that a good mathematical model not only pre-
dicts correct magnitudes, but also correctly models the
geometrical content and physical invariances of the
physical phenomenon.

Moreover, the mathematical formulation used by
Heaviside is not only very outdated, but also obscured
all this time the intrinsic simplicity and beauty of this
physical phenomenon. Responsible for this state of
affairs is a vector algebra, independently created by
J. W. Gibbs and Heaviside in the period 1881�1884
and used by Heaviside to build his model. This vector
algebra is however quite inappropriate for describing
electromagnetism and far better alternatives exist, as
we will see further on.

Gibbs was in�uenced by H. G. Grassmann's work
on graded (or exterior) algebras, while Heaviside ex-
tracted his version of vector calculus from W. R.
Hamilton's quaternion algebra by splitting quater-
nions in a scalar and 3-component vectorial part, [2].
Slightly earlier in the period 1876�1878, W. K. Clif-
ford introduced his eponymous algebras, [3], [10],
[28], which were the result of his desire to com-
bine earlier work published by Grassmann in 1844
on graded algebras with the discovery of the quater-
nions by Hamilton in 1843. Clifford called his alge-
bras geometrical algebras, because they make it pos-
sible to formulate geometrical relationships between
the geometrical objects living in a linear space, [10],
[15]. Any linear space together with a (quadratic)
inner product of signature (p; q) (usually identi�ed
with Rp;q) can be equipped with a Clifford algebra.
All Clifford algebras are associative. Familiar ex-
amples of Clifford algebras are the complex algebra
(Cl

�
R0;1

�
), the quaternion algebra (Cl

�
R0;2

�
) and

the Pauli algebra (Cl
�
R3;0

�
). The latter is the most

appropriate and natural one to use to express geo-
metrical ideas related to three-dimensional Euclid-
ean space (usually identi�ed with R3;0). It was the
need for a more appropriate algebra to describe rota-
tions in three dimensions, that led W. E. Pauli to rein-
vent this Clifford algebra when he derived his (non-
relativistic) equation for the electron with spin. Also,
in 1928 P.A.M. Dirac reinvented the Clifford algebra
Cl
�
R1;3

�
in deriving his eponymous equation for a

relativistic spin-1=2 particle.
The classical Gibbs�Heaviside vector algebra

falls short compared to the geometrical richness of the
Pauli algebra. For instance, classical vector calculus
lacks the capability to express operations such as the
union or intersection of linear subspaces. Nor does
it accommodate a way to represent re�ections, and in
particular rotations, in a coordinate-free way. It ex-
plicitly depends on a right-handed Cartesian reference
frame, which makes it cumbersome to use with other
coordinate systems. As a result, equations expressed
in classical vector calculus are not form invariant un-
der a change of basis. These properties make classi-
cal vector calculus a very inappropriate mathematical
language to model electromagnetism in a background
gravitational �eld. Finally, it is a non-associative alge-
bra and only de�ned for three dimensions, while our
universe is manifestly four-dimensional and its phys-
ical laws are generally accepted to be independent of
any preferred reference system.

Nature's laws (for gravity, electromagnetism,
gauge �elds, etc.) are more and more understood
as expressing geometrical relationships between geo-
metrical quantities. It thus makes sense to use a more
appropriate number system that is up to this task.
Once one is willing to give attention to these require-
ments, by changing to a mathematical model that is
also correct in this broader sense, fascinating new
progress becomes possible. We use here the Clifford
algebra Cl

�
R1;3

�
and the thereupon based Clifford

analysis over a pseudo-Riemannian space with signa-
ture (1; 3) (the standard reference on Clifford analysis
over Euclidean spaces is [5]). This allows us to model
the above mentioned electromagnetic radiation prob-
lem by a single and simple equation. This equation
is equivalent to Heaviside's equations in the narrow
sense that both models produce the same �eld compo-
nent magnitudes (in the absence of gravity).

We use natural units in our model for electromag-
netism. This has the advantage that all super�uous
unit conversion factors disappear from the equation,
which so acquires its most simple form. Natural units
are not unique, but all such unit systems are equiva-
lent in the sense that they all result in the same equa-
tion. The use of a natural unit system reveals that there
are no fundamental physical constants associated with
electromagnetism. A physical constant is regarded
as being fundamental iff it is a dimensionless quan-
tity and different from 0 and 1. A convenient natural
unit system for electromagnetism (and gravity) is ob-
tained by de�ning the dimensionless constants c , 1
(c: �speed of light�), 8�G , 1 (G: �gravitational
constant�) and 4�"0 , 1 ("0: �permittivity of the vac-
uum�).
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2 Mathematical preliminaries

A �nite subset of consecutive integers will be denoted
by Z[i1;i2] , fi 2 Z : i1 � i � i2g. LetM designate
a real, connected, non-compact, oriented, smooth (i.e.,
C1) differential, (paracompact and Hausdorff) mani-
fold, [6].

2.1 Contravariant tensor �elds onM

2.1.1 Contravariant tensors at a point

At any point x 2 M , we consider the tangent space
at x; TxM , which is a linear space over R of some
dimension n 2 Z+ and whose elements are called
contravariant (tangent) vectors at x.

Denote further by ^kTxM , with 0 � k � n,
the linear space overR, of totally antisymmetric con-
travariant tensors of order k at x, having dimension�
n
k

�
. Elements of ^kTxM are usually called in the

Clifford algebra literature (contravariant) k-vectors
and the order k of a k-vector is there called its grade.
In particular, contravariant 0-vectors are by de�ni-
tion identi�ed with the base �eldR and contravariant
1-vectors are identi�ed with elements of the tangent
space, i.e., ^1TxM �= TxM .

With respect to the natural (or coordinate) basis
Bx ,

�
@�;8� 2 Z[1;n]

	
for TxM , induced by a

choice of local coordinates
�
x�;8� 2 Z[1;n]

	
on

M , any contravariant vector u has the representative
u = u�@� with components fu�g. We use throughout
the implicit Einstein summation convention over pairs
of corresponding covariant and contravariant indices.
Any basis Bx for TxM induces a basis ^kBx ,�
@�1 ^ : : : ^ @�k ;8�1 < : : : < �k 2 Z[1;n]

	
for

^kTxM , 8k 2 Z[2;n]. Any k-vector t 2 ^kTxM
has, with respect to ^kBx, the representative
t = t�1:::�k

�
@�1 ^ : : : ^ @�k

�
with strict components�

t�1:::�k ;8�1 < : : : < �k 2 Z[1;n]
	
. An equivalent

expression for t is the expansion

t =
1

k!
t�1:::�k

�
@�1 ^ : : : ^ @�k

�
; (1)

in terms of non-strict (i.e., unordered) indices
�1; : : : ; �k.

2.1.2 Contravariant inner product

We now assume that our manifoldM admits a bilinear
(generalized) contravariant inner product � : TxM �
TxM ! R, de�ned by a symmetric, 2-covariant,
non-degenerate (i.e., of maximal rank), inde�nite, in-
ner product (so called �metric�) smooth tensor �eld g
such that (u; v) 7! u�v = gx (u; v), with gx the tensor

obtained by evaluating g at x. This makes the struc-
ture (M; g) a smooth, pseudo-Riemannian manifold.
Since we assumed that our manifold M is paracom-
pact and non-compact, it always admits a hyperbolic
structure, [6, p. 293].

With respect to natural bases, u � v =
g�� (x)u

�v� . In particular, @� � @� = g�� (x). Then,
the image of a contravariant vector, with representa-
tive u = u�@�, under the canonical isomorphism from
TxM ! T �xM such that u 7! u� (see further), has the
representative u� = u��dx�, with u�� = g�� (x)u� .

The commutative inner product of any pair of
contravariant k-vectors, with respect to a basis for
^kTxM , is de�ned by

(a; b) 7! a � b = 1

k!
a�1:::�kb�1:::�k

g�1�1 (x) : : : g�k�k (x) : (2)

2.1.3 Contravariant tensor �elds

The manifoldM together with the set of linear spaces
^kTxM , 8x 2 M , can be given the structure of a
linear bundle, denoted ^kTM and called the k-th ex-
terior power of the tangent bundle of M . Any section
of ^kTM is called a totally antisymmetric contravari-
ant tensor �eld of order (or grade) k onM , or in short
a contravariant k-vector �eld. We will denote the set
of contravariant k-vector �elds by �

�
^kTM

�
.

In particular, contravariant 0-vector �elds are by
de�nition identi�ed with scalar functions fromM !
R, called scalar �elds and contravariant 1-vector
�elds are identi�ed with sections of the tangent bun-
dle, i.e., contravariant vector �elds.

The manifold M together with the set of bases
for ^kTxM , 8x 2 M , can also be given the structure
of a linear bundle, called the frame bundle for ^kTM .
Any section of this frame bundle is called a contravari-
ant frame �eld of order (or grade) k on M , denoted
^kB, or in short a (moving) contravariant k-frame.
Any contravariant k-vector �eld has a representative
with respect to any contravariant k-frame.

2.1.4 Signature ofM

At any x 2 M , we can always choose local coordi-
nates on M such that the tensor �eld g at that point,
gx, becomes gx , [g�� (x)] =

�
���
�
with � the

following diagonal tensor with components in matrix
form given by

�
���
�
, diag

264+1;+1; :::;+1| {z }
p times

;�1;�1; :::;�1| {z }
q times

375 ;
(3)
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and where n = p + q. The couple (p; q) is called the
signature of the pseudo-Riemannian manifoldM (and
is independent of x).

When p > 0 and q > 0, gx is inde�nite and M
is said to be a pseudo-Riemannian manifold with p
time dimensions and q space dimensions. If q = 0,
gx is positive de�nite and M is called a Riemannian
manifold. If a pseudo-Riemannian manifold has zero
curvature (i.e., is �at), a global coordinate system can
be found on M such that the tensor �eld g takes the
constant diagonal form (3) everywhere. Flat pseudo-
Riemannian manifolds for which p = 1 are called
Lorentzian (or hyperbolic) manifolds and the partic-
ular case p = 1 and q = 3 is called Minkowski space.

In practice, g will represent a gravitational �eld
present on M and/or will be induced by a particu-
lar choice of local coordinates, used to chart M in
the vicinity of x. We will refer hereafter to a general
pseudo-Riemannian manifold with signature (1; 3) as
curved time-space (we reserve the term curved space-
time to a pseudo-Riemannian manifold with signature
(3; 1)).

2.2 Covariant tensor �elds onM

For a �xed contravariant vector u 2 TxM , the map
gx (u; :) : TxM ! R such that v 7! gx (u; v), de�nes
a canonical isomorphism between the tangent space
TxM at x, and its dual T �xM , 8x 2 M . This canoni-
cal isomorphism is then the map from TxM ! T �xM
such that u 7! u� , gx (u; :), so u� is the covariant
vector corresponding to the contravariant vector u un-
der this isomorphism. This enables us to de�ne a bi-
linear binary function h:; :ix : T �xM�TxM ! R such
that (u�; v) 7! hu�; vix , gx (u; v). The canonical
isomorphism from TxM ! T �xM extends to higher
tensor spaces such as 
kTxM 
l T �xM , consisting of
k-contravariant and l-covariant tensors of order k + l,
and allows us to �raise or lower the indices�.

2.2.1 Covariant tensors at a point

The dual T �xM is also a linear space over R, of the
same dimension as TxM , called the cotangent space
at x, and its elements are called covariant (cotangent)
vectors at x.

Denote further by ^kT �xM , with 0 � k � n, the
space of totally antisymmetric covariant tensors of or-
der k at x. Elements of ^kT �xM are sometimes called
in the Clifford algebra literature covariant k-vectors.
In particular, covariant 0-vectors are again identi�ed
with the base �eld R and covariant 1-vectors with el-
ements of the cotangent space, i.e., ^1T �xM �= T �xM .

With respect to the natural cobasis
B�x ,

�
dx�;8� 2 Z[1;n]

	
for T �xM , naturally

induced by the basis Bx for TxM by de�ning
hdx�; @�ix = ��� , any covariant vector u� has the
representative u� = u��dx

� with components
�
u��
	
.

Any basis B�x for T �xM induces a basis ^kB�x ,�
dx�1 ^ : : : ^ dx�k ;8�1 < : : : < �k 2 Z[1;n]

	
for ^kT �xM , 8k 2 Z[2;n]. Any t� 2 ^kT �xM
has, with respect to ^kB�x, the representative
t� = t�1:::�k (dx

�1 ^ : : : ^ dx�k) with strict com-
ponents

�
t�1:::�k ;8�1 < : : : < �k 2 Z[1;n]

	
. An

equivalent expression for t� is the expansion

t� =
1

k!
t�1:::�k (dx

�1 ^ : : : ^ dx�k) ; (4)

in terms of non-strict indices.

2.2.2 Covariant inner product

The canonical isomorphism from TxM ! T �xM ,
8x 2 M , induced by g, together with the non-
degeneracy of g, enables us to de�ne also an inner
product on T �xM , called covariant inner product, by
� : T �xM �T �xM ! R such that (u�; v�) 7! u� � v� =
g�1x (u�; v�) , gx (u; v).

With respect to natural bases, u� � v� =
g�� (x)u��v

�
� , with the n � n matrix [g�� (x)] ,

[g�� (x)]
�1. The non-degeneracy condition on g en-

sures that, 8x 2M ,

det [gx] , det [g�� (x)] ;

= �
�1:::�n
1:::n g�11 (x) : : : g�nn (x) 6= 0;(5)

with � the generalized Kronecker tensor, [6, p. 142].
We will use the same product symbol � for the inner
product on both the tangent and cotangent spaces, as
the distinction will be clear from the context. In par-
ticular, dx� � dx� = g�� (x). Then, the image of a
covariant vector, with representative u� = u��dx�, un-
der the inverse canonical isomorphism from T �xM !
TxM such that u� 7! u, has the representative u =
u�@�, with u� = g�� (x)u�� .

The commutative inner product of any pair of co-
variant k-vectors, with respect to a basis for ^kT �xM ,
is de�ned by

(�; �) 7! � � � = 1

k!
��1:::�k��1:::�k

g�1�1 (x) : : : g�k�k (x) : (6)

2.2.3 Covariant tensor �elds

The manifoldM together with the set of linear spaces
^kT �xM , 8x 2M , can be given the structure of a lin-
ear bundle, denoted ^kT �M and called the k-th exte-
rior power of the cotangent bundle of M . Any section
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of the linear bundle ^kT �M is called a totally anti-
symmetric covariant tensor �eld of order (or grade) k
on M , or in short a covariant k-vector �eld. In the
mathematical literature, a covariant k-vector �eld is
usually called a k-form. We will denote the set of k-
forms by �

�
^kT �M

�
.

In particular, covariant 0-vector �elds are by de�-
nition also identi�ed with scalar functions fromM !
R and covariant 1-vector �elds are identi�ed with sec-
tions of the cotangent bundle, i.e., covariant vector
�elds.

The manifoldM together with the set of bases for
^kT �xM , 8x 2 M , can also be given the structure of
a linear bundle, called the frame bundle for ^kT �M .
Any section of this frame bundle is called a covariant
frame �eld of order (or grade) k onM , denoted^kB�,
or in short a (moving) covariant k-frame. Any covari-
ant k-vector �eld has a representative with respect to
any covariant k-frame.

2.3 Exterior differential forms onM

Let 0 � k � n. A totally antisymmetric covariant
tensor �eld of order k is called a k-form of grade k.

Let FM , (C1 (M;R) ;+; ) denote the uni-
tal ring of smooth real functions de�ned on M ,
C1 (M;R), together with function pointwise addi-
tion+ and function pointwise multiplication (denoted
by juxtaposition).

Let D0M ,
�
D0+ (M) ;+; ?

�
denote the integral

domain of distributions based on M , with support in
a closed forward (or causal) null (or light) cone (as-
suming p > 0 and q > 0), together with distributional
addition + and distributional convolution ?.

Hereafter, the generic ringR stands for eitherFM
or D0M .

The set of k-forms �
�
^kT �M

�
, 8k 2 Z[0;n],

together with R and a left external operation from
R � �

�
^kT �M

�
! �

�
^kT �M

�
, is a left module.

The elements of this structure are called left k-forms
over R. We can equally consider the set of k-forms
�
�
^kT �M

�
, 8k 2 Z[0;n], together with R and a

right external operation from �
�
^kT �M

�
� R !

�
�
^kT �M

�
, which is a right module. The elements

of this structure are called right k-forms overR. From
now on, we will use the module of k-forms over R,
which is both a left and right module overR, and this
will be denoted by

�
�
�
^kT �M

�
;R
�
.

The module of k-forms over R is further
equipped with the following useful operations. The
resulting structure is then called the exterior algebra
of differential forms (with inner product) onM .

2.3.1 The exterior product

The exterior product is a bilinear map ^ :
�
�
^lT �M

�
��

�
^kT �M

�
! �

�
^l+KT �M

�
, which

is just the antisymmetric tensor product � ^ � ,
� 
 � � � 
 �. With respect to natural covariant
frames, the wedge product of any l-form � and any
k-form � is given by

� ^ � =
1

(l + k)!

1

l!

1

k!
��1:::�l�1:::�k�1:::�l+k

��1:::�l

��1:::�k (dx
�1 ^ : : : ^ dx�l+k) ; (7)

wherein � stands for the generalized Kronecker tensor,
[6, p. 142]. The exterior product inherits distributivity
with respect to addition from the tensor product.

If l = 0 (or k = 0), the tensor product of a scalar
�eld � with any k-form � (or any l-form � with a
scalar �eld �) is de�ned to equal the external product
of the module of k-forms (or l-forms). Hence, the
exterior product, being the antisymmetrization, is zero
(notice that this requires that k-forms form both a left
module and a right module overR). If l + k > n, the
wedge product is de�ned to be zero, since there are
no totally antisymmetric tensor �elds of order greater
than the dimension of the manifold.

The exterior product is associative, but generally
not commutative since

� ^ � = (�1)kl � ^ �: (8)

2.3.2 Hodge's left covariant star operator

This is a very practical grade mapping operator.
Hodge's left covariant star operator is a linear map
� : �

�
^kT �M

�
! �

�
^n�kT �M

�
such that � 7! ��

and is de�ned by

�1 = !; (9)
� ^ (��) = (��) ^ � = (� � �) !; (10)

8�; � 2 �
�
^kT �M

�
with k > 0. The inner product

� in (10) is given by (6) and ! is the oriented volume
n-(pseudo)form onM , [6, p. 294],

! ,
p
jdet [g]j

�
dx1 ^ : : : ^ dxn

�
; (11)

and equals the Levi-Civita pseudotensor �. With re-
spect to natural covariant frames,

�� =
1

(n� k)!
1

k!
��1:::�k�k+1:::�n

g�1�1 : : : g�k�k

��1:::�k (dx
�k+1 ^ : : : ^ dx�n) ; (12)
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The inverse star operator, acting on any k-form, is
given by

��1 = (�1)k(n�k)+q �; (13)

with q the number of space dimensions (see (3), the
signature (p; q) ofM ).

The presence of the Levi-Civita pseudotensor � in
(12) makes that �� has the opposite parity of �. For
instance, if � is an ordinary (even) form, then �� is
an odd form (also called a twisted form). Contrary
to an even form, an odd form, transforming under a
change of basis with Jacobian determinant J , picks
up an extra factor sgn (J), see [6, p. 294].

To de�ne Hodge's star operator requires that an
inner product structure is given on M . We call the
map � local since it depends on !, which in turns de-
pends on

p
jdet [gx]j at x 2 M . This is the place

where gravity enters our mathematical formulation,
since the inner product structure g plays the role of
gravitational potential tensor in the framework of Ein-
stein's General Theory of Relativity. On a �at mani-
foldM , gravity is absent, but we can still have a non-
trivial inner product structure g, de�ned by the local
coordinate system used on M . Hence, formulating
electromagnetism in terms of Hodge's star operator
ensures that the resulting model will be valid in any
gravitational environment and for any system of local
manifold coordinates.

2.3.3 The interior product

We can use Hodge's star operator to de�ne an interior
product, based on the exterior product ^.

The interior product is a bilinear map � :
�
�
^lT �M

�
� �

�
^kT �M

�
! �

�
^jk�ljT �M

�
such

that (�; �) 7! � � � with, for 0 � l � k,

� � � , (�1)l(k�l) ��1 (� ^ (��)) ;
� � � , (�1)l(k+1) � � �: (14)

With respect to natural covariant frames, (14) be-
comes

� � �

=
1

(k � l)!
1

l!
g�1�1 : : : g�l� l��1:::� l��1:::�l�l+1:::�k

(dx�l+1 ^ : : : ^ dx�k) ; (15)

so the interior product is just the tensor contraction
product.

If l = 0, we get � � � = ��1 (� ^ (��)) = 0,
since the exterior product of a scalar function with a
k-form is zero. For l = k, (15) coincides with the
inner product (6). For l < k, ��� is a form of the same

parity of �. The interior product is not associative and
generally not commutative.

The interior product, as we have de�ned it here,
is not part of the classical algebra of exterior dif-
ferential forms. The latter is usually supplemented
with a left interior product between a contravariant
vector �eld and any k-form as a bilinear map ia :
� (TM) � �

�
^kT �M

�
! �

�
^k�1T �M

�
, see e.g.,

[6]. The operation ia can be de�ned in general, i.e.,
even ifM is not equipped with an inner product struc-
ture. However in this work, we have assumed the ex-
istence of an inner product structure g on M . This
structure allows us to naturally de�ne ia as an inner
product between the 1-form �, obtained from a under
the canonical isomorphism from TM ! T �M , and
any k-form �. With the product (14), we just general-
ize the classical operation ia on a pseudo-Riemannian
manifold to the full tensor contraction product.

2.3.4 The exterior derivative

The left exterior derivative operator is a linear map
d : �

�
^kT �M

�
! �

�
^k+1T �M

�
such that � 7! d�

with its action on any k-form given, with respect to
natural covariant frames, by

d� =
�
@�1�

�
dx�1 ; k = 0; (16)

d� =
1

(k + 1)!

1

k!
���1:::�k�1�2:::�k+1

(@���1:::�k)

(dx�1 ^ : : : ^ dx�k+1) ; k > 0: (17)

When acting on any 0-form f , df is de�ned by
(16) to coincide with the ordinary differential of the
scalar function f . Due to antisymmetry is d � d = 0,
8k 2 Z[0;n]. The exterior derivative d does not depend
of the coordinate system. Further, 8� 2 �

�
^lT �M

�
and 8� 2 �

�
^kT �M

�
holds that

d (� ^ �) = (d�) ^ � + (�1)l � ^ (d�) ; (18)

so d is an antiderivation with respect to ^. The kernel
of d consists of the closed forms (i.e., forms � for
which d� = 0), and its image are the exact k-forms,
1 � k � n, (i.e., having the form d�).

Any pseudo-Riemannian manifold (M; g) has a
unique torsion free, metric connection, called the Rie-
mannian connection, [6, p. 308]. In terms of this con-
nection, the directional covariant derivativeru, in the
direction of the contravariant vector �eld u, is deter-
mined, with respect to natural frames, by the Christof-
fel symbols. We will rewrite (17) in terms of the co-
variant derivatives along frame �elds, r� , r@� .
Due to the antisymmetry of d� (for k > 0) and since
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the Riemannian connection is torsion free, the connec-
tion terms (involving the Christoffel symbols) in (20)
cancel out, so we get

d� =
�
r�1�

�
dx�1 ; k = 0; (19)

d� =
1

(k + 1)!

1

k!
���1:::�k�1�2:::�k+1

(r���1:::�k)

(dx�1 ^ : : : ^ dx�k+1) ; k > 0: (20)

Although d� does not depend on the inner product
structure g and despite the fact that (17) is simpler
than (20), we will �nd it convenient to add the extra
connection terms in order to cast our results in Clif-
ford algebra form later.

De�ne a 1-form @ by

@ , dx�r�: (21)

The operator @, de�ned in (21), generalizes the @ op-
erator encountered in Clifford analysis over Euclidean
spaces (and which is there called Dirac operator, [5])
to the setting of contravariant and covariant k-vector
�elds on pseudo-Riemannian manifolds. When @ is
applied to differential k-forms over D0M , the general-
ized partial derivativeD� replaces the ordinary partial
derivative @� in r�.

We can now write (20), for 1 � k � n, in terms
of the exterior product (7) as

d� = @ ^ �; (22)

Thus, the exterior derivative operator d is at the same
time an analytical directional covariant derivative on
the components of � and an algebraic wedge operator
on the natural covariant frame of �.

When acting on any n-form !, d! = @ ^ ! = 0,
because d! has grade n+ 1.

The operation d = @^ appropriately de�nes and
generalizes the curl operation (for 1 � k � n), de-
�ned in classical vector calculus, to totally antisym-
metric covariant tensor �elds on pseudo-Riemannian
manifolds.

2.3.5 The interior derivative

We can use Hodge's left star operator and its inverse to
de�ne the left interior derivative operator (also called
codifferential) � : �

�
^kT �M

�
! �

�
^k�1T �M

�
,

from the left exterior differential d, such that

� 7! �� = � (�1)k ��1 d � �: (23)

Our de�nition (23) differs by an extra minus sign from
the standard de�nition in the theory of exterior dif-
ferential forms, in order to let our results agree with
standard conventions in Clifford analysis.

When acting on any 0-form f , �f = � (�1)k ��1
d (�f) = 0, because d (�f) has grade n + 1. Due to
antisymmetry, � � � = 0, 8k 2 Z[0;n]. Since Hodge's
left star operator is applied twice in (23), � is indepen-
dent of any chosen orientation onM .

With respect to natural covariant frames, we get

� 7! �� =
1

(k � 1)! (g
��r����2:::�k)

(dx�2 ^ : : : ^ dx�k) : (24)

Similarly as for the exterior derivative, we can
write the action of � on any k-form � in terms of the
operator de�ned in (21) and the interior product (15),
for 1 � k � n,

�� = @ � �; (25)
The interior derivative operator � is at the same time
an analytical directional covariant derivative on the
components of � and an algebraic contraction oper-
ator on the natural covariant frame of �.

When acting on any n-form $ =
f
�
dx1 ^ : : : ^ dxn

�
,

�$ = @ �$;
= (dx�r�) �

�
f
�
dx1 ^ : : : ^ dxn

��
;

= (r�f)
�
dx� �

�
dx1 ^ : : : ^ dxn

��
;

= (r�f) g��
�
dx1 ^ : : :ddx� : : : ^ dxn� ;

= g�� (@�f)
�
dx1 ^ : : :ddx� : : : ^ dxn� ;(26)

whereinddx� denotes the absence of the frame factor
dx� in the exterior product in (26).

The contravariant vector �eld grad f ,
g�� (@�f) @� is called the gradient of the scalar func-
tion f and is readily seen to be the image of the dif-
ferential df under the inverse canonical isomorphism
from T �M ! TM . Eq. (26) shows that its con-
travariant components also arise as the components of
the (n� 1)-form �$. The gradient of a function is
a less general concept than the differential of a func-
tion, since it is only de�ned for functions on a mani-
fold with an inner product structure (e.g., on a pseudo-
Riemannian manifold), while the latter exists for func-
tions on any differential manifold.

Further, we will need �df = (dx�r�) �
(dx� (@�f)) = g

��r� (@�f), explicitly given by, see
e.g., [6, p. 319],

�df =
1p
jdet [g]j

@�

�p
jdet [g]jg��@�fx

�
: (27)

The operation � = @� generalizes the divergence
operation (for 1 � k � n), de�ned in classical vec-
tor calculus, to totally antisymmetric covariant tensor
�elds on pseudo-Riemannian manifolds.
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2.4 Differential multiforms onM

We now consider objects that are collections of k-
forms.

The direct (or geometric) sum of the sets
of k-forms over all grades k, � (T �M) ,
�nk=0�

�
^kT �M

�
, will be called the set of multi-

forms.
Since k-forms are covariant k-vector �elds, mul-

tiforms are just covariant multivector �elds. The con-
cept of a multiform is the covariant analogue of the
more common concept of a contravariant multivector
�eld in Clifford analysis over a manifold, and there
called a (contravariant) Clifford-valued function on
M . We can thus similarly call a multiform a covariant
Clifford-valued function onM .

The modules of k-forms over R naturally com-
bine into the module of multiforms over R, denoted
(� (T �M) ;R).

The interior and exterior products and derivatives,
de�ned for k-forms, naturally extend by linearity to
multiforms. We will call the elements of this �nal
structure differential multiforms over R.

Contravariant multivector �elds overR onM can
also be de�ned, but will not be needed here.

2.5 Clifford product of a 1-form and a mul-
tiform

The Clifford product (or geometrical product) com-
bines the interior and exterior products into a single
product.

We de�ne a left Clifford product (denoted by jux-
taposition) of any 1-form overRwith any k-form over
R as a bilinear map from � (T �M)��

�
^kT �M

�
!

�
�
^k�1T �M

�
� �

�
^k+1T �M

�
such that (�; �) 7!

�� with
�� , � � � + � ^ �: (28)

Herein is � � � the in (15) de�ned left inner product
de�ned between any 1-form and any k-form and ^ the
exterior product de�ned by (7). The product between
the components of � and � in � � � and � ^ � is the
multiplication product of the ringR.

The Clifford product, de�ned in (28), for a given
1-form �, is readily extended to any multiform � by
linearity.

The Clifford product is associative, but generally
not commutative.

We will denote the resulting (here restricted) Clif-
ford algebra by Cl (T �M; g). The Clifford product
can be de�ned more generally between arbitrary mul-
tiforms, but we do not need this generalization here. It
would then generate the covariant Clifford bundle on
M .

3 Electromagnetism in vacuum

3.1 Formulation

The formulation of electromagnetism in terms of exte-
rior differential forms has been considered by several
authors, e.g., [20], [8], [30], [9]. This has not how-
ever resulted in much progress in solving real world
electromagnetic problems with this algebra.

The algebra of exterior differential forms goes
back, in its most general form, to E. J. Cartan, who de-
veloped it in the period 1894�1904 based on the work
of Grassmann. It is often overlooked that this alge-
bra, in the form used by Cartan, is too general to even
start formulating electromagnetism in this language.
Being general means that it can be applied to more
general differential manifolds (which have less struc-
ture) than inner product differential manifolds such as
pseudo-Riemannian manifolds. Cartan's version lacks
a speci�c structure which is an essential part of elec-
tromagnetism, namely an inner product g�1. Once an
inner product is added to Cartan's algebra of exterior
differential forms, Hodge's star operator can be de-
�ned. Now, both an interior product and an interior
derivative can be de�ned by combining Hodge's star
operator with the exterior product and exterior deriva-
tive, respectively. At this point, we have the necessary
ingredients to formulate electromagnetism. But this is
not yet suf�cient to solve the resulting equations (29)�
(30), below (we want to avoid potentials). We have to
extend our mathematical language further by combin-
ing the interior and exterior product into a geometrical
product (the Clifford product) and we are also forced
to introduce multiforms. The resulting Clifford alge-
bra of multiforms, Cl (T �M; g), is �nally powerful
enough to elegantly solve eq. (31) below, as we will
see in the next section. In fact, for the problem con-
sidered in this paper, a restricted Clifford algebra of
1-forms and multiforms is suf�cient. We now proceed
along these lines.

Electromagnetism in time-space can be correctly
described, i.e., with respect for its geometrical content
and physical invariances, in terms of an inner prod-
uct specialization of the algebra of exterior differential
forms. We get the following two equations,

dF = �K; (29)
�F = �J: (30)

Herein stands J 2 (� (T �M) ;FM ) for the elec-
tric monopole charge-current density source �eld,
K 2

�
�
�
^3T �M

�
;FM

�
for the magnetic mono-

pole charge-current density source �eld and F 2�
�
�
^2T �M

�
;FM

�
for the resulting electromagnetic

�eld. We will make the additional reasonable phys-
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ical assumption that (the components of) both J and
K are of compact support inM .

In expectation that any magnetic monopoles are
discovered in our universe, we can always put K =
0. However, for the mathematical structure that we
wish to expose here, it is instructive to keep K in our
model.

Eqs. (29)�(30) hold in the presence of any gravi-
tational �eld, which is represented by the inner prod-
uct structure g onM . The �rst equation (29) is inde-
pendent of g, but the second equation (30) depends on
g since the interior derivative � depends on it, through
Hodge's star operator.

Being both tensor equations, eqs. (29)�(30) are
form invariant under any change of bases, so they
are in particular invariant under any change of coordi-
nates. Hence, (29)�(30) hold for any coordinate sys-
tem.

Eqs. (25), (22) and (21) allow us to consider the
direct sum of eqs. (29)�(30) and combine them into
the single equation,

@F = � (J +K) : (31)

In the process of adding we have extended our set of
mathematical quantities, k-forms, to the set of multi-
forms. For instance, J +K is a multiform consisting
of the 1-form J and the 3-form K. Clearly, the left-
hand side of (31) also contains a multiform consisting
of the 1-form @ � F and the 3-form @ ^ F .

Eq. (31) is a very compact formulation for
electromagnetism on a pseudo-Riemannian (vacuum)
manifold. In addition to being compact, eq. (31) is
also a fertile starting point to derive an analytical ex-
pression for the solution of electromagnetic radiation
problems in vacuum, in the presence of any gravity
�eld, in terms of any coordinates, and for any smooth
compact sources J and K, as will be explained in the
next section.

Additional information about other uses of Clif-
ford algebra in electromagnetism can be found in, e.g.,
[2], [18], [21].

3.2 Radiation problem

3.2.1 Method

We will base our solution method on a local reci-
procity relation.

By de�nition of the directional covariant deriv-
ative ru along a contravariant vector �eld u, [6, p.
303], ru commutes with contracted tensor multipli-
cation (in particular, with the interior product (15)).
Further, ru is a derivation with respect to the ten-
sor product 
 and by linearity also with respect to the

wedge product ^. Combining both properties, shows
that ru is a derivation with respect to the Clifford
product (28) for multiforms. Therefore, for any 1-
form � overD0M and any multiform � over FM , Leib-
niz' rule holds,

ru (��) = (ru�)� + � (ru�) : (32)

The product between the components of� and � in the
Clifford products ��, (ru�)� and � (ru�) in (32) is
the multiplication product between distributions and
smooth functions and is always de�ned (see (38)).

Let Cx0 denote a still to be determined 1-form
over D0M . Substituting u = @�, � = Cx0 and
� = dx�F in (32) and contracting over �, we get

r� (Cx0dx�F )
= ((r�Cx0) dx�)F + Cx0 ((r�dx�)F ) ;

or

r� (Cx0dx�F ) =
�
Cx0 @ �

�
F + Cx0

�
@�!F
�
: (33)

In (33) the under arrows indicate the direction of op-
eration of r� in the 1-form operator @. We need this
notation due to the non-commutativity of the Clifford
product between Cx0 and @.

Substituting the equation for electromagnetism,
(31), in (33) gives�

Cx0 @ �
�
F = Cx0 (J +K) +r� (Cx0dx�F ) :

(34)
This is the sought local reciprocity relation between
the electromagnetic �eld 2-form F over FM and the
1-form Cx0 over D0M .

We now choose Cx0 such that

Cx0 @ � = @�!Cx0 = �x0 ; (35)

with �x0 the delta distribution concentrated at a para-
meter point x0 2 M . Eq. (35) only determines Cx0
up to a closed 1-form � over D0M . For our purpose
however, any fundamental solution Cx0 of (35) will
do and any such Cx0 is a realization of the inverse op-
erator @�1.

Consider an open bounded region 
 � M , with
boundary @
 and closure 
 = 
 [ @
, such that

 � supp (J +K) and x0 2 
 for �x0 in (35). Let
C1c (M;R) denote the set of real smooth function of
compact support de�ned onM and ' 2 C1c (M;R)
a test function equaling 1 over 
. Let further h; i :
D0+ (M) � C1c (M;R) ! R be the scalar product
overM between our set of distributions D0+ (M) and
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the set of test functionsC1c (M;R). This scalar prod-
uct extends to k-forms over D0M as�

1

k!
��1�2:::�k (dx

�1 ^ : : : ^ dx�k) ; '
�

, 1

k!



��1�2:::�k ; '

�
(dx�1 ^ : : : ^ dx�k) (36)

and to multiforms by linearity.
Substituting (35) in (34) and calculating the scalar

product of eq. (34) with ' gives

h�x0F;'i = hCx0 (J +K) ; 'i
+ hr� (Cx0dx�F ) ; 'i : (37)

Recall from the theory of distributions the de�nition
for the product of a distribution f 2 D0+ (M) with a
smooth function h 2 C1 (M;R),

hhf; 'i , hf; h'i ; (38)

a de�nition which is legitimate since h' 2
C1c (M;R). Using (36) and (38), (37) can now be
written out explicitly as

1

2!
h�x0 ; F�1�2'i (dx�1 ^ dx�2)

=

0BB@
D
(Cx0)�1 ; J�1'

E
(dx�1dx�1)

+ 1
3!

D
(Cx0)�1 ;K�1�2�3'

E
(dx�1 (dx�1 ^ dx�2 ^ dx�3))

1CCA
+
1

2!

D
r�
�
(Cx0)�1 F�1�2

�
; '
E

(dx�1dx� (dx�1 ^ dx�2)) : (39)

In (39), the product between the frame �elds is the
Clifford product between a 1-form and a k-form (with
k = 1 and k = 3).

By de�nition of the delta distribution and the
choice of support for the test function ', (39) reduces
to

F (x0)

=

0BB@
D
(Cx0)�1 ; J�1

E
(dx�1dx�1)

+ 1
3!

D
(Cx0)�1 ;K�1�2�3

E
(dx�1 (dx�1 ^ dx�2 ^ dx�3))

1CCA
+
1

2!

D
r�
�
(Cx0)�1 F�1�2

�
; '
E

(dx�1dx� (dx�1 ^ dx�2)) : (40)

The second term in the right-hand side of (40)
containingr� can be converted by Stokes' theorem to
a scalar product over @
 of a multiform concentrated
on @
 with the 1 function on @
. Then, eq. (40)

gives the general solution of the boundary value prob-
lem, consisting of eq. (31) together with prescribed
boundary values for the electromagnetic �eld F on
@
. The outward radiation condition corresponds to
putting this converted second term equal to zero. All
this can be made more explicit, but this development
requires a somewhat more advanced derivation, based
on a generalization of Stokes' theorem, and will be
presented elsewhere. Hence, the particular solution
caused by the sources J and K, denoted by F src, is
thus given by

F src (x0)

=
D
(Cx0)�1 ; J�1

E
(dx�1dx�1)

+
1

3!

D
(Cx0)�1 ;K�1�2�3

E
(dx�1 (dx�1 ^ dx�2 ^ dx�3)) : (41)

3.2.2 Construction of Cx0
The construction of Cx0 is simpli�ed by noting that
dCx0 = @ ^ Cx0 = 0 (i.e., Cx0 is closed) implies, by
Poincaré's lemma, that (locally)

Cx0 = dfx0 = @ ^ fx0 ; (42)

(i.e., Cx0 is exact) for some 0-form fx0 over D0M .
Since �fx0 = @ � fx0 = 0, we can write (42) also
in Clifford form as

Cx0 = @fx0 : (43)

Substituting this representation for Cx0 in its
de�ning equation (35) gives the equation to be sat-
is�ed by fx0 ,

@ (@fx0) = �x0 : (44)

The grade preserving operator @ � @ = (d+ �) �
(d+ �) = d � � + � � d is just the Laplace-de Rham
operator. Since �fx0 = 0 and by using expression
(27) for �dfx0 , we get for (44), with respect to natural
frames,

1p
jdet [g]j

D�

�p
jdet [g]jg��D�fx0

�
= �x0 ; (45)

which is the generalized (i.e., the distributional) scalar
wave equation in curved time-space.

Collecting results, we see that any fundamental
solution fx0 of the generalized scalar wave equation in
curved time-space generates a 1-form Cx0 over D0M ,
which realizes the inverse operator @�1 as

@�1 = �hCx0 ; _i (46)

and so in turn generates the general solution by (40).
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It can be shown that the general solution F given
by (40) is independent of the particular choice of fun-
damental solution fx0 of (44).

Our main result (40) would be most useful in
gravity �elds for which fx0 could be obtained in ana-
lytical form. It is not known how to analytically solve
eq. (45) for fx0 in a general gravity �eld g. The con-
struction for general g, given by Hadamard in [13],
proofs the existence and uniqueness of the solution of
the Cauchy problem for (45), but is of limited value
to calculate fx0 in general. For some speci�c back-
grounds however, such as the de Sitter metric, [11],
some Bianchi-type I universes, [26], and a class of
Robertson-Walker metrics [22], an analytical expres-
sion for fx0 can be obtained exactly.

3.2.3 Integrability conditions

It is remarkable that the generally accepted mathe-
matical model for electromagnetism has in general
no particular solution (this also holds for Heaviside's
model). Indeed, operating on the left with @ shows
that any solution of @F = � (J +K) is necessarily
also a solution of

@2F = �@ (J +K) : (47)

We used in (47) the associativity of the Clifford prod-
uct and of r� when we equaled @ (@F ) to @2F . The
operator @2 is grade preserving, hence the grade of
the left-hand side of eq. (47) equals the grade of F ,
which is 2. The right-hand side of eq. (47) has a grade
0 part, � (@ � J), a grade 2 part, � (@ ^ J + @ �K),
and a grade 4 part, � (@ ^K). For eq. (47) to have a
solution it is thus necessary that both the grade 0 part
and the grade 4 part vanishes. This requires that J and
K must satisfy �J = @ �J = 0 and dK = @^K = 0,
or with respect to natural frames, that

1p
jdet [g]j

@

@x�

�p
jdet [g]jg��J�

�
= 0; (48)

1

3!
���1�2�3

@K�1�2�3
@x�

= 0: (49)

Eqs. (48)�(49) are the necessary integrability
conditions of our model for electromagnetism on a
pseudo-Riemannian (vacuum) manifold in the pres-
ence of gravity. Eqs. (48)�(49) amount physically to
the local conservation of electric monopole charge and
of magnetic monopole charge, respectively. Although
it is well-known that from the equation(s) for electro-
magnetism conservation of charge can be derived, the
mathematical implication of this fact, namely that lo-
cal conservation of charge is a necessary integrability
condition for the equation(s) for electromagnetism, is
rarely mentioned in the electromagnetics literature.

It can be shown that conditions (48)�(49) are also
suf�cient for the existence of a particular solution of
our model for electromagnetism.

3.2.4 Solution

General form Evaluating the Clifford products in
(41) gives

F src (x0)

=
D
(Cx0)�1 ; J�1

E
g�1�1

+

0B@
1
2!�

�1�1
�1�1



(Cx0)�1 ; J�1

�
(dx�1 ^ dx�1)

+ 1
3!

D
(Cx0)�1 ;K�1�2�3

E
(dx�1 � (dx�1 ^ dx�2 ^ dx�3))

1CA
+
1

3!
�
�1�1�2�3
1234

D
(Cx0)�1 ;K�1�2�3

E
�
dx1 ^ dx2 ^ dx3 ^ dx4

�
: (50)

It can be shown that conditions (48)�(49) also
guarantee that in (40) only the grade 2 part remains.
Then, (50) reduces to

F src (x0)

=
1

2!
��1�1�1�1



(Cx0)�1 ; J�1

�
(dx�1 ^ dx�1)

+
1

3!

D
(Cx0)�1 ;K�1�2�3

E
(dx�1 � (dx�1 ^ dx�2 ^ dx�3)) : (51)

In the absence of a magnetic monopole charge-
current density source �eldK, (51) further reduces to

F src (x0) =
1

2!
��1�2�1�2



(Cx0)�1 ; J�2

�
(dx�1 ^ dx�2) :

(52)
By substituting expression (43) for Cx0 , (52) is

equivalent to

F src (x0) =
1

2!
��1�2�1�2

hD�1fx0 ; J�2i (dx�1 ^ dx�2) :
(53)

We can convert (53) to a simpler form by using the
de�nition of the generalized derivativeD�1 . Since we
assumed that J is smooth, we get

F src (x0) = �
1

2!
��1�2�1�2

hfx0 ; d�1J�2i (dx�1 ^ dx�2) ;
(54)

with d�1 the ordinary partial derivative with respect to
the coordinate x�1 . In more compact notation, (54)
reads

F src (x0) = �hfx0 ; dJi ; (55)
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with d in the right-hand side of (55) the exterior deriv-
ative. By adding the integrability condition �J = 0 to
dJ in (55), we can cast (55) also in the Clifford form,

F src (x0) = �hfx0 ; @Ji : (56)

This is a new expression for the electromagnetic
�eld generated by a smooth and compact support elec-
tric monopole charge-current density source �eld on
a pseudo-Riemannian space. It clearly shows that the
electromagnetic �eld F src, generated by the source J ,
can be expressed solely in terms of a scalar Green's
distribution fx0 for the scalar wave equation in curved
time-space.

From the point of view of Clifford analysis, result
(56) is not surprising. From (47) we formally deduce
the (particular) solution F = �@�2 (@ (J +K)).
Now, any fundamental scalar distribution fx0 , satis-
fying (44), realizes the inverse operator @�2 (i.e., the
inverse Laplace-de Rham operator) as

@�2 = hfx0 ; _i : (57)

Hence, we can interpret (56) as the particular solution
(forK = 0) of the wave equation satis�ed by the elec-
tromagnetic �eld, eq. (47), in curved time-space.

We have thus shown that the general electromag-
netic radiation problem in the presence of an arbitrary
gravity �eld can be analytically solved in terms of
a fundamental solution of the scalar wave equation,
without invoking electromagnetic potentials and with-
out �rst calculating electromagnetic Green's dyadic
�elds.

Solution in Minkowski space In the absence of
gravity, our manifold M reduces to �at Minkowski
time-space with inner product structure � and (44)
reduces to the ordinary wave equation �fx0 =

�x0 , involving the generalized d'Alembertian � ,
���D�D� . In this case, fx0 is obtained by a simple
shift from f0, satisfying

�f0 = �0; (58)

with �0 the delta distribution concentrated at the ori-
gin.

Simple form Let (x�) ,
�
t; s , si@i

�
,�

t; s1; s2; s3
�
be Cartesian coordinates on Minkowski

time-space M , x0 , (t0; s0) 2 M and de�ne the
forward null cone, with respect to x0, by Nx0 ,
fx = (t; s) 2M : t� t0 � js� s0j = 0, t0 � tg (jj
stands for three-dimensional Euclidean distance). A
well-known causal fundamental solution f0 of (58) is

f0 =
�N0
4� jsj ; (59)

with �N0 the delta distribution concentrated on the for-
ward cone N0. Then,

fx0 =
�Nx0

4� js� s0j
: (60)

In classical notation involving the �delta function�,
�Nx0 = � (t� t0 � js� s0j).

Introduce spherical spatial coordinates centered at
s0,

r = js� s0j ;

� =
s� s0
js� s0j

2 S2s0 ;

with S2s0 the unit sphere centered at s0. The action of
fx0 on any ' 2 C1c (M;R) is given by, [12, p. 249
eq. (9) and p. 252, eq. (14') with k = 0, and taking
only the causal part],

hfx0 ; 'i

=
1

4�

Z +1

0

Z
S2s0

' (t0 + r; s0 + r�)

dS2s0rdr: (61)

This shows that the distribution fx0 , 8x0 2 M , is de-
�ned 8' 2 C1c (M;R).

Applying (61) in particular to ' = dJ = @ ^ J ,
results in the following explicit expression for (55),

F src (x0)

= � 1

4�

Z +1

0

Z
S2s0

(@ ^ J) (t0 + r; s0 + r�)

dS2s0rdr: (62)

This is a simple form for the electromagnetic �eld,
generated by a smooth compact support electric
monopole charge-current density source �eld J (the
condition of smoothness can be relaxed to C1). Con-
trary to the form derived in the next subsection, no
special care is required to evaluate the integrals in
(62).

Je�menko's form From (43) and (60) follows

Cx0

=
�0Nx0

4� js� s0j
dt

+

 
�0Nx0

4� js� s0j
+

�Nx0
4� js� s0j2

!
�� (63)
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and we used (i runs over spatial coordinates)

@i js� s0j =
si � si0
js� s0j

dsi = ���;

�� , ��i ds
i , si � (s0)i

js� s0j
dsi:

Substituting expression (63) for Cx0 in (52) gives,

F src (x0)

=
1

2!
�1�2�1�2

*
�0Nx0

4� js� s0j
; J�2

+
(dx�1 ^ dx�2)

+
1

2!
�i�2�1�2

*0@ �0Nx0
4�js�s0j

+
�Nx0

4�js�s0j2

1A ��i ; J�2
+

(dx�1 ^ dx�2) : (64)

(i) Using

��1�2�1�2
= ��1�1�

�2
�2
� ��1�2�

�2
�1
; (65)

with �1 = 1, the �rst term in (64) can be cast in the
form *

�
�0Nx0

4� js� s0j
;J

+
^ dt: (66)

(ii) Similarly, using (65) with �1 = i, the second
term in (64) can be cast in the form

*0@ �0Nx0
4�js�s0j

+
�Nx0

4�js�s0j2

1A ��; �+ ^ dt
+
1

2!
�klij

*0@ �0Nx0
4�js�s0j

+
�Nx0

4�js�s0j2

1A ��k; Jl
+

�
dsi ^ dsj

�
: (67)

With respect to a natural frame, the electromag-
netic �eld has the representative

F = E ^ dt+ 1

2!
Bij

�
dsi ^ dsj

�
; (68)

wherein the three-dimensional covariant vector �eld
E (a spatial 1-form) is called the electric �eld and the
three-dimensional covariant 2-vector �eld (a spatial
2-form) is called the magnetic �eld.

Identi�cation of (68) with the sum of (66) and
(67) gives

E (t0; s0) =

�
�Nx0

4� js� s0j2
��; �

�
+

*
�0Nx0

4� js� s0j
��; �

+

�
*

�0Nx0
4� js� s0j

;J

+
;

and

Bij (t0; s0) = �klij

�
�Nx0

4� js� s0j2
��k; Jl

�
+�klij

*
�0Nx0

4� js� s0j
��k; Jl

+
:

Making use of the de�nition for the generalized deriv-
ative, acting on the delta distribution, both these ex-
pressions can be further converted to

E (t0; s0) =

�
�Nx0

4� js� s0j2
��; �

�
�
�

�Nx0
4� js� s0j

��; @t�

�
+

�
�Nx0

4� js� s0j
; @tJ

�
; (69)

and

Bij (t0; s0) = �klij

�
�Nx0

4� js� s0j2
��k; Jl

�
��klij

�
�Nx0

4� js� s0j
��k; @tJl

�
:(70)

Expressions (69)�(70) are equivalent to Je�menko's
equations, [19], [27, Section 14.3], [25].

Special care is required to evaluate terms of the
form �

�Nx0
4� js� s0j2

��k; '

�
in (69)�(70). This is usually handled in the physics
and engineering literature by a limit process. Its eval-
uation can be given a rigorous basis in the context of
the theory of distributions.
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